On a certain converse of Holder’s inequality. II

By L. LEINDLER in Szeged

A. PrREKOPA [2] proved the integral ineqﬁality
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for arbitrary Lebesgue ‘measurable non- negatlve functions f(x) and g(»).
In [1] we proved the inequality of s1m11ar type
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where 1=r,s5, y=< and 7+? = 1+7. The proof of (2) is much easier tham

that of (1), but (2) does not include (1) because of the lack of the factor 2.
In the present paper we prove the inequality, more general than (1),

3) fxi‘ig,f(x)g(y)dt_;pllpqxlq[ ff”(x) dx]l/p[ j‘ogq(x) dx]l_/q,

i ,
where 1=p, =< and ;+% = 1. Here the constant factor at the second member-
is best possible (if p=1 then by this constant we understand 1).
This inequality can be generalized to any finite number of functions as follows::
" ‘Theorem. Suppose that 1=p,=-o (i=1,2,. ,n) and Z—— = 1. Then for

arbitrary non-negative Lebesgue measurable functions f, (x‘) 5 (xz), o (x") we have:

@ J [ sup Hf.(x')] ai= [T 1Al
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and this inequality is best possible.
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For n=2 inequality (4) reduces to (3) by the substitution x!=px and x2=gqy.:
If n=1, then (4) reduces to the obvious equality:

(O f sup f, (x) dt = f [i®dx = [ fills-

We also obtain (5)if # is arbitrary, but one of the -numbers p,-say p;, is equal to 1;
for in this case p,=p;="--=p,=cs, and thus we can divide (4) by H |l fill» assum-

ing this product is poditive and finite (0therw1se both sides of (4) are zero Or in-
finite). ‘ : :
For similar reason, if one of the numbers p,, say p,,, is equal to mﬁmty, then
we can divide (4) by || fill . . :

Therefore we may assume that 1<p,<eo for all i.

Pro_o_f of the Theorem. We may assume, as already explained; that 1 <p; <<
- for i=1,2, ..., n; for n=2, the integral on the left-hand side of (4) has finite value,
- and the functions f;(x’) do not vanish almost everywhere' We prove (4) for step
functions with integer points of discontinuity only, the transition to arbitrary Lebesgue
measurable functions follows -as'in. [2]. Moreover, it suffices to-consider step func-
tions which at their points of discontinuity are equal to the larger one of the values
taken on the adJomlng intervals (thls latter convention will be important technically
later, see (10), (l 1) and (12)). :

First we set down some notatlons and définitions: Let '

T

F-(x")— f,( ') | (i=l,2,...,n),

and N be an 1nteger siich that 1f |x [>N then f,(x‘) 0 for all iy furthermore let
F(x) =a if x'€tk=1,k),  k=-N+l, ~N+2,..,N—1,N.

Let v, denote a ﬁxed mdex w1th a, —l Fmally we deﬁne the followmg aux111ary
_functlon o

’ Fx if xé{v l,v,)

G(x )= 1/( v (
N 2"-..1f xe[» l,v,]

. Denotmg the values of G; (x‘) on (k*l k) by bk, lt 1s clear that b' —ak 1f k;é Az
and for k=v; b —2”"“ S :
By means of these functlons G, (x') we want to- give a decomposition of the
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interval (— o<t <o) such that the sum.of the lower estimations to be glven on the
subintervals for the left-hand side of (4) be greater than

oo

| []](maxf)] - f F,"'(x')a’x

i —oo

From thlS point the proof of (@) will already be easy.
By the deﬁmtlon of N we have

‘(6) o S..__: j,"[ Sup HF(x)] /‘[ Sup HF(xt)] df = SN’

thus it is enougﬁh' to deCdmposé ‘the interval [ —N, N].
. First we, sketch the idea of the decomposmon in the case n=2.

N Ny
——>——] to the ~_point

—

We want to choose a path from the point PO

‘P ""Pz"
QO( PL\Z) such that by means of the “break 'points of thlS path the requlred
decomp051t10n of the interval [ N <t<N] could be given. See the followmg ﬁgure
Ak ’
4% (55 )

/
. P
-Ip)_‘;. /4 NN
+——t—t——+ + : "ig ' -,
' s 1, wu
R . 7 LN |
o ':..‘_v . Pm I P . %
N _ N ’
o)
From_ a break point, e.g.from the point P,,.( p_ 1,, _p—..l) we go astep to the right
L i SR re . N 1 P B A SN

or upward according as (b7)P: or (b;)P: is the larger number, that is, we go-toward
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the direction where the smaller value of the functions (G, (x'))*: and (G,(x?))?-
in the following step can be. found; if (b7)P2=(b{)": then we go obliquely upward

. k1 . . . :
to the point [;—’p_’ We continue this procedure till one of the break points
1 2 .
v, Vi) . Lo
—‘,—2); This ensues necessarily since
P1 P2 '

one of the break points “knocks against the lined wall” and after this the points

P,, say m=m,, comes up to the point (

vy,—1
P2

. —1 . .
go along the wall to the point (le—, ] (in fact, the functions take the
’ 1

v,—1

largest value on the wall), and from the point (vl—_l, ], by (b))1=(b%)r:=
. 1 )

2
Vi V2
PPy
: . . v
method we can.come back from the point @, to the point (—i,

=2, we jump to the point ( ) For similar reasons and by an analogous

v, ) )
—=| along the points
» P P2/

Q... If we join the points Q,, to the points P,, in reverse order as we obtained them,

then we will get the required path from P, to Q.
Now we construct such a path in the n-dimensional .case. Let

_ 1, if =0,
SW=10 i r=o,

and we denote, as usual, By h, (u,) the limit from the right of the function /() at -
g, and by /_ (uo) the limit from the left. We put

pop T b

K N N N

Next we deﬁhe, for m=1, the following numbers and points successively:

o, . .
u:n'=-;S(m;I_l G2 (p;¥h-1)— GP (Piyim-1))
i J#i
and
Pr(Vms Yo s Vi) = (Pmor - Ums Va1 F iy oo Yoo { F ). |

We continue this procedure till yi, = ;’— will hold, for some m=mg, and for all
i, le. ' '
n — vl v2 vn
Pmc(yt%xc,! y:lo’ "-9ym°) = [Es E’ seey 'E]-
This follows necessarily by the same reason as we explained it in the case of two
functions.



On a certain converse of Holder’s inequality. II 221

Then we define a sequence of points Q,,(z%, z2, ..., z&) in an analogous way

N
commg back from the point (pﬁ e ,—Jl) Let
1 2
- N N N
28,25, ...,28) = [,—, —
QO( 0540 0) Py Ds D

Similarly as before, we define the following numbers and points, for m=1, suc-

cessively:
Uy = s(mln_ G?i(p;jzy—1)—GFL (piZ:ne-l))
Di =i
and _ .
Qm(zr]n: Z'%,, "'SZ;): (Z;l—l_v'%lﬂz'%l—l_urzrlD "'!Z::l—l_v;:l)‘

In the n-dimensional case we also “knock against the wall’, therefore it is clear
that in a finite number of steps, say in m,, we come to the point P, ,i.e. P, ,=Q,, .
For each i (i=1,2, ..., n) we put

,y.rino+l=Zrinl—l (]:0,1, "'aml)’

hereby we arranged the points in'a sequence P,,(yh, ¥, ..., y&) (m=0,1, ..., mq —|-m O
which gives the required path from P, to Q.- :

Now we prove that by means of the obtamed path, i.e. by means of the sequence
P, (L, ¥2, ..., y%) (m=0,1, ..., my+m,), we can give the decomposition of the
interval [— N, N] we have required. First we set for each 7 (i=1, 2, ..., n)
M _ Iy =Ym—Ym-1, (m=12..,mg+my),

L4

furthermore denote by ci, the value of Fi(x"). on the interval (p;yh,_,, p;Vi) if I, =

1- . . PR .
=-—, and at the point x'=p,y}, if I,=0.

Let
(®) te = ‘_Zl"y,'; (k=0,1, ..., mg+m,).
It is easy to see that f,=—N and tmo+m, =N, furthermore for kél

n
e =tgtle—leey = by t _Z{Ié
i=
also holds. Thus we can decompose each interval [#,_,, #] by the points

(9) Tk,O == tk—l and Tk,j = ’k——1+ ZI,E (j= 1,2, ceey n)-
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On such an interval [t, ;_;, 7, jJforany k and j(k=1,2, ..., mo+m,; j=1,2, ...,n)
we have the following lower estimate:

(10) Sk,_~ f[ sup []F(x‘)]dtél,{f]c;;'.
3

Tr,j-1

_=1

i=1Pi

To verify (10) we put x'=yi p, for i<j and x'=)%_, p, for i>j, and we have x/ run
from y{_,p;to y{p;, then 1 goes from 7, ;_, to 7, ;;in fact, by (7), (8) and (9) we have

n i j—1 .
’:,Z;;‘% Zyk+2yk 1 = Lo 1+Zlk—‘rk, 1
. i= i i= i=j
and
' noxt i, no i
t=2—= 22yt 2 Vi1 =t 2 L=
i=1 Pi i=1 i=j+1- i=1 - )

Choosing x' in such a way as we mentioned above, we have

Tie, j

(11) : ' Sy ;= f [ sup ]]F(x‘)]dt>,
o i= 1p'=t

= I F,Gip) I Fi(yi 1p.l)ck f dt,

i<j N Teyg-1

and hence by the deﬁnmon of our step functlons (see their definition at the pomts of
discontinuity), (10) obviously follows.
By (2) and (10) we obtain
. ‘ : L '_ 3 .
12) o = 21 S = f [ sup ]]F(x')] dt
= L

tk_'lA *_,

iy
—
e
=
-
-
L N—
ha
o
Rk

j=1Pi

By the definitions of i and I{, furthermore taking into account that the functions
at their points of discontinuity are equal to the larger one of the values taken on the
adjoining intervals, it can be seen that Ij differs from zero only for such indices j
for which (cf)Pi=(c})? holds for all i (i=1, 2, ...). Thus we obtain from (12) that

(13) R

N Jj=
since if I} #0 then v
: Pi

o rE
qz [[r = e " =

whence, by (12), inequality (13) follost obviously.
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Since -

mg+m,
S = SN = Z Oy,

k=1
by (13), we have

mo+m . mot+m
2 S = 2T
=1 j=1 j=1 k=1 .

i

| (14) . ' S

By the definition of I} and cf it is clear that

mo+m,

as Sy =L 3 @,
k=1 Pji=F+1
< 1
thus, by (14) and (15), using the followmg well-known mequaltty H 0= Z;(g,)”v
ci=1 =1 Vi
(0;>0), we get ' ) .
(16) s= >+ Z @ys= [[ { Z’ (a!)v] = [T 1F,,
j=1 Pj 1= - j=1U=-N+ i=1 .

Multiplying both sides of (16) by ]"] (max f;) we obtain the required inequality (4).. }

To prove that the inequality (4) is best possible we define the followmg func--
tions:

ey '{1 on @1, .
fi (_x)_ 0 otherwise, | oo
Then

_ i . . ". o
f [ sup _Hff’(xi)] dt = [ 1dt= T 1l
ooy i=1 0 i=1 .

Z =t

— oo

i=1P:

The proof is thus completed. -
My grateful acknowledgement is due to Professor BELA SZOKEFALVI NAGY for-
stimulating conversations. '
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