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1. Introduction. As the title indicates, this paper is a continuation of [1], and, 
accordingly, we shall assume that the reader is familiar with the results and ter-
minology of that note. In particular, it should be recalled that if T is an operator 
f r o m a Hilbert space J f to a Hilbert space J f , then T is said to be affiliated with 
a given ideal 3 in if the operatoi (T*T)* belongs to 3- (In this paper, as 
in [1], all Hilbert spaces will be assumed to be complex, separable, and infinite 
dimensional, and all operators will be assumed to be bounded and linear. Further-
more, will denote the algebra of all operators on a Hilbert space j f , and 
all ideals in referred to will be two-sided) 

The following result is [1, Theorem 3. 1]. It is central to our present needs, 
and we restate it here for convenience of reference. 

T h e o r e m A. Let 3 be any ideal in other than the ideal of operators 
of finite rank, and let T be any operator on Let X be any fixed scalar in the bound-
ary of the Calkin spectrum of T, and let e be any positive number. Then there exists 
a decomposition of № into infinite dimensional subspaces JtT and .yf1 such that the 
restriction {T-X)\jf of T-X to Jf ((T~X)\.T:.^ ^ f f ) is affiliated with the ideal 
3 and has norm less than e. 

In [1], Theorem A was used to show that every operator in is unitarily 
equivalent to a particular kind of 2 X 2 operator matrix, and this result was then 
applied to obtain certain results in the theory of commutators. In this noté, we 
again employ Theorem A, this time to show that every operator on a Hilbert space 
j f is.unitarily equivalent to a 3 X3 operator matrix of a certain form (Theorem 2. 1); 
this result is then used to prove an interesting theorem concerning the ranges of 
derivations on J 

2. A matricial standard form. The purpose of this section, is to prove the fol-
lowing rather surprising theorem. 

T h e o r e m 2. 1. Let 3 be any ideal in Jz?(^f) other than the ideal of operators 
of finite rank, and let T be any operator on №. Let X be any fixed scalar in the bound-
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dry of the Calkin spectrum of T, and let e be any positive number. Then there exists 
a unitary isomorphism of J f onto y( © Jf ©,'/f which carries the operator T— X 
onto a 3 X 3 operator matrix (with entries from j*?( j f ) ) of the form 

A i A B 
(*) J21 C D 

U i J32 J33. 

where , J2l, J3l, J32, and J33 all belong to the ideal 3> and all have norm less 
than £. 

The proof of Theorem 2. 1 depends on Theorem A and the following elementary 
lemma. 

L e m m a 2 . 2 . Let Ji and Jf be any two infinite dimensional Subspaces of j f . 
Then there exist infinite dimensional subspaces Ji x czJi and J f x d J f such that 
Ji Y and J f x are orthogonal. 

P r o o f . Let x t be any unit vector in Ji. Then, since Jf has dimension greater 
than 1, there exists a unit vector yt in Jf that is orthogonal to xl. Since Ji has 
dimension greater than 2, it follows that there exists a unit vector x2 in Ji that is 
orthogonal to x1 and to yl. Continuing via an obvious induction argument, we 
obtain orthonormal sequences { x „ , in Ji and {>•„}"=, in Jf such that for every 
pair j, k of positive integers, Xj is orthogonal to yk. The proof is completed by 
taking for Ji x and Jf x the subspaces spanned by the sequences {x„} and {yn}, 
respectively. 

P r o o f of T h e o r e m 2. 1. According to Theorem A, there exists an infinite 
dimensional subspace Ji of J f such that (T—X)\Ji is affiliated with the ideal 3 
and has norm less than e. Furthermore, since I belongs to the boundary of the 
Calkin spectrum of T*, it also follows from Theorem A that there exists an infinite 
dimensional subspace Jf of J f such that {T* — I)\JV is affiliated with 3 and has 
norm less than e. If we now apply Lemma 2. 2 to Ji and J f , we obtain infinite 
dimensional subspaces Jix <^.Ji and JV such that Jix and Jf x are orthogonal. 
Furthermore, it is obvious that the choices of Jix and Jf Y can be made in such 
a way that is also infinite dimensional. Let J f denote the 
threefold direct sum j f = J f © J f ® J f , and let the subspaces j f © OffiO, OffiJf ©0 , 
and OffiOffi jf of J f be denoted by J f , , J f 2 , a r | d respectively. Choose q> 
to be any Hilbert space isomorphism of ; J f onto J f such that (p(Ji{) = J f t , cp($il) = 
= Jf '2 , and (p(Jr

l) = Mp
3. Then it is clear that the operator T—(pT(p~l on J f has 

the property that the restrictions ( f - / { ) \ j e t and ( f - l ) * | j f 3 are both affiliated 
with the ideal. 3 and have norm less than e. It follows easily (see, for example, 
Theorem 3. 1 of [1] and the remark following) that if T—X is written as a 3 X 3 
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matrix with entries f rom J S ? ^ ) in the usual way, then all of the entries in the first 
column and third row of this matrix belong to the ideal 3 and all have norm less 
than e. Thus the proof is complete. 

3. Application to derivations. In this section we apply Theorem 2. 1 to obtain 
a result concerning the ranges of derivations on ¿¿{¿P). Recall that such a derivation 
is a linear function D mapping ^ f ( J f ) into itself satisfying the equation D(AB) = 
= D(A)B + AD(B) for every pair A, B of operators on It has been known for 
some time [4, Theorem. 9] that every derivation on is an inner derivation; 
i.e., if D is such a derivation, then there exists an operator T on № such that 
D{A) = TA — AT for every operator A in i f (<%?). We shall indicate this relationship 
between a given derivation D and the operator T by writing D = DT. (The operator 
T associated with D is not unique, since, if k is any scalar, then DT = DT_X.) 

T h e o r e m 3 . 1 . Let 3 be any ideal in other than the ideal 5 of operators 
of finite, rank. Then there exists no derivation D on whose range contains 3-

P r o o f . As noted above, we may assume that D is of the form D — DT_X, 
where T is some operator on J f and k is a fixed scalar in the boundary of the Calkin 
spectrum of T. It follows f rom [2, Theorem 4. 7] that there exists an ideal ft in 
^{J^C) such that 5 S f t i = 3 - Therefore, according to Theorem 2. 1, T—k is uni-
tarily equivalent to a 3 X 3 operator matrix M acting on Jti? ® Jti? ® .yf with the 
property that all entries in the first column and all entries in the third row of M 
lie in ft. Let J be an operator in 3 that does not belong to ft, and let J' be the operator 
on whose image under the given unitary isomorphism between 2tP and ,3 f© J f © J f 
is the matrix 

0 0 0 ' 

0 0 0 . 
J 0 0, 

Then clearly J' belongs to 3> a n d , since the product (in either order) of M with 
every 3 x 3 matrix with entries f rom can be seen by calculation to have the 
property that its (3, 1) entry lies in the ideal ft, it follows that the range of the 
derivation DT_X does not contain J' ; thus the proof is complete. 

Note that the proof just concluded actually proves somewhat more than 
Theorem 3. 1. We include this stronger result as a proposition. 

P r o p o s i t i o n 3 . 2 . Let 3 be any idea! in S'(M') other than the ideal of oper-
ators of finite rank, and let T be any operator on №. Then for each fixed k in the 
boundary of the Calkin spectrum of T, the linear manifold 

{(T-k)X-Y(T~k):X, 

fails to contain the ideal 3-
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4. Some comments.- Although considerable progress has been made in com-
mutator theory in the past few years, many questions concerning derivations remain 
unanswered. It is not known, for example, whether there exists a derivation on 
S£(J?) with the property that the identity operator lies in the (uniform) closure 
of its range. Furthermore, it is not known whether the ideal of finite rank operators 
is contained in the range of any derivation. {Added in proof. This point has also been 
settled in the negative by STAMPFLI.) Thus, it would appear that the topic 
of derivations on is an interesting area for continued investigation. In this 
connection it should be noted that J. G. STAMPFLI [5] has recently proved the 
pretty theorem that no derivation on ¿5? ( J f ) has range that is norm dense in i f ( J f ) . 
A different proof of this theorem can be given by using Theorem 2. 1 above. (It 
was known previously [3, Theorem 4] that derivation by the unilateral shift of 
multiplicity one has range dense in in the strong operator topology.) 
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