A metric characterization of homogeneous Riemannian manifolds

By J. SZENTHE in Szeged

Let M be a Riemannian manifold and g¢(x, y) the infimum of the length of
those piecewise Cl-curves which join x, y in M. As well-known g isa distance function
on M and the thus induced metric space [M, ¢] is so closely related to the Riemannian
manifold that a considerable number of theorems about it can be formulated and

-proved merely in terms of [M, ¢]. This circumstance can be regarded as the. starting

point of the theories of H. BUSEMANN and W. RiNow where a metric space is the . .

basic concept and some fundamental properties common to all metric spaces induced
by Riemannian or Finsler manifolds are being postulated. Although these theories
go beyond the scope of the standard one, e.g. as to differentiability conditions,
their exact relation to it is not sufficiently clarified yet. In other words no adequate
necessary and sufficient conditions are known which imply that a metric space
should be induced by a Riemannian manifold. A partial solution of this problém
is presented below, i.e. necessary and sufficient conditions are given for the case
of metric spaces induced by homogeneous Riemannian manifolds.

1. Basic concepts and the main result

Some well-known fundamental facts concerning metric spaces induced by
C=-Riemannian manifolds are summarized here. (For a detailed presentation
see [5].) _ _

A metric space is said to be finitely compact if any bounded infinite subset
has a point of accumulation in it. Metric spaces induced by complete Riemannian -
manifolds are finitely compact. A locally distance preserving map of the real line
into a metric space is called a geodesic. The geodesics of a Riemannian manifold
which are parametrized in terms of arc length and geodesics' of its induced metric
spa_cé are the same. If a, b, ¢ are distinct points of a metric space (R, ¢] and ¢(q, ¢)+
+o(c, b) = o(a, b), then it is said that c lies between a and b, in notation: ach.
If ACR and to any two different points a, b of A4 there is a c€ A with acb, then 4
is said to be convex. The induced space of a complete Riemannian manifold is -
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convex. A distance preserving map of a compact interval of the real line into a
metric space is called a segment. If [R, ¢] is a finitely compact and convex metric
space then any two points can be joined by a segment in it. The segments are said
to be locally prolongable in a finitely compact convex metric space [R, g] if to any
PER there is such a §,>0 that to any two distinct points a, b in B(p,d,) =
= {x:0(x,p) < d,} there is a c€R with abc. It is said that the prolongation of
segments is unique in [R, ¢] if x, y,2’, z2”€R, xyz’, xyz’ and ¢(x,z")=9(x, z”) imply
2’=z". The above terminology is justified by the fact that the segments of a finitely
compact convex metric space are uniquely extendable to geodesics if the preceding
two conditions hold. The closed subset AC R is called strictly convex if it is convex
and a, b, c€ A, dch imply that c¢€ int A. The metric space [R, ¢] is called regular
if to any p€R there are such x,, 4,>0 that the closed balls B(x, £) are strictly
convex if x€B(p, #,) and 0<{=41,. Riemannian manifolds induce regular metric
spaces.

The induced metric space of a Finsler manifold can be defined analogously-:
and the above facts generalize to their case as well; see [9]. A connection with the
induced metric space peculiar to Riemannian manifolds can be expressed in terms
of the metric angle concept. Let a, b, ¢ be points of a metric space [R, o] then there
are points 4, B, C of the euclidean plane with ¢(a, b)=A4B, o(b, c)=BC, o(c, @)=
=CA. If a#b, c, then by the metric angle y(a; b, ¢) of the triple {a, b, ¢} at a the
measure of < BAC is meant, Let ¢,:[0, o] — R be continuous curves with ¢(0)=
=y (0)=x and with such a 0 <d=« that ¢(7), Y () #x for 0<t=6. If y(p, ¥)=
= hm y(v @(t"), ¥ (r”)) exists, then this value is called the merric angle of ¢ and

l// at x. If @,y are differentiable curves of a Riemannian manifold then considered
as curves of the induced metric space they have a metric angle which is equal to
the one which they have as curves of the Riemannian manifold; see [7].

An isometric transformation of a Riemannian manifold is obviously a distance
preserving transformation of its induced metric space. The converse of this assertion -
is a theorem due to S. B. MYERS and N..STEENROD (see [6]).

Let ®:R'X S—~S be a continuous 1-parameter group of transformatlons of
the topological space S, then the continuous curve ¢ : R' — S defined by ¢ (1) = (1, x),
T€R! is called the orbit of ® starting at x€ S.

The main result of this paper is the following

Theorem 1. Let I''GXR—~R be an effective and transitive transformation
group, where R has a distance function ¢ such that the elements of G are distance
preserving transformations of [R, ¢]. Assume that

1. [R, o} is finitely compact,
2. [R, 9] is convex,
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the segments are locally prolongable in [R, ¢],

. the prolongation of segments is unique,. '

[R, ¢] is regular, .

the orbits of l-parameter groups of distance preserving fransformations are
rectifiable in [R, @], ) » -

7. if two such orbits have a point in common then they have a metric angle there. .

S AW

- “Then G with the compact-open tolpogy is a topological group and T is a continuous
transformation group. The identity component Gy of G is a Lie group and R has a
unique differentiable manifold structure such that T'y:GoX R —~R, the restriction of
I, is a transitive differentiable transformation group. There is-a unique Riemannian
manifold structure on R'which has [R, Q] as its induced metric space.

Conditions 1—4 have been introduced by H. BUSEMANN [1] as the startmg
point for his theory of G-spaces.

The proof of the above theorem is carried out in two steps: first a-differentiable
structure is introduced on R, secondly a Riemannian structure. These two steps
are summarized in Theorem 2 and 3. Theorem 1 is a direct consequence of these
two theorems,

Conditions 1—7 of Theorem 1 will be generally assumed to hold in what fol-
lows. Differentiability will mean C*, unless it is not explicitely otherwise stated,
although in some cases obviously less would suffice or more could be stated.

2. The introduction of the differentiable structure

The initial step in introducing the differentiable structure of R is the definition.
of an appropriate topology in the group of distance preserving transformations.
This can be done by an obvious application of standard methods (see [5]) by proving

Lemma 2.1. Let [R, ¢] be a finitely compact metric space and I':GXR—~R
an ejj’ecttue transformation group where the elements of G are distance preserving '
transformations of (R, @), then with the compact-open topology G is a o- compact
group and I' a toplogical transformation group.

The next step is to show that the identity component G, of G is a Lie group.
Owing to a theorem of A. GLEASON and H. YAMABE (see [3], [10]) it suffices to prove
that G has no small subgroups. But this is asserted in-the followmg lemma which
has been proved already elsewhere (see [8]):

Lemma 2.2. Let I':GXR—~R be an effective transformation group where
R has a distance function g such that [R, g] is a finitely compact convex and regular
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metric space in which segments are locally and uniquely prolongable and the elements
of G are distance preserving transformations of [R, o). If G is taken with the compact-
open topology then it has no small subgroups.

The following facts are obvious consequences of well-known theorems. For
any x€R the corrésponding subgroup of stability H G is compact. Since I is
transitive the elements of G which carry x into y € R form a subset ¥_(y) of G which
is a left coset of H,, and if the left coset space G/H, is endowed with the quotient
topology then the map ¥,:R-—G/H, thus defined is a homeomorphism. Let
I1..G —~G/H, be the natural projection then [1(G,) is a component of G/H . Since
R is connected and homeomorphic to G/H, the identity component G, is transitive
on R. If H, =H_NG, then since G, is a Lie group the left coset space can be
endowed with such a differentiable structure that the operation of Gy on Gy/H,
by left translations is differentiable. Taking into account the homeomorphisn;
¥ :R—~Go/H,  defined analogously to ¥, the above assertions yield

Theorem 2. Let I':GXR—~R be an effective and transitive transformation
group and R have a distance function o such that [R, 0] is a finitely compact convex
and regular metric space in which the segments are locally and uniquely prolongable
and the elements of G are distance preserving transformation of [R, 0. If G is
taken with the compact-open topology then its identity component G, is a Lie
group and R can be endowed with such a differentiable structure that T,: GOXR—»R

the restriction of I' 1o Go X R is a differentiable transformatzon group.

For the sake of some of the subsequent and later arguments the main steps
in the construction of the differentiable structure of R are summed up here. (For
a detailed presentation see [4].) The tangent space T,H,, of Hg, at the identity
‘& is a subspace of 7,G,. Let M be a subspace of T,G, complementary to T,H,,.
A neighborhood of 0,€T,G, is mapped diffeomorphically onto a neighborhood
-of & by exp,: T,Goe ~ G, and a neighborhood V of O, in M is mapped homeomor-
phically onto a neighborhood U of Hy, in Go/H,, by H,oexp,: M —~Go/H,,. Let
%! be the restriction of IT cexp, to ¥, since M can be identified with R where
m=dim M, a coordinate system #,.:U—~R" of Go/H,, is obtained. If « ¢ G, the left
translation L,:Gy—~ G, definesa homeomorphism L,:Gy/Hy, ~Go/H,, and %0 L,
is a coordinate system on a neighborhood of a~'H,,. Thus a differentiable atlas
{#,oL,:0€ Gy} of Go/H,, is constructed and this defines a differentiable structure
which does not depend on the particular choice of M. For any z¢ R the analogously
defined differentiable manifold Go/H,, is diffeomorphic to Go/H,,. Therefore the
homeomorphism ¥,.:R—~G,/H,, defines a differentiable structure of R which
does not depend on x. The coordinate system x, = %,0 Y5 :U,~R™ of R will
be called a canonical coordinate system of the first kind at x.
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If y:R' -Gy is a l-paraméter group and- x€ R then the differentiable curve
@:R'—~ R defined by ¢(t)=7(1)(x), T€R' is called the orbit of y starting at x.
Let »,.:U,—~R" be a canonical coordinate system of the first kind at x and d the
distance function of R™ If v€ M has length equal to 1 with respect to d and y is
the 1-parameter group defined by y (0)=v then the orbit ¢ of y starting at x will
be called a fundamental orbit of the coordinate system x,. If z¢ U, and zsx then
there is a unique fundamental orbit ¢ of x, with ¢ (1)=z where 1=d(x,(2), %, (x)).
. Let x:U"—R", »”:U”—~R" be coordinate systems of R with U"NU"# &
‘and flo;@)|l;-, ., the Jacobian of the map " ox” " 1’ (U)Nx"(U”) ~R™ at
je=1,..,n

%) for ucU'NU”. Let A(x’,x”) 'be defined by
A, %) = V@m—Dm - sup {la)l:uc U'NU, 0, j=1, ..., m}.

If ¢ T,R and (v, ..., v""),(v”%, ..., v”™) are its coordinates in the coordinate sys-
“tems 3, x” then obviously :

m : 1/2 m 1/2
[Z (U'i)Z] =, %) 2(0"")2] .
i1 : i=1
The following lemma will prove useful in later arguments.

Lemma. 2.3. Any x€R has a compact neighborhood W such that to every
zE€ W there is a canonical coordinate sytem of the first kind x_:U,~R" at z with the
Jollowing properties: : - '

1. WcU. for ze W, _

2. there is a bound C with A(x., » )=C for z€ W,

3. if S(z)c T,R is the set of vectors which are tangent to a fundamental orbit
of x, then U {S('z):'zEIW} is a compact subset of TR.

Proof. Let M T,G, a subspace complementary to T,H,, be identified with

R"™ and 3.:U_~R" the corresponding canonical coordinate system of the first
kind at x. If z€ R then H,,=aHy,a~ ! for any « € G, with z =a(x), therefore T,H,,=

c=L, R, (T Hy)=ad «,(T,H,,). This implies the existence of a neighborhood
W’ of x such that M is complementary to T,H,, for z€ W". Let ».:U, —~R" be the

canonical coordinate system of the first kind at z defined by M for ze W/. If y € U,
then there is a £ in the corresponding neighborhood of & such that y=¢&(x) and
% (y)=exp; "(EH,, N M) where M=exp,(M). There is such a neighborhood W~

of x and W of ¢ that ¢Hy, N Ma is a single point and -exp; '(¢H,, N M«) defines

a coordinate system of R on the neighborhood W” for oc¢ W. There is a neighbor-

hood W” of x such that-for z¢ W” there is a unique o€ W with z=a(x) and

‘a=aH, N M. Then by exp; '((¢Ho, N Ma)x~1) a coordinate system of R is defined
on W” forz€ W”. But {Hy =o' Hy.a=nH,.a with n=Ex~"and y=1(z), therefore
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exp~’ ((EHop N Ma)a—Y)=exp, ' (1Ho, N M)=5,(y). Let W be a compact neigh-
borhood of x with W W NW" "N W”. Then Wc U, for z€ W and the existence
of the bound C follows from the differentiability of the coordinate systems and
from the fact that « depends continuously on z, with a possible restriction of U,
to a compact neighborhood U.c W. Since S(z2), zE W is compact U {S(z):z¢ W}
is compact as well.

A field of canonical coordinate systems of the first kind x_:U,—~R", ze W
defined according the preceding proof will be called normal.

Let Mc T,G, be a subspace complementary to T,H,, and {w,, ..., w,}C M

a base of M. Thenv= Za v; is unique for v.€ M and by a(v)=exp (z'v,) ...exp (¢"v,,)

a map a:M—~G, is deﬁned With methods similar to those applied at the
definition of canonical coordinates of the first kind (see [4]) it can be shown that
%' = IT o0 maps diffeomorphically a neighborhood of O, in M onto a neigh-
borhood of Hy, in Go/Hy,. Thus x=%o¥, :U-~R" is a coordinate system of R
which will be called a canonical coordinate system of the second kind at x. The proof
of the followmg lemma is 0bv10us

Lemma 2.4. Let {vl, ...y Uy} be a base of T R then there are 1-parameter
groups y; of G, with orbits @, starting at x and a canonical coordinate system of the
second kind »:U—~R™ at x such that ¢, (0)=v; for i=1,...,m and z=7y,(z")o
.09, (2" (X) for z€U with x(z)=(z", ..., 2"). :

3. The introduction of the Riemannian metric

‘Let ¢:R'—~R be the orbit of the I-parameter group y: Rl-»GO starting at
2(e(0), 9(0)
_ |l
exists. This defines a function y*:R— R! which is constant on the orbits of y, and
it will be called the velocity function of y. The value @* of y* on the orbit ¢ will be
called the velocity of the orbit. An orbit is constant obviously if and only if its
" velocity is zero.

x € R, then in consequence of the fact that ¢ is rectifiable y* (x): 11

Lemma 3. 1. The velocity funciion y* of a 1-parameter group y: R*—~G, is
continuous. '

Proof. Let ¢ be the orbit of y starting at x¢ R and_define f,: R—R" for
n=1,2, ... by f,(x)=2"¢(p(1/2"), ¢(0)). The functions 7, are continuous, f,, ,(x)=
=/ (x) and y* (x)='}1111°ﬁ,(x) hold for every x € R. These imply the assertion.

A closer relation of the distance function ¢ and the differentiable structure of
R is expressed by : : )
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Lemma 3.2. If x:U—R" is a coordinate system of R at x and d the distance
function of R™ then there exist a neighborhood VU of x and a 6= 0 such that
d(x(a), x(b))=5-0(a, b) if a,beV.

Proof. Let Z:U—~R™ be a canonical coordinate system of the second kind
of R at x. There is a §=0 such that d(x(a), x(b))=5d(%(a), %(b)) for a,bc UNT.
Ify,, ..., v, are the 1-parameter groups which define %, then by the preceding lemma
there are a neighborhood V< UNU of x and a K such that y(2),..., yi(z2)=K
for ze V. If z(a)=(a", ..., ™), %(b)=(B", .-., B™) for a, b€ V then :

0(a, b) = o(y, (@) o ... 0y, (@™ (%), vj(ﬁl)OVZ(ﬁ?)o ~--/ovm(5;”)(X)) =
= 0(7, () 0720 . 07 (@ (), 71 (@) 0y (B0 . 07, (B (1) +
+o(y i@y (BHe ... 07, (B, . (BY oy (BHo ... 6v,,.(ﬁ";)(X)) =
éQ@zw30~wmeﬁﬁivﬂﬁﬂomovAﬂﬁ@D+le—aW§

nt

=K 2 \B — il = V2mK d(%(a), Z(b)).

Therefore the assertlon of the lemma holds with 6 =—— 9.
l/2mK

The length of the tangent vectors of a differentiable manifold is usually defined
after the introduction of a Riemannian metric. Here the length of tangent vectors.
of R will be defined at first to be the basic tool in establishing the required Riemann-
ian metric. The velocity of orbits could be naturally considered as the length
of their tangent vectors. The following lemma serves to prepare a general definition
on this basis.

Lemma 3.3. Let ¢:R!' >R be an orbit starting at xE.R and 0,070, If
Y:[0, %] >R is a curve dzﬁferennab/e at 0 and Yy(0)=x, Y, (O)=21- (p*(()), A=0,,
PR TATON

Proof. There is a canonical coordinate system of the second kind »:U - R™
at x with xo¢(x) =(1,0, ..., 0) for @(x)¢U by Lemma 2.4. Therefore-

d(xo (1), y(x)) 1
0. o(p(),1(x)  ¢*
that T=d(x 0 (1), x(x))=d(x oy (?), ¢(x)) and t—~0 if T—~0. Hence

and for a sufficiently small 7=0 there is a r>0 such.

o(¢(@,x) e(e@V@)|_ tW®,x) _ Q((p(f);X) . Q((P'(r),!//(f))'

T T -7 - T R
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If xoy (@ = (W' (@, -, ¥™(®) and T +0 then

d(x0@(1), %0 p()) = limsup [2[1 _W(f)””z -
‘ . T

lim sup T
. RO
= lim sup [2[1 - ([(z oy (1), x(x)) ] =0
‘Therefore
lim sup M =

2(p(®), ¥ (D) d(zo@@, %Y @) _

= lim sup 7209 (0), 70y @) -lim sup .
in consequence of the preceding lemma. This implies with respect to above .ine-
-qualities that. if 7—~ 40 then lim Q(V(T) ) =¢*. But then lim SN2 g(tﬁ(‘f) x)
T
L eU@ | dxou@x0) _

T d(x 0 @(7), %(x)) -
Corollary. If @,y are orbits with go*(O);lp*(O) then @* =y*.

On account of the above corollary a function F: TR —~R" can b defined on _
‘the tangent bundle TR of R as follows: let F(v) for a v€ TR be the velocity ¢* of
.any orbit ¢ such that '(p* (0)=v. This function F will be called the length of tangent
vectors. Obviously F(v)=0 if and only if v =0, for some x€ R and in consequence
-of the preceding lemma F is positively homogeneous of order 1 on.every tangent
-space of R. In order to show the continuity of F some preliminaries are needed.
“"These are provided by

Lemma 3.4. Let y;:R' —~Gq (i=0, 1, ...) be 1-parameter groups with y,,(0)=
= 1£m 7::(0). If @, is the orbit of y; starting at x; and xo= limx, then @j=lim ¢},

Proof. It is suitable to consider the special case x;=x, (i=1, 2, ...) separately.
Let %:U—R™ be a coordinate system of R at x, with x(xq)=(0,0, ..., 0). Since
‘Vo("):,-lirj} y;(t) for 7€ R' and I':GyXR~—R is continuous (po(r)z’lli»%@i(r) for
7€ R'. Therefore there is a §=0.and a N such that ¢,(z)€ U if |[t|<d and i=0 or
i=N. Since ¢, is differentiable o0, (1) = (a/t+71¢! (1), ..., a"t + 1€l (7)) if |7|=6
and i=0 or i=N, where ¢/(t)=0(1), for I=1,...,m. Let n;(z), i=0,1, ..., T€R'
_ (00, 9:0)

ol
ma3.2, there is a K with K-d(x0@e(1), xc (1) = o(pe(r), 0:(7) =

be defined by ¢ +154{7) and 5;(0)=0.. In consequence of lem-
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= [t] - o=+ (1) —no(2)] if || =6 and i=N. Therefore K- |11[ S a,-)z]”2+
+K- - [ Z(ag(r)—a;(r)y] = [tlipf—of +m(@D—no(®] and  T—0  yields
K[ Z(ao—a) ] = |p5—¢]|. But the coordinates of ¢;,(0) are (a}, ..., a"‘)viAn
the coordmate system x and @, (0)— hm (p,*(O) by the contmulty of the differential
r.: T(GOXR) — TR of I'. Therefore the assertion of the lemma follows in the special 4

case.
In the general case to any preassigned 3=0 there is a neighborhood» V of x,

3
with, [y5(x)—y5(xg)| < = for x€V by Lemma 3. 1. Let X,: R—TR be the Killing -

vector field correspondmg to Yo,- In consequence of Lemma 2. 3 there is a normal
field of canonical coordinate systems of the first kind s,:U, —R™ on a compact
neighborhood U of x,. Let («, ..., o) respectively (&, ..., &) be the coordinates
of ¢,,(0) and X;(x;) for x;€U in the coordinate system x, :U, —R". Since
,-liﬂ, (pi*(0)=<p0*(0)=.X0(xO)=iliq_1Xo(x,-), there is a n‘eighborhood V' < U,, of xo

) m - 1/2 m 12 m 2
with [ > (ag—&,!)Z] = [ > (a!—a,!)Z] + [ St —a 0)]
=1 =1 =1 2C2
the upper bound given in Lemma 2. 3 and K is an upper bound guaranteed by
Lemma 3. 2 for the coordinate system x, . Let (&}, ..., &) respectively (¢}, ..., &
be the coordinates of ¢,,(0) and X,(x;) in the coordinate system %, and K, an '
upper bound given by Lemma 3. 2 for %, in case of x;€ U. Then

1A

, where C is

lof - @bl = [yF(x)—v5(xo)l = Iy (x) —v5(x)l + h’o(x) Po(xo)| =
m 1/2 9 m 172 9
= Kx: Z(é:_ E:)Z] +7 = Kx: . )*(xxia xxo) Z (a:'_A&i')Z] _*'_2~ =
=1 . =1

9
‘_2‘_—_9

9
= 2
= KA %) 3e7

if x;cVNv.
Lemma 3.5. The funcnon F:TR R is continuous.

Proof. Let v,€T, R, i=0,1,.... be such that uo—llmv In order to pro've
‘F(uo)_llmF(v,) it sufﬁces on account of the precedmg lemma to show the

existence of l-parameter groups p; such that if ¢, is the orbit of y; starting dt x;
then v;=@,,(0) and y,, (O)fillrg 7:x(0). Let Yo, :R~Go/H,, be the difféomorphism
defined at the introduction of the differentiable structure of R and MCT.,G,
a subspace such that onoexpE:M-»_Go/Hoxo is difffomorphic on a neigh-
borhood ¥V of O, in M. Then a neighborhood ¥V’ of x,- exists on which

10 A
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® = (exp,o(ITy,0exp,) "' otfo, )™ ':¥' ~G, is diffeomorphic. Put X, = &(x),
0;=®.(v;)) and §;=Rs-1% ;) for x;,€ V. Let y; be the l-parameter group with
7+ (0)=10; and ¢; the orbit of y; starting at x; for i with x,€ ¥’. Then &, =lim#,
by the continuity of @, and 5'0=i1~ir2_R;i—x* E,:il_i.rox_)ﬁizuo by the simultax%eous
continuity of Ry, in its argument and in ¥. Hence yo*(0)=}Lr1 7ix(0). But x;=5%;(x,)
therefore ¢;(1)=7y;(t)- Xi(xo) for sufficiently small [t|. Thus ¢;= &7 'oR; 0y,
and ¢, (0) = q’;lORi,*(}’i*(O)) = d’:lRi,-* @) = v if x;€V".

What has been proved up to now concerning F can be summarized by stating
that the differentiable manifold R with the length of tangent vectors F forms a
C!-Finsler manifold [R, F]. The induced metric space of [R, F] can be ccfined as
generally it is done in case of any C'-Finsler manifold (See [2]) on ttc following

f
way: If ¢:[a, f]—~R is a piecewise C'-curve of R then ,?F(z!/)zj' F(y,(0))de

is called the F-length of . Let gx(x, ) be the infimum of the F-length of piecewise
C'-curves joining x, y€R, then g is a distance function on R. The metric space
[R, ¢¢] is called the induced metric space of [R, F]. In order to prove [R, ¢r]=[R, o]
some preliminaries are needed. In what follows these are provided.

If y:[o, B]—R is a continuous curve and it is rectifiable in the metric space
[R, o] then its length Z,(p) will be called its g-length. The following lemma can
be proved on essentially the same lines as an other one formulated for the case
of symmetric manifolds (see [8]).

Lemma 3.6. If y:[a, B]—~R is a piecewise C'-curve of the differentiable
manifold R then it is rectifiable in the metric space [R, o] and Z,(\)=Z¢ ().

Since the metric space [R, g] is finitely compact and convex this lemma has
the following obvious consequence: :

Lemma 3.7. If x, y€R then g(x,.y)égp(x, »).

f the continuous curve ¥:[«, f] —~R is rectifiable in the metric space [R, gf]
then its length &, () is called its gp-length. In the case when y is a piecewise
C’-curve then evidently &, (¥) = Zr(4), where according to a result of H. BUSE-
MANN and W. MAYER (see [1], [2]) the equality holds for any piccewise C,-curve
W if and only if F has convex indicatrix in each tangent space T.R of R. But by
Lemma 3.6 and 3.7 XF(¢)=%(¢)§$QF(¢) for any such curve Y. These imply

, Lemma 3.8. The function F:TR—~R" has convex indicatrix in every tangent
space of R.

The proof of the assertion that gr(x, y)=e(x, y) for x, y€R requires some
technicalities. These are given in the following
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» Leinmé 3.9. If x:U—~R"™ is a coordinate sy&tem of R at x and d the distance
function of R™ then there is a neighborhood V of x and a K such that d(,c (@, x(b))<
=Ke(a, b) if a,beV.

Proof. For the sake of an indirect argument let it be assumed that to any N
and in arbitrary neighborhood of x there are points @, b with d(x(a), »(b))=
= Ne(a, b). Let further x,: U, — R™ be a normal field of canonical coordinate systems
on a neighborhood U’ of x given according to.Lemma 2. 3 and C the corresponding
upper bound. Then

d(x(@), % (B)) = AGt, 2.) At 2)d((@), %,(B)) = A(, )+ Cl(,(a), 2,(B)

for @, bc UNU’. Let. ¢:R'—~R be the fundamental orbit of the coordinate

0 C-2 . '
system Xq passmg through b and @(B)=>b then ((P( )ﬁ(p(/?)) (,J{Vy «) Therefore
a sequence ¢;, i=1,2,... of fundamental orbits of the coordinate systems

i\Mi)s ¥i 0 . .
of the above field can be given with _l_i»m(:]i(p—%)ﬂwﬁ: 0 where lim f;=0. In

consequence of Lemma 2. 3-there is no loss of generality by assuming the existence
of a fundamental orbit ¢, with @4(7) = llmgo,(t) T€R'. Let n;(z) be deﬁned by

' , @:(0
oF = &L?rw( ))+r] (r) and 7,(0)=0 for i=0, 1, ... and t€ R'. If $=0 is given
7 . : ,

3 " T
then there is such a 6=0 that ny(7) = Efor |t|=¢ and a L with |5,(8)— 150 (0)] = —
for iz L. But obviously. n;(t) is decreasing for <0 and iﬁcreasing for 7=0, there-
fore n,(t) = n;(8) = |[1,(8)—no(8)|+no(5), if |t|=6 and i=L. Therefore in con-
sequence of Lemma 2.3 and 3. 4 the equality ¢}= ilim ¢F=0 holds in contradiction
with the fact that ¢, is a fundamental orbit.

Lemma 3.10. If x, yER then o(x, y)=gg(x, y)

Proof. It suffices to prove the inequality for the case when x, y and a metric
segment joining them are in the coordinate neighborhood U of a coordinate system
%:U—~R" and bounds 6, K-of Lemma 3.2 and 3.9 exist for U. Let ¢:[o, ] — .
be a segment of [R, ¢] with ¢ («)=x and ¢(f)=y. In consequence of the preceding
~ lemma xo¢:[a, f] —»R’" is a rectifiable cutve of R™ and therefore F(p,(1))=1 for

almost every 1 €[«, f] by Lemma 3. 3. Hence o(x, y) f F((p*(r))dr Let a sequence

of subdivisions of [«, f] be given by a=14 ;<1 ;< <r,,‘__, i<Tyi=p (=12, )
where the ith subdivision is a refinement of the (i—l)th with

limmax{r,;—7_;;:/=1,...,m} =0
P
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and xog is differentiable at 7,; for /=1,...,n_, (=12,..) If i is 1arge
enough then the coordinate polygon inscribed in xo¢ corresponding to the 7 th
subdivision exists, i.e. there is a map y;:[«, f] —R™ where Y;(1) = xoo(1; )+

ki (Aoqo(er D—xop(;)) for t€lt;;, 1,4y, j=0,1,...,m~1 The

Tiv1,i— T =1 Ui

Flength Z(y,) of ¥; is 5’ F(y())dr. But obviously ¢, (0= limlp () if

; for some i,j and a<1:</5 therefore F(o, (1))=1= llmF(zl/,*(r)) for such

T by Lemma 3. 5. Let f;:[a, f] — R" be defined by f;(z)= F(l//,*(‘t)) for t€[t;;, Tjw1ls
j=0,1, ..., m;—1 and sufficiently large i. Then F(g, (1))= ilirgﬁ(r)for almost every

1¢fa, Bl and the functions f; are uniformly bounded since
. Q('pi(r)a Ipi(rj,i)) -
F(yu() = r_ltl,r,?+oTT:,~— =
Q(‘ﬁi(‘f)) ‘//i(fj.i)) limi d(KO';bi(T): %ol//i(rj;i)).
» lim sup =
11,40 d(zowi(r), %o (1;3) 11, +0 =1
< limsup Q('// (0, ¥ (TJ .)) d(%olpi('fjﬂ > %Ol.l’i('fj,i))
r—»rl.+0d(yol// (T) ”Olﬁ (T )) Tjs1,i— T
where 6>0 and K are bounds given by Lemma 3. 2 and 3. 9. Therefore by Lebes-

= lim sup-

JIA

en|--

K,

gue s theorcm e(x, y)=| hm ff(‘r)dr But 1f a 3=0 is given then

e ()~ jf.-(r)dry ; f P @)~ Fia(r;,0)| e = 9

. T,
if i is large enough on account of Lemma 3. 5 and of the fact that the F(¢,«(z; )
are uniformly bounded. Thus ¢(x, y)= limZr () =0 (x, y). .
The above lemma and its previous counterpart give
Lemma 3.11. [R, gf]=[R, ¢].

The next step is to show that what F defines on R is actually a Riemannian
metric. In proving this the following lemma is essential.

Lemma 3.12. If v,,v,€T.R are linearly independent and @, 0,:R'~R

. . : . Ty),. T
are orbits starting at x with ¢ (0)=v;, i=1,2 then lim 0(01(r1), ¢2(z2)
= w2=0 F(1, 0, —T,0;)

=1,

Proof. In fact this is a special case of a result of H. BuseMANN and W. MAYER
in a changed form. To show this let %: U —~R™ be a canonical coordinate system of
the second kind at x with x0 ¢, (7,) = (1,,0,0, ..., 0) and %0 ¢, (7,) =(0,71,,0,...,0)
for ¢, (1y), 9, (1) €U. ¥ v€T,R, z€ U and x(z)=(z}, ..., 2™, v=(v!, ..., v™) then
F(v) is. given by F,(z%, ...,z™; v}, ..., v™) in the coordinate system x. Let y:{0, 1] - U
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~ be defined by /ol[/(‘c) = xoqoz(rz)+t(/0(p,(r,) /o<p2(rz)) for sufficiently small
Ty, T, then ¥ (1) = (7,, —1,,0,...,0). Therefore

F(t,v, —1,0,) = F(0, ..., 0; 7,,—1,,0, , 0) =
S »
= [ F,..,0; 1,, —7,,0, ..., 0)dt = M(}))
J =0

which is a quantity introduced by H. BUSEMANN and ‘W. MAYER, and according
Q(‘P1(T1),§02(72)) .
M)

The length of tangent vectors F:TR —~R' defines a norm in each tangent space
of R and the Finsler manifold [R, F] is Riemannian if and only if all these norms
are euclidean. Therefore to prove that [R, F] is Riemannian it suffices to show
that in-the tangent spaces normed by F the metric angle of segments exist (see [7)).
In doing this the same methods are used as applied by W. RiNow in analogous
questions (see (7).

to their result 1if 7,, 7,0 (see [2]).

Lemma 3.13. In the tangent spaces T.R of R normed by F'the metric angle
of segmenrs exists.

Proof Let vl,uzeTR be linearly independent with F(vl) F(uz)—l ‘and

@, ¢, orbits startmg at x with ¢+ (0)=v,, i=1,2. Then

w(fl; 73) = ICOS}’ X, ¢1(71)s (Pz(fz))_cos 707,00, Tzvz)l =
_ ‘ o(x, @, (1))’ +o(x, 02(12))* — 2(@1 (11), 92(1,))? _ T+ 13— F(r,0,—1,0)° (
2Q(xs(Pl(Tl))'Q(x> ©3(15) 27,1,
If (%), T€RY, i=1,2 are the functions introduced in Lemma 3.4 then
(1 + 71 (1)) + (12 + 1212 (22))% + 0(@4 (11), 92(22))° _
2(71 +7~'1"I1(TL))'(72+72’72(T2))

_|B0n e 3 (en@) g,
2T1T2(1 +’71(Tt))(l +’72(T2)) 27,1,
1 1 4 '

21,7, 271“'2(1 '*"71(1'1))(1 +’72(T2))

{n Lt (@) L+my(ta)

2 T,

l+'72(72) 1+n,(t))
+2] ('11 )+ ’72 (t2)+my (Tl)ﬂz (1) +

w(ty, 1) =

13+ 13— F(t,0; — 1,0,)?
21112

+ Q(Q’l (T1) () (Tz))

IF(TI vy —1, 02)2 0(401(71) ‘Pz('t'z))2
21,1, ) 21,7,
[T_1 1+#1,(zy) "-'2 1+1,(2)
Ty T4na(t2) o 1+1(zy)
+[?+?+2] . [1 + o(e,(z), (Pz(fz))].) 1— 2(9, (1), 9,(15)) l} :
2 T

1_'—(71”1'72”2) F(tyv; ~1,03)

Lh2

ITl
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Since the orbits have a metric angle lim o508 (x5 0, (1)), ¢, (1,)) exists. In con-
T1, 127 .

sequence of the preceding lemma and the above inequalities w(t;,1,) =0 if s
Ty

fixed and t,, 1, +0. The function F as a norm defines a Minkowskian geometry
T

in T,R therefore the limit of y(0,; 7,0,,T,,) exists if — is fixed and 7,1, 0.
T2

These imply that limoy_(Ox; 7,0, TyU;) EXISts,

Ty, 12—
What have been proved till now yield that [R, F] is a C'-Riemannian manifold.
With respect to anomalies of such manifolds the following lemma is essential.

Lemma 3.14. The function F:TR—~R' defines a C~-Riemannian manifold
on R.

Proof. For a€G, let «, : TR —TR be its differential. If v€ T.R and « (v)=v
then there is an orbit ¢ starting at z with ¢, (0)=v. Since ¢” = «0 ¢ is a differentiable
curve @4 (0)=0a, (¢, (0))=v". But then F(v)=F(v') in consequence of the fact that
a is a distance preserving transformation of [R, ¢] and of Lemma 3. 3. Therefore
o is an isometric transformation of [R, F]. Let v, ..., v,€ TR be an orthonormal
system and %: U —R™ a canonical coordinate system of the second kind at x defined
by orbits ¢, ..., @, with ¢ (0)=v;, i=1, ..., m according to Lemma 2. 4. There-
fore if z€ U and x(z)=(z, ..., z™) then z = y,(z') o --- 0 9,,(z™(x) where y, is the
l-parameter group which defines ¢;, i=1, ..., m. Let g;;(z", ..., 2"), i,j=1,...,m
be the components of the Riemannian tensor defined by F with respect to the
coordinate system x for z€U. But-y4(0), i=1,...,m are linearly independent
therefore 1-parameter groups y,,+1, --. ¥, €xist which define a canonical coordinate
system of the second kind %#:U —~R" of G, at &. Thus z"'=I"(a!, ..., oa"; 2}, ..., 2™),
i=l,...,m if weU, #@=@", ..., "), z€U, a(z)=z"€¢U. The functions I’ are
C* since I':Gy X R—~R is a C”-map. In consequence of the special choice of the
coordinate systems w'=I"(u", ..., w" 0,...,0; 0, ..., 0), i=1, ..., m for u€ U. Since
the elements of G, are isometric transformations

gij(o, ,O) = 5‘1 =

< ore@t,...,u™,0,...,0;0,...,0) or,(*,...,u™ 0, ...,0; 0, ..., 0)
— 1 o um 3000 s ). 3>y Vs > 1 > 3 ’ :. 2 Vs Vy s
k,12=’1gkl(u e 47 0z ' 079
for i, j=1, ..., m, which considered as a system of equations for the g, (u", ..., u"),

k,I=1, ..., m must have a unique solution. This together with the fact that the
I are C=-functions yield that the g,, are C= as well, what obviously implies the
assertion of the lemma. '

It is to be noted that contrary to the circumstance that Lemmas 3. 1-12 do not
assume the existence of the metric angle of orbits for the last one this is essential.
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In fact Lemma 3. 14 cannot have an analogue in the case of Finsler manifolds as
obvious examples of Minkowskian geometries show.

Results of this section are summed up in

Theorem 3. Let I':GyXR—~R be a differentiable transformation group and
Ihe-diﬁ’erentiable manifold R have a distance function ¢ such that the metric space
[R, o] is finitely compact and convex. If the elements of G, are distance. preserving
transformations of [R, o] and the orbits of the 1-parameter groups of G, are rectifiable
and have metric angle in [R, ¢] then there is a unique Riemannian metric on R such
that its induced metric space is [R, g].
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