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Introduction

The main. purpose of this paper is to prove a spectral theorem for bounded
normal operators in real Hilbert space. The self-adjoint case will follow as a corollary
and is almost exactly the same as in the complex case. (However, the self-adjoint
case for real Hilbert space is implicit in {3, pp. 269—276]). For normal operators
the theorem differs significantly from that for the complex case.

We begin by giving an example of a bounded normal operator in a real Hllbert
space which will turn out to be “essentially”” the only example of a bounded normal
operator in real Hilbert space. Consider L, () where p is a measure with compact .
support defined on the Borel sets of the Euclidean plane. Further suppose that u
is symmetric about the x-axis, i.e., i(e) =p(e*) for each Borel set e, where e* is the
reflection of e about the x-axis. Then L,(x) = H,® H,, where H, consists of the
L, (u) functions that are symmetric (even) about the x-axis, and H, consists of the
L, () functions that are anti-symmetric (odd) about the x-axis. Consider fin L, (y)
as a function of (r, 0), and define the operator T'=T(x) on L,(u) = H,& H, by

rcos® —rsinf)(f,
Tf = (rsin@ rcosG) (fo)‘

1. The Spectral Theorem

Let H be a real Hilbert space and let 4 be an everywhere defined and bounded
operator from H into H, and in particular let 4 be normal (44* = . A*A4). Let H
be the complexification of H, with elements [x, y] (x, y€ H), and inner product
(Ix, ¥, [t, 2]) = (x, 1) =i(x, 2) +i(y, ) +(p, 2). Define Av=[4x, 4y] if v=[x, y].
Then A is linear, bounded, and normal, with A*v=[4*x, A*y] and ||Af=|4].

*) The author would like to thank Professors KARL GusTarsoN and ARLAN RAMsAY for
valuable suggestions and stlmulatrng discussions concerning this paper. The author would espe-
cially like to thank Prof. GUSTAFsON for suggesting this problem to the author.
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By the spectral theorem in complex Hilbert space, A = f 2dE, where E is a sclf-
a(A) ’
- adjoint measure, and o(4) is the spectrum of 4 in H. Let D be the disk in the plane

with center 0 and radius ||4]|;-then D contains a(A4).

We now compute E(e) for each Borel set e contained in D. If e is a compact
set then y, (characteristic function of e) is the point limit of a bounded sequence of
" polynomials p,(z) in z and Z, and hence E(e)v=Ilim p,(A)v for each vector v in
H. But (a+bi)(A)"(A*)"v = [aA"A*"x —bA" A*"y, aA" A*™y + bA" A*" x]. Hence we
deduce that E(e) is of the form E(e)v = [E,(e)x — E,(e)y, E,(e)x + E, (e)y] where
E,(e), E,(e) are bounded operators.

Let S be the collection of Borel subsets e of D such that E(e)(v) =
=[P, x—P,y, P,x+ &,)] for all v=[x, y]¢ H, where &, and ¥, are bounded
- operators. From the above S contains the compact sets, and it is easily verified
that S is a o-ring. (To show S is closed under complements one uses E(D) 1,
and to show S is closed under intersections one uses E(e, Ne,) = E(e,)-E(e,).
To prove S is closed under monotone limits use the fact that E(e)v =lim E(e,)v,
where one considers v of the form [x, 0] and of the form [0, y], and the uniform
boundedness principle.)

‘ So for each Borel set e there exist unique bounded operators E,(e), E,(e)
such that E(e)v = [E, (e)y, Ex(e)x — E,(e)x + E; (e)y]. We have.(E(e))* = E(e), which
~is equivalent to saying that (E, (e))*=E, (¢), and (E,(e))* = —E,(e), .. that E, (e)
is sclf-adjoint- and E,(e) is skew-symmetric. Since E,(e) is skew-symmetric,
(E2(e)x, x)=0 for each x. Also, (E(e)v, v) =0 which implies pu(e) =(E, (e)x, x)=0
for all x. (E(e)v, w) is a regular Borel measure for each v, w which implies that u
above is a regular non-'negative Borel measure. Also, since “(il' AiE'(ei))v” =
= max [4;]-[|v]| for any finite partition {e,, e,, ..., ¢,} of D, one has |24, E;(e)x|| ‘=
= max |4]-]x] for j=1, 2, so each E; is of bounded variation. This implies f SfdE;
exists as a' bounded operator from H into H for every bounded Borel measurable
. function f.

From the identity E(e, Ne,) = E(e,)-E(e,) one obtains the identities

1) E; (el Ney) = E; (e))E,(e2) — Ex(e))Ez (e,),

' 2) Ey(e,Ney) = Ej(eE (ex) + E((e)Es (e3).
" Since E(D)=1, we have E, (D) =Iand E,(D)=0. Also, E; (iglei) x = 'iZ’Ej(e,-)x for
each x in H and for j=1, 2 if the {e;} are disjoint. So E,, E, are of bounded varia- ;

tion and countable additive in the strong operator topology.
From the spectral theorem wehave A"4*" = f A"~mdE. Writing

) = r(cos 0 +isin 6),
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and expandmg Z' A77mE(e;) component-wise and takmg a limit, we get A"A*" =
.—:/ "+’”cos(n—m)6dE1—f "+"'sm(n—m)9dE2, and f "tmsin (n —m)0dE, =
=- fr"*"' cos (n—m)BdE,.

Lemma 1. E,(e*)=E(e) and E,(e*) = — E,(e).

Proof. 0 = fr”+'" cos (n—m)0d (Eyx, x) = — fr"“‘"‘ sin (n —m)0du, where
1(e)=(E,(e)x, x). Let f be continuous on D and f(r, —6) = —f(r, 6). Given ¢>0,
by the Stone—Weierstrass theorem there exists a trigonometric polynomial p(r, 6)
such that | f(r, 0) —p(r, 0)| < ¢/2 in D, where p(r, 0) = Za, ,r" "™ sin (n —m)0 +
+2b, ,r"*t™cos (n —m)0. Substituting — @ into the above inequality and adding show
|Zb,, ,mr" "™ cos (n —m)B| < g/2. This implies |f(r, 8) —Za, , r"*" sin (n—m)6| <e.
This givés f f(r, 8)di=0.1If e is a compact set lying entirely in the upper halfplane
then there exists a bounded sequence {f,} of continuous functions converging point-
wise to y, and vanishing off the upper half-plane. Define g, to equal f, in the upper

half-plane and —f,(r,0) in the lower half-plane. Thenfg,,d,u 0, but g, converges

pointwise to y, — ¥+ so by the dominated convergence theorem f Gto—xM)du =0,
or u(e) =,u(e*).‘Let S be the collection of Borel sets e in D, lying in the upper half-
plane and such that u(e) =u(e*). One can show that S is a ¢-ring containing the
compact sets, so that u(e) = u(e*) for each Borel set e lying in the upper half-plane.
From this it easily follows that p(e) = ji(e*) for every Borel set. e Thus (E, (e)x, x) =
_=(E1 (e*)x, x) for each x, which implies E,(e)= E, (e*) since E,(e) is self-adjoint.
From the identity f M eos(n —m)OdE, = —f r"+tm sin (n —m)OdE, , and since
E, is symmetrxc about the x-axis and #"*™sin (n —m)0 is antisymmetric, we have
f " cos (n —m)0dE, =0; hence/ r*tm cos (n —m)0dv =0, where v(e) =(E, (e)x, y).
An argument similar to the above shows v(e) = —v(e*), ie., E;(e) = —E,(e*).

Definition. Let (E,, E;) be called a spectral pair provided 1) E, and FE,
are of finite variation and countably additive in the strong operator topology;
2) E, (e) is self-adjoint and E, (e) is anti-symmetric for each Borel set e; 3) E, (¢) =
=E,(e*),and F,(e) = — E,(e*) for each Borelsete; 4) E, (e, Ne,) = E (e)E,(e)) —
—E;(e))Ex(2;), and  Ej(e;Ney) = Ey(e)E (e)) +E(e))Ex(er); 5) E (D)=,
E,(D)=0.

Summarfzing the above:

Theorem 1. If A is a bounded normal operator on a real Hilbert space then
there exists a unique spectral pair (E,, E,) such that Ax = f rcosOdE, x — f rsin0d E,x
for all XE€H.
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"Proof. The only remaining item to check is the uniqueness of the pair. Suppose
(E;, E5) is another such spectral pair. Let E'(e)v =[E ] (e)x — E; (e)y, E;(e)x + E{(e)y].
One can show directly that E” is a spectral measure and that Z=f2dE’. By the
spectral theorem in the complex case E’=E, and this implies £E;=F,, E, =F,.

. 2. Spectral Representation

Theorem 1 will now be used to prove a spectral representation theorem, i.e.,
we will show that H is the orthogonal direct sum of closed subspaces {H,} where
each H, is isometrically isomorphic to an L,(y,) space and A|H, is characterlzed
on L,(u,) as the operator T, described in the introduction.

Suppose there exists a cyclic vector x € H such that the linear span "of the vectors
of the form A" A*"x is dense in H. Let u(e) =(£,(e)x, x). Then g is a non-negative
regular Borel measure, and p(e)=pu(e*) for each Borel set e.

Recall that from the spectral theorem in the complex case we have (4")(4*)" =

=f):’;}fde,'so letting A =r(cos +isin §) and expanding this component-wise give
A"A*" x ~f r*tmcos (n —m)0dE, x — f "+ sin (n —m) OdE, x and (A"x, A™x) =
——f "M cos'(n— m)@du = (f,>fm)> where f,(r, 0) = r*(cos n0 +sin nf). This follows
since f,-f,, = r"*™(cos (n—m)0 +sin (n+m)0), and r"t™sin (1+m)0 is an odd
function in 0. So one has (4" 4*"x, 4 A" x) = (fosgs fr4m) = f ntm(cos (n—m)0 +
+ sin (n—m)0)r*+9 (cos (k — £)0 + sin (k —g) 0)dp.

If one defines P (Za,, A" A*"x) = Za,,r"*™ (cos (n—m)0+sin (1 —m)0) then ®
is well-defined and is an isometry from the linear span of the 4" A*"x into L, (u).
Moreover, its range is dense in H since (3 (A" A*™ 4 AF A™)x) = r"*™ cos (n —m)b,
D(L(A" A" — A*" A™)x) = r"*" sin (1 —m)0, and the span of these functions is
dense in L,(y). So & has a um'que isometric extension of H onto L,.

Recall the operator T defined in the Introduction. One can show by
a stralghtforward calculation that 4@~ =T on the functions r"*"cos (n —m)0,
r"tgin (n —m)B, and hence for all of L,(u). Thus A4 is ”orthogonally equivalent”
to T. -

Theorem 2. If A is a bounded normal operator on the real Hilbert space H
and if H contains a cyclic vector then there exists an L,(1) with p(e) = u(e*), such
that A is orthogonally equivalent to T on L,(u) (see Introduction).

If there is 'no cyclic vector then apply Zorn’s Lemma, see [1, pp. 910], to obtain
H = ®H, so that each H, contains a cyclic vector x,.

Theorem 3. Every bounded normal operator A on the real Hilbert space H is
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orthogonally equwalent to an orthogonal sum & T, of operators on spaces L, (,u,) of the
type defined in the introduction. .

Remark 1. If one defines

nw=( 7). mo=(7 %)

where f; is the even part of y,, and f, is the odd part of y, then one can directly

verify that (E,, E,) is a spectral pair, and for continuous f, T(f) (/r cos dE, ) (f) —
fr sin 0dE,)( f), and so from uniqueness, (£, E,) is the spectral pair for the:
operator 7.

Remark 2. One could define a calculus for 4 by defining f(4)- _ffldE1
—ff2 dE,, where = f, +if, with f even, f, odd, and both Borel measurable. The:
details are similar to [1, pp. 895—902].

. Remark 3. As a corollary to Theorem 1 one has the self-adjoint case (3, pp.
269—276). The unbounded case follows from the bounded case just as in (3, pp.
313—320). Also, one could now write out the unitary and skew-symmetric cases.
~ from Theorem 1 and Theorem 3. Also, one could easily show that for compact.

normal operators H is the orthogonal direct sum of one and two dimensional in-
variant subspaces.

One could further use the above Theorem 1 in the skew- symmetrlc case and.
the methods found in (3, pp. 296—320) and (3, pp. 314—315) to obtain a spectral
theorem for unbounded skew- symmetric operators in a real Hilbert space. Then
using this theorem one could obtain Stone’s theorem for real Hilbert space see:
(2, pp. 38].

Added in proofs. The author has learned through private communication with.
Prof. TiIN KiN WONG of Wayne State University that he has obtained some:
of the results of this paper by other methods. Also, Prof. Wong obtains the un
“bounded normal case by his methods. One could use the above methods and the
unbounded self-adjoint and skew-symmetric cases to obtain the spzactral theorem
for unbounded normal operators. - '
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