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Introduction 

The main purpose of this paper is to prove a spectral theorem for bounded 
normal operators in real Hilbert space. The self-adjoint case will follow as a corollary 
and is almost exactly the same as in the complex case. (However, the self-adjoint 
case for real Hilbert space is implicit in [3, pp. 269—216]). For normal operators, 
the theorem differs significantly f rom that for the complex case. 

We begin by giving an example of a bounded normal operator in a real Hilbert 
space, which will turn out to be "essentially" the only example of a bounded normal 
operator in real Hilbert space. Consider L2(ji) where p. is a measure with compact 
support defined on the Borel sets of the Euclidean plane. Further suppose that // 
is symmetric about the x-axis, i.e., (e) = /<(e*) for each Borel set e, where e* is the 
reflection of e about the x-axis. Then L2(fi) = He®H0, where He consists of the 
L2 (p.) functions that are symmetric (even) about the x-axis, and H0 consists of the 
L2(p) functions that are anti-symmetric (odd) about the x-axis. C o n s i d e r / i n L2(p) 
as a function of (r, 6), and define the operator T = T(p) on L2(p) = He(BH0 by 

(r C O S 0 -rsm6)(fe\ 
~ [r s i n 0 r cos 9J [ / o j * 

1. The Spectral Theorem 

Let H be a real Hilbert space and let A be an everywhere defined and bounded 
operator f rom H into H, and in particular let A be normal (AA* = A*A). Let H 
be the complexification of H, with elements [x,y] ( x , y £ H ) , and inner product 
([x,y], [t, z]) = (x, t)-i(x, z) + i(y, t)+{y, z). Define Av = [Ax, Ay] if v = [x,y]. 
Then A is linear, bounded, and normal, with A*v = [A*x, A*y] and ||/4H = M[|. 

*) The author would like to thank Professors K A R L GUSTAFSON and A R L A N RAMSAY for 
valuable suggestions and stimulating discussions concerning this paper. The author would espe-
cially like to thank Prof. GUSTAFSON for suggesting this problem to the author. 
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By the spectral theorem in complex Hilbert space, A = J IdE, where £ is a self-

_ o(A) 

adjoint measure, and a(A) is the spectrum of A in H. Let D be the disk in the plane 
with center 0 and radius ||/4[|; then D contains a (A). 

We now compute E(e) for each Borel set e contained in D. If e is a compact 
set then ye (characteristic function of e) is the point limit of a bounded sequence of 
polynomials p„(z) in z and z, and hence E(e)v = lim pn(A)v for each vector v in 
H. But (a + bi)(A)"(A*)mv = [aA"A*mx-bAnA*my, aA"A*my + bA"A*mx]. Hence we 
deduce that E(e) is of the form E(e)v = [£, (e)x - E2 (e)y, E2 (e)x -I- £, {e)y] where 
£, (e), E2 (e) are bounded operators. 

Let 5 be the collection of Borel subsets e of D such that E(e)(v) = 
= [<P1x — <P2y, <P2x+<Ply] for all v = [x,y]£H, where and &2

 a r e bounded 
operators. F rom the above S contains the compact sets, and it is easily verified 
that 5 is a ff-ring. (To show S is closed under complements one uses E(D) =/, 
and to show S is closed under intersections one uses £ (e x f l e 2 ) = £ ( e 1 ) - £ ( e 2 ) . 
To prove S is closed under monotone limits use the fact that E(e)v = lim E(e„)v, 
where one considers v of the form fx, 0] and of the form [0, y], and the uni form 
boundedness principle.) 

So for each Borel set e there exist unique bounded operators Ei (e), E2(e) 
such tha t£ (e )u = [E1(e)y,E2(e)x-E2(e)x + Et(e)y\. We have {E(e)f =E(e), which 

1 is equivalent to saying that (£ , (e))* = Ex (e), and (£2(e))* = - £ 2 ( e ) , i.e. that Ei (e) 
is self-adjoint and E2(e) is skew-symmetric. Since E2(e) is skew-symmetric, 
(£2(e)x, x) = 0 for each x. Also, (E(e)v, v) £ 0 which implies /<(e) = ( £ , (e)x, x) ^ 0 
for all x. (E(e)v, iv) is a regular Borel measure for each v, w which implies tha t p 

above is a regular non-negative Borel measure. Also, since 2 ^ ¡ E i e ^ v | S 

S max lAd• ||t;|| for any finite partition {eu e2, ..., e„} of D, one has ||2:A;£,(i?;)x| s 

= max |Aj|-||x|| for 7 = 1 , 2 , so each E j is of bounded variation. This implies J f d E j 

exists as a bounded operator f rom H into H for every bounded Borel measurable 

function / . . 

F rom the identity £ ( e 1 f l e 2 ) = ^ ( e i ) * £ ( e 2 ) o n e obtains the identities 

1) £, (e, 0 e2) = Ei (e^E, (e2) - E2 (eJE, (e2), 

2) E2(e1f)e2) = £ 2 ( e 1 ) £ 1 ( e 2 ) + £ 1 ( e 1 ) £ 2 ( e 2 ) . 

Since E(D) = / , we have £ , (D) = / and £ 2 (D) = 0. Also, E] j' Q x = ^ E ^ x for 

each x in H and for j = 1, 2 if the { e j are disjoint. So Et, E2 are of bounded varia-
tion and countable additive in the strong operator topology. 

From the spectral theorem we have AnA*m = J X"~'"dE. Writing 

X — r(cos 0 + i sin 6), 
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and expanding component-wise and taking a limit, we get A"A*m = 
i— 1 

= Jrn+mcos(« — m)6dEy — Jrn+m sin(w —m)QdE2, and Jrn+m sin (n-n^QdEy = 
= ~ Jrn+m cos (n -m)0dE2. 

L e m m a 1. E1(e*)=El(e) and E2(e*) =— E2(e). 

P r o o f . 0 = Jr"+m cos (n-m)9d(E2x,x) = - Jrn+m sin (n-m)9dp, where 
p (e) = (Ei (e)x, x). Let / b e continuous on D and f(r, —6)— —f(r, 6). Given e > 0 , 
by the Stone—Weierstrass theorem there exists a trigonometric polynomial p(r, 9) 
such that \f(r,9)-p(r,9)\ < e/2 in D, where p(r, 6) = Za„,mr"+m sin ( / ? - m ) 0 + 
+ r^„> m r"+ mcos (n—m)9. Substituting —6 into the above inequality and adding show 
\Zbn,mrn+m cos (n-m)0\ < e/2. This implies \f(r, 6)-Ia„im rn+m sin (n-m)9\ < e . 
This gives J f ( r , 9)dn=0. If e is a compact set lying entirely in the upper halfplane 
then there exists a bounded sequence { / , } of continuous functions converging point-
wise to ye and vanishing off the upper half-plane. Define gn to equal /„ in the upper 
half-plane and —fn(r,9) in the lower half-plane. Then J gndp=0, but g„ converges 
pointwise to xe~xc*, so by the dominated convergence theorem J (yc — yc*) dp = 0, 
or n(e) = p(e*). Let S1 be the collection of Borel sets e in D, lying in the upper half-
plane and such that p{e)=p(e*). One can show that S is a <7-ring containing the 
compact sets, so that p(e) =p(e*) for each Borel set e lying in the upper half-plane. 
From this it easily follows that p(e)=p(e*) for every Borel set. e Thus ( £ \ ( e ) x , x ) = 
= (E, (e*)x, x) for each x, which implies E1(e) = El(e*) since Et(e) is self-adjoint. 

From the identity Jr"+mcos(n — m)9dE2 = —Jr"+m sin (n —m)GdEl, and since 

E\ is symmetric about the x-axis and r"+m sin (n — m)9 is antisymmetric, we have 

J rn+m cos (n — m)9dE2 = 0 ; hence J rn+m cos (n-m)0dv = 0, where v(e) = (E2{e)x, j ) . 

An argument similar to the above shows v(e) = —v(e*), i.e., E2(e) = —E2(e*). 

D e f i n i t i o n . Let (El,E2) be called a spectral pair provided 1) E^ and E2 

are of finite variation and countably additive in the strong operator topology; 
2) El(e) is self-adjoint and E2(e) is anti-symmetric for each.Borel set e; 3) Ei(e) = 
= Ex (e*), and E2(e) = — £ ,

2 ( e : | < ) f o r e a c h B o r e l s e t e ; 4 ) £ ' 1 ( e 1 C\e2) = E^e^E^ey) — 
-E2(^)E2("2), and E2(eine2) = E2(e1)Ei(e2) + El(el)E2(e2y, 5) El(D) = I, 
E2(D)= 0. 

Summarizing the above: 

T h e o r e m I. If A is a bounded normal operator on a real Hilbert space then 
there exists a unique spectral pair (E{, E2) such that Ax — J r cos 9dEtx— J r sin 0dE2x 

for all x £ H. . 
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P r o o f . The only remaining item to check is the uniqueness of the pair. Suppose 
(E[, E'2) is another such spectral pair. Let E'(e)v = [E\ (e)x — E'2 (e)y, E'2 (e)x + E\ (e)y\. 
One can show directly that £ ' is a spectral measure and that A=JHE'. By the 
spectral theorem in the complex case £ ' = £ , and this implies £ j = £ t , £ 2 = £ 2 . 

2. Spectral Representation 

Theorem 1 will now be used to prove a spectral representation theorem, i.e., 
we will show that H is the orthogonal direct sum of closed subspaces {Hx} where 
each Hx is isometrically isomorphic to an L2(px) space and A\HX is characterized 
on L2,(px) as the operator Tx described in the introduction. 

Suppose there exists a cyclic vector x£H such that the linear span of the vectors 
of the form A"A*'"x is dense in H. Let p(e)—{E1(e)x, x). Then p is anon-nega t ive 
regular Borel measure, and p(e) = p(e*) for each Borel set e. 

Recall that f rom the spectral theorem in the complex case we have (A")(A*)'" = 

=J/").mdE, so letting ¿ = r ( c o s + *sin 0) and expanding this component-wise give 

A"A*mx = f rn+m cos {n-m)9dE1x- J rn+m sin (n-m)GdE2x and (A"x, Amx) '•= 

= J r n + m cos (n— m)8dfi = ( f „ , f m ) , where fn(r, 0) = /-"(cosnO + sin n9). This follows 

since / „ • / „ = rn+m (cos (/i — + s i n (n + m)9), and r"+m sin (n +m)9 is an odd 

function in 9. So one has (A"A*'"x, AkA*9 x) = (fn+g,fk+m) = Jrn+m(cos(n-m)9 + 

+ sin (n - in) 9)rk+B (cos (k — g)0 + sin (k - g) 9)dp. 
If one defines <P(ZanmA"A*'"x) = Ia„mrn+m (cos (n-m)O + s in ( n - m ) 0 ) then $ 

is well-defined and is an isometry f r o m the linear span of the A"A*'"x into £ 2 ( / I ) . 
Moreover, its range is dense i n / / s i n c e &(}(A"A*m + A*"A"')x) = r"+m cos (n — m)0, 
0(i(A"A*m-A*"Am)x) = rn+m sin (n-m)0, and the span of these funct ions is 
dense in L2(p). So <P has a unique isometric extension of H onto L2. 

Recall the operator T defined in the Introduction. One can show by 
a straightforward calculation that <PA<P~1=T on the functions r" + " 'cos (n — m)9, 
rn+m s j n a n c [ hence for all of L2(/t). Thus A is "orthogonally equivalent" 
to T. • 

T h e o r e m .2. If A is a bounded normal operator on the real Hilbert space H 
and if H contains a cyclic vector then there exists an L2(p) with p(e)=p(e*), such 
that A is orthogonally equivalent to T on L2 (ji) (see Introduction). 

If there is no cyclic vector then apply Zorn ' s Lemma, see [1, pp. 910], to obtain 
H = ®HX so that each Hx contains a cyclic vector xx. 

T h e o r e m 3. Every bounded normal operator A on the real Hilbert space H is 
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orthogonally equivalent to an orthogonal sum © Ta of operators on spaces L2 (p J of the-
type defined in the introduction. 

R e m a r k 1. If one defines 

* ' « = (& / • ) • '*<*> = (/ , ~ o ) . 
where f is the even part of and f2 is the odd part of %e then one can directly 

verify that ( £ \ , E2) is a spectral pair, and for continuous f T ( f ) = (J/-cos0i/£1)(/) — 

— (Jr sin 9dE2)(f), and so f rom uniqueness, E2) is the spectral pair for the 

operator T. 

R e m a r k 2. One could define a calculus for A by defining f(A) • = J f y d E ^ 

—Jf2dE2, w h e r e f = f i +if2 with f even, f2 odd, and both Borel measurable. The-

details are similar to [1, pp. 895—902]. 

R e m a r k 3. As a corollary to Theorem 1 one has the self-adjoint case (3, pp.. 
269—276). The unbounded case follows f rom the bounded case just as in (3, pp. 
313—320). Also, one could now write out the unitary and skew-symmetric cases, 
from Theorem 1 and Theorem 3. Also, one could easily show that for compact 
normal operators H is the orthogonal direct sum of one and two dimensional in-
variant subspaces. 

One could further use the above Theorem 1 in the skew-symmetric case and, 
the methods found in (3, pp. 296—320) and (3, pp. 314—315) to obtain a spectral 
theorem for unbounded skew-symmetric operators in a real Hilbert space. Then 
using this theorem one could obtain Stone's theorem for real Hilbert space, see-
[2, pp. 38]. 

Added in proofs. The author has learned through private communication with. 
Prof. TIN KIN WONG of Wayne State University that he has obtained some 
of the results of this paper by other methods. Also, Prof. Wong obtains the un 
bounded normal case by his methods. One could use the above methods and the 
unbounded self-adjoint and skew-symmetric cases to obtain the spectral theorem 
for unbounded normal operators. 
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