Nr-operators and semi-Carleman operators

-By TIN KIN WONG in Detroit (Michigan, U.S.A.)

1. Let (X, p) be a measure space, E a Banach space, and let p and p” be the:
usual conjugate numbers with 1 < p < +oo, thatis 1/p+1/p” = 1. Let L(X, u; E)
" be the Banach space of all equivalent classes of u-strongly measurable E-valued

functions K such that [|K|? = f 1K G)Pdp < + oo

Operators of the type T L” (X, ) ~ E, . which can be represented by a unique
K in LY(X, u;E) in the following way: Tg= fg(x)K(x)dy were consxdered by

A. PERSSON In [3] he showed that these are operators of type N” Wthh are also-
known as right p-nuclear operators. (See [I1], Théoréme 6.) The author proved

in [7] that if E is the strong dual of some Banach space F such that either E is. '
separable or reflexive, then T is the adjomt of an operator S:F—LP (X, u) such
that |Sf(x)]=y(x)|lf|| a.e. for some non-negative y in L?(X, u). In section 2 of this.
note we give a new characterization of this class of N7-operators without referring.
to their adjoints. A necessary and sufficient condition for 7 to be of this class is.
that [Tg|l= f y(x)|f(x)|du for some non-negative y in L”(X, y) and for all g in

. X .
LP(X, ). In section 3, we apply our results to Hilbert spaces. We first give two

characterizations of Hilbert—Schmidt class operators, and then obtain a charac-
terization of the semi-Carleman operators introduced by M. SCHREIBER [4]. Finally, '
we show that the Korotkov theorem for Carleman operators (121, Theorem 1)
remains valid even in nonseparable Hilbert space.

2. Throughout this section, all operators are bounded.

Theorem 2.1. Let E be a Banach space such that either E has a separable:
strong dual E’ or E is reflexive. For operators T:LP(X, u) —FE with 1l <p <+
the_ following are equwalent

(i) There exists a unique K in L”(X, u; E') such that Tg= f g(x)K (x)d/z Jor
all g in LP(X, p).

(i) There exists some non- negatwe y in L? (X @) suchthat | Tgl = f y(x)]g(x)ldu,
Jor all g in LP(X, ).
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Note. The implication (i)=-(ii) is trivial, as one may take y(x)=||K(x)M.
Moreover, the uniqueness of K in (i) is clear. For if there were some K and K’ in
L?(X, u; E') such that Tg= fg(x)K(x)du fg(x)K (x)du for all g in LP(X,p),

‘then, in particular, fK(x)d/z fK (x)du for all measurable set 4 with finite measure.

Because the supp_orts of K and K’ are o-finite measurable sets, we have therefore
K=K’ in L?(X, u; E’).

Theorem 2. 1 follows from Theorem 2 of [7] and the following lemma which
‘may have some interest in its own right.

Lemma 2. 1. Let E be a Banach space. Let T*:LP(X, ) ~E’ be the adjoint
of T:E—~LP(X, ), and let yc LP(X, ), y=0. Then the following are equivalent:

O |TDI=yIS ) ae. for fin E.

@) 77l = f \g()ly(x)du for all g in LP(X, p).

Proof. Case 1: y(x)>0 a.e. Form the finite - measure space (X, v) where
dv=y"du. Let M:LP(X,v)~L° (X, p), and M,ero: LP(X, v) ~LP(X, i) be the
- multiplication by y and y”/?, respectively. That is, M,(g) = y-g and M,s1»(h) =
= 9#/P. h for g in LP(X, v) and A in L?(X, v). Beause y(x)<0 a.e., M, and M,o1»
are linear isomorphisms (onto), and M;‘=My_1, (M,er10) " '=M,-51». A simple com-
‘putation shows that (M,e»)*=(M,)"?, hence M;=M,»-1». We now prove (i) =(i).
Write T,=T*o M,o-w. Then T,:LP(X,v)—~E’, and (T,f|| = f \M o 10 (f)] - pept.

Hence |7, fll= f[f(x)[a’vzllflll, wherel| - ||, denotes the L'-norm of f. Since LP(X, v)

‘is dense in Ll(X v), we can extend T, to the whole of L'(X, v) without increasing
its norm. Let T,:L'(X, v)—~E’ be the extension of T,. Then ||T,]|=1. We have
‘the first one of the following commutative diagrams, from which the second one
-derives by taking adjoints:

P e iy ) Xy )M/_"’_mx )

T N N 1=
) ’ 7-* I

[(Xy)—— E - Fixy ) E

Here 7 and i; are the natural embeddings, and |T{(=|T,I=1. If £ in E, then
T**f=Tf. (Here we have identified E with a subset of £** via the natural embedding.)



NP -operators and semi-Carleman operators 107

Therefore *T(f) = (Myon)*T(f) = M,_(Tf). Hence [T}f|.. =|f|; it follows
that |TH(x)| = |f] ae. But T[f(x) =M, .Tf(x) =y~ '(x)- Tf(x). Therefore -
Iy (x)- TF(x)| = IIf|| a.e. Hence |Tf(x)|=p(x)lf| a.e. for fin E. This completes
the proof of the implication (ii))=(i). The proof of (i)=(ii) is similar. We first
consider the mapping S,,:E\—»L”(X, v) defined by S, =M, ..o T. Then |S,.f(x)|=]f]i
ae. Let i:L=(X,v)—~L?(X, v) -be the injection. Then S, factors as S, =io S
where S_:E -~ L=(X, v) and | S_f..=| /|l where || denotes the L=-norm. Hence
S.II=1. Therefore S*:M(X, v)~E’ is also a contraction where M(X, v) is the
dual of L=(X, v). Ttis clear that i*: LP(X, v) -~ M (X, v) is the natural injection which
maps g into the finite measure (complex) gdv for g'in L”(X, v). Hence || S¥ oi*g||=|li*g|,
and I]i*gllz‘]d[g]dv for g in LP(X, v). Moreover, since io S.=8,=M, 10T, then
X

Stoi*=S8%=T*o(M,-1)*=T"0 Myn. It follows that ||T*o M,r:sg| éflgldv
F: .

for g in LP(X,v). If g is in'L"’(Xvu) write g= M, /p( wwg). Then |T*g|=-
_f]My_p /p(g)ldv—_/y(x)|g(x)|d;t This proves (i) =(ii): '

Case 2: vy vanishes on a set of posztwe measure. Let Y={x; y(x)>0} and let
(Y, p) be the measure space obtained by restricting u to Y. Let j: LP (Y, p) - L? (X, 1)
. be the natural embedding. Then j*:L?(X, u) -~ L?(Y, u) is the projection g—~yyg
"where y, is the characteristic function of Y. Then the operator T factors as
EXx 1oy, )= L2(X, ) if and only if T* factors as L¥ (X, p) 2~ L¥(Y, o) - E
Now we apply the implication (/)= (ii) to the operators T, and Ty, and complete
the proof.

Proof of Theorem 2.1. We 'only. need to prove.that (i) implies (i). Let
S:E—LY(X, u) be the restriction of T*:E”—~LP(X,u) to E. Then T=S* By
Lemma 2. 1, we have |Sf(x)|=y(x)|f| ae. for fin E. By Theorem 2 of [7], we

have ngS*ngK(x)g(x)du for a unique K in L”(X, u; E’).
P X .
Remark. We note that, in Theorem 2. 1, the existence of K does not dépend
upon the choice of those non-negative y such that |Tg|= fy(x)lg(x)|d;¢ for gin

LP(X, ). The following lemma asserts that the function ”K( )} is the infimum of
all those y in the language of lattice theory. That is, | K(+)| = A{y € L*(X, u);

172l = [ x)lg()ldu for all g in LP(X, @)}

Lemma 2.2. Let E be a Banach space. Let K be in L¥(X, p; E) and let y
be non-negative element in L” (X, ) such that H[ K(x)g(x)du” = / ()| g(x)|dn for
X X

all g in L°(X, ). Then | K(x)| =y(x) a.e.



108 Tin Kin Wong

Proof. Let S:L°(X, u) —~E be defined by Sg fK(x)g(x)dy Then S is a

bounded operator, and S*:E’—~LP (X, y) is given by S (@)=, K(x)) ae.
Furthermore, the proof for (iij)=(i) of Lemma 2. 1 proves that |S*/"(x)|=y)|S"]l .
a.e. where the exceptional set of measure zero may depend upon f”. Hence
Kf7 KCGpl=y()Nif’ll a.e. for 7 in E’. Let N be the p-null set such that K(X\N).
is contained in a separable subset of E. Let {f,, f5, ..., /,, ...} be a countable dense
subset of this subset of E. Let {f],f7,...,f,,...} be the subset of E’ such that
If/1=1 and [{f], fp|=If;l for each j. Then, if x isnot in N, we have |K(x)|=
=sup [{f;, K(x))|. Let N; bethe p-null such that [(f;, K(x))|=y(x) for all x not
J

in N;. Let A=NU[ D Nj) . Then 4 is also a g-null, and | K(x))} = y(x) for all x not
j=1 .
in A, This proves the lemma.

' 3. Let .H bé a Hilbert space. Let S:H—-L*(X,p) bea Hilbert——Schnﬁét class
operator. For any orthonormal basis {f;} of H, 3 || Sf;||* is finite. There are at most
A

counfably many non-vanishing || S£;]|? in the above sum, say Sf,lj#O (=123, ..).
Hence 2.0 |Sf; (X))*<+e ae Let K(X)= ; Sf;,(x)fs,- Then K is a strongly
i =

p-measurable H-valued function such thatfl]K(x)lI Zdu = leSfl 2= 5’” SHlI*=Sl3,

where || S|, denotes the Hllbert—Schmldt norm of S Furthermore Sf,1 (x)=
—<f,1 . K(x)) and hence Sf(x)=(f, K(x)) a.e. for f.in H. Conversely, if K in
L2(X w; H) and S: H—~L2(X, p) is defined by Sf(x)= {f, K(x)) a. e. then it is clear
that S is of Hilbert—Schmidt class with Hilbert—Schmidt norm ||K||. This shows
that every Hilbert—Schmidt class operator S:H —~L*(X, y) is of the form Sf(x)=
={f, K(x)) a.e. for a unique K in L?(X, u; H). The above argument can also be
found, for example, in [6], 2. 2 (1); we include it here for a later reference. The fol-
lowing characterization for Hilbert—Schmidt class operators - first appeared in
PErssoN’s article ([3], Theorem 3) as a special case of his main result. It is also
~ included in ([7], Corollary 3 and-its following remark).

However, the following version is due to WEIDMANN ([6] 2. 10. Korollar) for
separable Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space. For a bounded operator T: H —
—~L¥(X, p), the following are equivalent: ’

() T is of Hilbert—Schmidt class.

(i) |T/O)|=yX)f | a.e. for some non-negative y in L*(X, p).

(i) Tf(x)=(f, K(x)) a.e. for a unique K in LZ(X' w; H).

Moreover, |T|,=|K|, where |T|, denotes the Hilbert—Schmidt norm of T,
and K\ denotes the norm of K in L*(X, p; H).
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Proof. The argument given at the beginning of this section shows that @)
and (iii) are equivalent and |T],=[K]|. By Theorem 1 of [7] we see that- (i) and
(iii) are equivalent. :

Dual to Theorem 3. 1- we have the following

Theorem 3.2, Let Hbea Hllbert space. For a bounded operator S: LZ(X u) -H -
the following are equivalent: '
() S is of Hilbert—Schmidt class.

(u) || Sgll = f p(x) |g(x)|du Jfor some non- negatwe y in L*(X, u)
(i) Sg= f K(x)g(x)dy fora umque K in LXX, u; H).
Moreover, |] S || 2= ]|K|| ' '

Proof. S is of Hilbert—Schmidt class if and only if S*:H —~L*(X, y) is of
Hilbert—Schmidt class. This is so if and only if [S*f(x)|=y(X)If] ae. for some
y=0 in L*(X, x). By Lemma 2. 1, the above inequality holds if and only if || Sg| =

= f y(x)|g(x)|du. Hence (i) and (ii) are equivalent. (ii) and (iii)) are equivalent by

: Theorem 2. 1. Furthermore, from Theorem 3. 1, we have HS*|{2—||K|] but |lS||2—
=|5*|,. Hence |S|,=|K].

"'We now turn our attention to operators defined on a linear manifold of Hilbert
space. Let H be a Hilbert space, and let K be a strongly p-measurable H-valued
function defined almost everywhere on X. Let D={f€¢H; (f, K(+))€ L*(X, u)}.
. Then D is a linear manifold of H, but not necessarily dense in H. Let

D= {gELZ(X w: f||K(x)|| |g(x)|du< + o} Then D is a dense lmear manifold of

LY, ) (cF. ().

Notice that D={g¢ LZ(X y) 'gK is Bochner mtegrable} Moreover, if

=L2(X, y), then K is necessary in L*(X, u; H).

Following J. WEIDMANN [6] we call an operator T:®; —~L3(X, ) a Carleman
operator, if its domain Dy is contained in D and it can be written as Tf(x)=(f, K(x))
ae. for fin D;. An operator S:Dg—~H is called a semi-Carleman operator, if
its domain Dg is contained in D and it can be written as Sg= f g(x)K(x)dy for
g in Dy,

We note that, when (X, p) is o-finite, and H =L2(X, 4), then our definitions
for Carleman and semi-Carleman operations coincide with the classical ones (121
~ and [4]). For a detailed discussion of this see ([6], Section 5) or ([2], Lemma 1).

Theorem 3.3. Let (X, ) be a o-finite measure space. Let S:Dg—~H be an
operator with dense domain Dg in L*(X, ©). The following are equivalent:
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(i) S is a semi-Carleman operator.
(ii) There exists a measurable function y such that 0=y(x)< 4+ a.e.,

Dsc{gel: f (%) |g(0)ldu< +=0}, and | Sgll= f ¥) lgClldu for all g in Ds.

Proof. The 1mphcat10n (i)=(ii) isclear. We now prove (11)=>(1) Write X= U A,
A, C A,y and p(4,)<+oo for all n, Let X,={x¢A,; y(x)=n} for n=1, 2,
Then X,CX,.,, p(X,) <+ and p(X\UX,)=0. Let u, be the restriction-of u
to X,, let D,=DsNL*(X,, 1), v.=7x y- Then y, is in L*(X,, u,), and D, is dense
in L3(X,, u,). Consider S,:D,—~ H; the restriction of S to D,. We have ||S,gll =
éfy,,(x)]g(x)]du,, for g in ®,. Then S, admits a unique bounded extension to

Xn
L*(X,, u,) which is also denoted by S,. Moreover, the inequality |S,gll=
= fy,,(x)|g(x)|dy,, holds for all g in L*(X,, u,). Therefore, by Theorem 3.2 S,g=

= fg(V)K (x)du,, for a unique K, in L (X,, 4,; H). By Lemma 2. 2 | K, (x)]| = y,(x)

a.e. Note that S,,, extends S,, using the uniqueness assertioni once more we have
K, (x)=K;(x) ae. on X,. We now define K, almost everywhere on X by putting
K, (x)=K,(x) a.e. on X, and K,(x)=0 for x not in X,. Then K, is y-strongly meas-
urable. Since K,, ,(x)=K,(x) a.e. on X,, then ,!L“; K,(x) exists almost everyWhere.
Let K(x):’!ingn(x),_then K is defined almost everywhere on. X into H and K is
also p-strongly measurable. Moreover, |K(x)||= nlilzchK,,(x)llé’!LrE P,(x)=7y(x) .a.e.

Henceflg(x)[-MK(x)Hduéflg(x)ly(x)du < +oo for all g in Dg. Thus the integral
X X . E .
fg(x)K(x)dy exists for g in Dg. We have Dy {g € L2(X,p) ;'f|g(x)|||K(x)||d/1<_+w}.
We want to show that Sg= fg(x)K(x)d,u for gin Dg. To see this, we let &n=Xx% 8-

- Then g,(x)~g(x) ae. and g,€L*(X,, u,). | Sg— Sg,l <f v(x)lg"(x) —g(x)|dy 0,
by dominated coﬁvergence But Sg,=S,g,= f K(x)g,,(x)du,, f K(x)g,(x)du. On
the other hand || [ K@g(du— [ K(x)gn<x)du|| =/ KON 1g6) ~g, 0l =
= / p(x) | g(x)— g,,(x) |du —0. Therefore Sg= f g(x)K(x)d,u forg in ®s. ThlS com-

pletes the proof.

In 1965, V. B KoROTKOV gave a characterization for a Carleman operator on
separable L*-space which is what he called an integral operator of Carleman type
(cf. [2], Theorem 1). His proof is based on the Dunford-Pettis Theorem. Recently,
M. ScHrREIBER and GY. TARGONSKI also obtained a new characterization for Car-
leman operators (cf. [5], Theorem 2. 1). However, J. P. WiLLIAMS shows that the
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Schreiber—Targonski theorem is a consequence of the Korotkov theorem (pri--
vate communication). (See also [6], Satz 2. 11.) Using our result, we can prove:
that the Korotkov Theorem remains valid without the separability assumption
on the Hilbert spaces. :

Theorem 3.4 (KoroTkov [2], Theorem 1). Let (X, p) be a o-finite measure:
space. Let T:D, —~L?*(X, p) be an operator with dense domain D, in a Hilbert space
H. The following are equivalent conditions:

(i) T is a Carleman operator.

(ii) There exists a non-negative measurable function y such that y(x) < + oo
a.e. and |Tf(x)|=y(OI Sl a.e. for.f in Dy.

Proof. (i)clearly implies (ii). Toprove(u)=>(1) WCWI‘]tCX U A, withA,cA,,

n=1

and each 4, of finite measure. Let X,={x¢c4,; y(x)<n} Then y[X AN U X, ]

“and X,CX,,, and each X, has finite measure. Let E;:L(X, p) —»LZ(X y) be the
projection on L2*(X,, ). Then E,—1 strongly. Let y,= AxVs Ha= “IX,. Then 1y,
in L*X,, n,). Consider E,T:®;—L*(X, p) Let j:L2(X,, p,)—~L*(X, u) be the
natural embedding. Then E, T factors as Dy ~* L*(X,, u,) - L*(X, ) where |T, f(x)| =
=yl a. e. (u,). T, admits a unique bounded extension to H which is again
written as T,. By a standard density argument one can show that the extension ,
T, also has the property that [T, f(x)|=y,x)f| a.e. (i,) for fin H. By Theorem
3.1 T, is of Hilbert—Schmidt class, and there is a unique K, in L*(X,, u,; H)
such that T,,f(x)=(f, K;(x)) a.e. By uniqueness again, we have K|, (x)=K(x)
ae. on X,. Let K (x)=K,(x) a.e. on X, and K, (x)=0 for x not in X,. Then each
K, is strongly u-measurable H-valued. Let K(x)=lli»n;K,,(x) a.e. Then K defines
almost everywhere on X and is p-measurable. Moreover K(x)=K,(x) a.e. on X,.
If fin Dy, then Tf= imE,Tf. But E,If = j- T,f, so (E, 1) f(x)=(T,f)(x)=/, K,(x)
a. e. Therefore Tf(x)_hmE Tf(x)-hm(f K, (x))= (f, K(x)) a.e. This completes

the proof.’

4. Concluding remark. In the definition of a semi-Carleman operator,
if we enlarge the linear manifold D to the linear manifold of L2(X, u) consisting
of all g such that the H-valued function x —~g(x)K(x) is weakly integrable in the
sense of Pettis, where K is a u-strongly measurable H-valued function. We may
call an operator T:D;—H a weak semi-Carleman operator, if its domain D; is

contained in D and it can be written as Tg= f g(X)K(x)dyu for g in D, where the
s

integral is the weak integral in the sense of Pettis. It is easy to see that, if A:H —
—~L*(X, ) is an everywhere defined Carleman operator (hence bounded), then:
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A*:L*(X, u) —~ H is a weak semi-Carleman operator. More than this, one can easily
show that the adjoint of a densely defined Carleman operator is a closed extension
-of a weak semi-Carleman operator. It follows that the conditions |Af(x)]| = y(x)|f|

and ||A*g||= f y(x)|g(x)|du, for some nonnegative measurable y are not equivalent
X

for the Carleman operator 4. It would be interesting to give a characterization
for a weak semi-Carleman operator.

Using theory of semi-ordered spaces, S. I. Zpanov (cf. [8], proof of Theorem 1)
proved that the Korotkov inequality - |Tf(x)|< y)Ifll a.e. is equivalent to that
T maps every null sequence of vectors {f,};=, in H into a sequence {If,}:%, in

- L*(X, 1) such that Tf,(x) -0 ae. For a complete elementary proof of this see

'WEIDMANN ([6], Satz 2. 12). We do not know the answer to the following questioh:.
, What is. the condition corresponding to the Zdanov theorem for a semi-
Carleman operator ‘and a Carleman operator respectively?

*

The author is grateful to h]S colleague Dr. T. ITo for many helpful discussions,
and to Dr. J. P. WiLLIAMS for his communication on the subject.
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