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Let D be an integral domain with identity. GILMER in [2] determines necessary 
and sufficient conditions in order that each subring of D with identity be Noetherian. 
We consider essentially the same type of problem. In general, let R be a- ring (not 
necessarily commutative) and let P be a ring theoretic property. We seek to determine 
necessary and sufficient conditions on R in order that each proper subring of R 
has property P. 

In this paper we will consider these two properties P: 

(PI) Has finite characteristic. 

(P2) Has no proper zero divisors. 

It is clear that if R satisfies (PI) or (P2), then each proper subring of R satisfies 
(PI) or (P2), respectively, but neither of the converses is true. Corollary (2. 3) gives 
a characterization of rings for which each proper subring has finite characteristic, 
and Corollary (2. 11) characterizes rings for which each proper subring has no proper 
zero divisors. Moreover, Proposition (2. 5) and Corollary (2. 10) give necessary and 
sufficient conditions on R in order that each proper two-sided ideal of R satisfies 
(PI) or (P2), respectively, and Corollaries (2. 7) and (2. 12) give necessary and 
sufficient conditions on R in order that each proper left (right) ideal of R satisfies. 
(PI) or (P2), respectively. 

Section 1 contains the necessary notation and definitions used in the paper 
and includes the statement of one lemma,'which we use frequently. Section 2 con-
tains our main results. Throughout the paper the symbols ^ and cz will denote 
containment, and proper containment, respectively. We will use the symbols Z 
and co to denote the sets of integers and positive integers, respectively. The authors 
hereby express their appreciation to CRAIG WOOD for helpful comments concerning 
this paper. In particular, Wood suggested that the authors work on the problem of 
finite characteristic. 
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1. Preliminaries. All rings considered in this paper are assumed to contain 
more than one element. Throughout the paper, ideal will always mean two-sided 
ideal. If R is a ring and if {x^} is a collection of elements of R, then [{x,}] will denote 
the subring of R, and ({xa}) the ideal of R, generated by {x^}. If A is a subring (or 
ideal) of the ring R, then, following [3; p. 2], we say that A is genuine if A^R, and 
proper if A is genuine and nonzero. 

If x is an element of a ring R and if there exists a positive integer n such that 
n • x = 0, then the minimal positive integer for which this is true is called the order 
of x. If no such positive integer exists, we say that x has infinite order. If there exists 
a positive integer n such that n • x = 0 for all x € R, the smallest such positive integer 
is called the characteristic of R. If no such positive integer exists, we say that R 
has characteristic zero. If x-y = 0 for each x, ydR, we will say that R is the zero 
ring on R+, the additive group of R; we will also say in this case that R has the 
trivial multiplication. 

We will say that an element x of R is a proper zero divisor of R if x is nonzero 
and if there exists a nonzero element a of R such that either xa or ax is zero. A ring 
R is said to be simple if its only (two-sided) ideals are R and (0). 

The following lemma is used frequently. It appears as an exercise in [4; p. 101]. 

• (1.1) L e m m a . If R is a ring with the property that the only left (right) ideals 
of R are R and (0), then R is either: 

(i) a division ring, or 
(ii) the zero ring on a finite cyclic group of prime order. 

2. Properties (PI) and (P2). Our first concern will be. to characterize rings R 
with the property that each proper subring of R satisfies (PI). 

As we have already observed, the condition that R have finite characteristic 
is not necessary. A zero ring on a quasicyclic group is an example of a ring R with 
characteristic zero such that each proper subring of R satisfies (PI). We will show 
that these are the only rings of characteristic zero with the property that each proper 
subring satisfies (PI). -

Before proving the above statement, we give a brief description of a quasi-
cyclic group. (See, for example, [1], [5], [6],) Let be a prime integer. The /?-quasi-
cyclic group, which we denote by C(p°°), is a group generated by a set {c,}l€ra such 
that q has order p', and pci+l=ch for each / £ « ; there is, to within isomorphism, 
exactly one group with these properties. (The group of all complex p th power roots 
of unity, under multiplication, is a realization of C(p°°).) The proper subgroups 
of C(p°°) are exactly the finite cyclic groups generated by the c]s. Thus, with the 
trivial multiplication, the proper subrings (and proper ideab) of C(p°°) are just 
the proper subgroups of C(p°°). It then follows that each proper subring (ideal) 
of C(p°°) has finite characteristic, but C(p°°) does not. 
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(2. 1) T h e o r e m . Let R be a ring such that every proper subring of R satisfies 
property (PI). R has finite characteristic if any of these five conditions hold: 

(i) There exists a genuine ideal A of R such that R/A has finite characteristic. 
(ii) R has an identity element. 
(iii) R is commutative and contains a maximal ideal. 
(iv) R = [r] for some r£R. 
(v) There exist genuine ideals Rt, Ri of R such that R = Rt+ R2. 

P r o o f , (i) By assumption riR^A and mA=(0) for some positive integers n 
and m. Hence mnR = (0), and R has finite characteristic. 

(ii) If e is the identity element of R, then e must have finite order, for otherwise 
[2e] is a proper subring of R, and [2e] does not have finite characteristic. 

(iii) Let M be a maximal ideal of R. By Lemma (1. 1), R\M is either a field 
or R/M is finite. Part (i) of this theorem shows that R has finite characteristic if 
RjM is a field of finite characteristic or if RjM is finite. If R[M is a field of charac-
teristic zero, choose r£R such that r+M is the identity element of RjM.-Then 
nr§ Mand/?r2$ Mfor any positive integer n; in particular, w 2 ^ 0 , so that /? = [/•] = [r2]. 
Thus, r = sr2+mr2 = (sr + mr)r for some s£R, m£Z. Since /? = [/•], it follows 
easily that sr + mr is an identity element for R, and R has finite characteristic by (ii). 

(iv) If /? = [>], then R is commutative and any ideal of R maximal with respect 
to not containing r (such ideals exist by a Zorn's Lemma argument) is a maximal 
ideal of R. Hence R has finite characteristic by (iii). 

(v) If R = Rl+R1, then / 7 , R { = 0 and n2R2 — 0 for some positive integers nv 

and n2. Thus nln2R = (0), and R has finite characteristic. 

(2. 2) T h e o r e m . Suppose that R is a ring such that 
(i) each genuine ideal of R has finite characteristic, 
(ii) R does not have finite characteristic, and 
(iii) each element of R has finite order. 

Then R is the zero ring on a quasicyclic group. 

P r o o f . Let r£R— {0} have order m, and let p be a prime divisor of m. Then 
Rp = {x£R\p"x = 0 for some n£a>} and S= {x£/?|the order of JC is not divisible by p} 
are ideals of R, and, as is well known, R is the direct sum of Rp and S. By choice of 
p, Rp?i(0); hence part (v) of Theorem (2. 1) implies that S=(0) and R = Rp. More-
over, since nR is an ideal o f / ? , it follows f rom (i) and (ii) that R=nR for each positive 
integer n. Thus, if x, y£R and if y has order p"', then there exists a£R such that 
x=p"'a. Therefore, x-y = (p'"a)y = a(p'"y) = 0, so that R has the trivial multi-
plication. 

We show that R is the zero ring on C(p" ) . Choose d{£R such that ds has 
order p. Since R=pR, there exists d2£R such that pd2=dx. Then cl2 has order p2. 
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Inductively, choose di+l£R such that pdi+l—di for each i£co. Then dt. has or-
der p' for each and the ideal T generated by {i/,-};g<„ has characteristic zero. 
Thus, T=R. But since R has the trivial multiplication, the ideal T is the same as 
the additive subgroup generated by {di}ii(a. It follows that R is the zero ring on the 
/7-quasicyclic group. 

As a corollary to Theorems (2. 1) and (2. 2), we obtain the following result. 

(2. 3) C o r o l l a r y . Let R be a ring. Each proper subring of R satisfies property 
(PI) if and only if one of the following conditions is satisfied: 

(i) R has finite characteristic. 
(ii) R is the zero ring on a quasicydie group. 

P r o o f . We have already observed the sufficiency of conditions (i) and (ii). 
Conversely, if R does not have finite characteristic, then part (iv) of Theorem (2. 1) 
implies that r has finite order for each r£R. Therefore, by Theorem (2. 2), R is the 
zero ring on a quasicyclic group. 

Since the trivial multiplication defined on any abelian group G induces a ring 
structure on G, we have the following. 

(2.4) C o r o l l a r y . (Compare with Ex. 23, p. 22 of [5].) Let G be an abelian 
group. If each proper subgroup of G has bounded order, then either G has bounded 
order or G is a p-quasicyclic group. 

(2. 5) P r o p o s i t i o n . Let R be a ring. Each proper ideal of R satisfies property 
(PI) if and only if one of the following conditions is satisfied: 

' (i) R has finite characteristic. 
(ii) R is the zero ring on a quasicyclic group. 
(iii) R is a simple ring having no nonzero element of finite order. 

P r o o f . The sufficiency is obvious. Suppose that R does not have finite charac-
teristic. If each element of R has finite order, then Theorem (2. 2) implies that R is 
the zero ring on a quasicyclic group. If there exists an element r of R of infinite 
order, and if A is the set of elements of R of finite order, then A is a genuine ideal 
of R, and, by hypothesis, there exists a positive integer k such that kA — (0). However, 
since nR is an ideal of R, it follows from part (i) of Theorem (2. 1) that R — nR for 
each positive integer n, and, in particular, R = kR. Thus, if a£A, then a = kr for 
some r£R. But ka = 0 implies that k2r=0, so that r£A and a = kr = 0. Therefore 
^4=(0), so that R is a simple ring with no nonzero element of finite order. 

As a consequence of Proposition (2. 5) and its proof, we have the following 
result. 

(2. 6) C o r o l l a r y . Let R be a simple ring of characteristic zero. Then R+, the 
additive group of R, is' isomorphic to a (weak) direct sum of full rational groups. 
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P r o o f . Since R + is a divisible, torsion-free abelian group, the result follows 
from [1; Theorem 19. 1]. . 

(2. 7) C o r o l l a r y . 1 ) Let R be a ring. Each proper left (right) ideal of Rsatisfies 
property (PI) if and only if one of the following conditions is satisfied: 

(i) R has finite characteristic. 
(ii) R is the zero ring on a quasicyclic group. 
(iii) R is a division ring of characteristic zero. 

P r o o f . If R has characteristic zero and if R is not the zero ring on a quasicyclic 
group, then Proposition (2. 5) implies that R is a simple ring with no nonzero element 
of finite order. Therefore, R has no proper left or right ideals, so that R is a division 
ring (Lemma (1. 1)). 

We now turn our attention to property (P2). We use the following lemma; its 
proof is straightforward. 

(2. 8) L e m m a . Let R be a ring containing no nonzero nilpotent element. If 
a, b£R and if ab = 0, then ba = 0, axb = 0 for each x in R, and bya = 0 for each y in R. 
Moreover, RaDRb = aRCibR = RaRClRbR = (0). 

(2. 9) T h e o r e m . Let R be a ring such that R does not satisfy (P2), but each 
proper ideal of R satisfies (P2). 

(i) If R contains no nonzero nilpotent element, then R is the direct sum of two 
simple rings, each of which satisfies property (P2). 

(ii) If R contains a nonzero nilpotent element, then either: 
(a) R is the zero ring on a cyclic group of prinie order, or 
(b) R is a simple ring such that R2 — R. 

P r o o f , (i) By assumption, there exist nonzero elements a and b of R such: 
that ab = 0. Since a3£RaR and b3£RbR, RaR and RbR are nonzero ideals of R, 
so that RaR + RbR = RaR®RbR is a nonzero ideal of R that does not satisfy 
property (P2). Moreover, Lemma (2. 8) implies that RaR and RbR are proper 
ideals of R, and hence have property (P2). Let S be any nonzero ideal of the ring RaR. 
Then RbR-S = S-RbR = (0), S + RbR is an ideal of R, and hence R = S+RbR. 
By the modular law, RaR = RaR r\(S+RbR) = S+(RaR f l RbR) = S + ( 0 ) = S. 
Therefore, (0) and RaR are the only ideals of the ring RaR, so that RaR is a simple ring 
that satisfies property (P2). Similarly, RbR is a simple ring that satisfies property (P2). 

(ii) Suppose that b is a nonzero element of R such that b2= 0. Then (b) = R. 
Let M be a genuine ideal of R. If m£M, then bm and mb are elements of M, so that 

The conditions which we obtain here, as well as those of Corollary (2. 12), are reminiscent 
of the conditions obtained by. F . SZASZ in [7] characterizing rings in which every proper left ideal 
is cyclic. 
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mb-bm = 0 implies that bm = 0 or mb = 0. In particular, mbm = 0 for each m£M. 
Thus, (mb)2 = (bm)2 = 0 , and hence mb=bm — 0 for each m£M. Since (b) = R, it 
follows that for each r£R, m£M, rm—mr=0. In particular, M2 = (0), so that 
M = (0) and R is a simple ring. If R2 = 0 , then R has trivial multiplication, and Lemma 
(1. 1) implies that R is the zero ring on a cyclic group of prime order. This completes 
the proof. 

As an immediate consequence of Theorem (2. 9), we have the following. 

(2. 10) C o r o l l a r y . Let R be a ring. Each proper ideal of R satisfies property 
(P2) if and only if one of the following conditions is satisfied: 

(i) R satisfies property (P2). 
(ii) R is the direct sum of two simple rings, each of which satisfies property (P2). 
(iii) R is the zero ring on a cyclic group of prime order. 
(iv) R does not satisfy (P2) and R is a simple ring for which R2 = R. 

We now use Theorem (2. 9) to obtain a characterization of rings for which each 
proper subring satisfies property (P2). 

(2. 11) C o r o l l a r y . Let R be a ring. Each proper subring of R satisfies property 
(P2) if and only if one of the following conditions is satisfied: 

(i) R satisfies property (P2). 
(ii) R = Z/(p) © Zj(q), where p and q are prime integers. 
(iii) R is the zero ring on a cyclic group of prime order. 

P r o o f . The sufficiency is obvious. Suppose that R does not satisfy property 
(P2). If x is a nonzero element of R with x2 = 0, then ( 0 ) c [ x ] = { / x | x £ Z } , and [x] 
has trivial multiplication. Hence [x] = i?, and Theorem (2. 9) implies that R is the 
zero ring on a cyclic group of prime order. 

If R contains no nonzero nilpotent element, then Theorem (2. 9) implies that 
R is the direct sum of two simple rings, Rt and R2, each of which satisfies property 
(P2). Moreover, if 5" is a nonzero subring of R,, then S-R2 = (0), and R = 5 + 
+ R2 = Rl®R2. This imples that S = Rt, and R, is a ring with property (P2) 
having exactly two subrings R{ and (0). It follows immediately f rom Lemma (1. 1) 
that Rt is a finite prime field. Similarly, R2 is a finite prime field, and R ^ Zj(p)® 
®Z/(q), where p and q are prime integers. 

(2. 12) C o r o l l a r y . Let R be a ring. Each proper left (right) ideal of R satisfies 
property (P2) if and only if one of the following conditions is satisfied: 

(i) R satisfies property (P2). 
(ii) R is the zero ring on a cyclic group of prime order. 
(iii) R is the direct sum of two division rings. 

The proof is similar to that of Corollary (2:11) and we omit it. 
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