Permutation polynomials in several variables

By HARALD NIEDERREITER in Carbondale (Illinois, U.S.A.)

1. Introduction. In [11] w. NOBAUER introduced the notion of a permutatxon
polynomial in several variables over a commutative ring with identity, where the
polynomial is considered modulo an ideal. We app]y this definition to po]ynomlals
in several variables with integral coefficients. ' '

Let Z denote the ring of integers and let p be afixed prime. For a given n=1,
" we consider lattice points (a,, ..., a,), a;€ Z, 1=i=n. Two lattice points (a,, ..., a,),
(b,, ..., b,) are said to be congruent modulo p if @¢;=b; (mod p) for all i=1, ..., n.
By means of this definition, the set of n-dimensional lattice points is divided into
exactly p” equivalence classes. In the sequel, M, will stand for a complete system
of representatives from those equivalence classes. We give the following

Definition 1. A polynomial f¢Z[x,,..., x,] is called a permutation poly-
nomial mod p if the congruence f(x,, ..., x,)=a (mod p) has exactly p:'“_ solutions
in M, for each ¢=0,1,...,p—1. : :

Remark. The above definition is obviously independent of the choice of
M. The definition coincides with Nobauer’s definition for permutation polynomials
over Z modulo the ideal (p) (see [11], p. 342).

For n=1, the theory of permutation polynomlals is well developed ([ 1] [3]; [4];
[51; [7], ch. 18; [8], ch. 5; [10]; [12]; [13]; [14]) We ther_efore suppose n=2 from now
on. Some results for the case =2 have been obtained by KURBATOV and STARKOV
[9]. In this paper, two necessary and sufficient conditions for permutation polyno-
mials mod p are given and all permutation polynom1a1s mod p of degree 1 and degree
2 are characterized. Generalizations to Galms fields shall be discussed elsewhere.

2. Two criteria. First we show the followmg

Theorem 1. f¢ Z[xl, vees X,) S a permutatzon polynomial mod p z'f‘anz'l 6nlj)
if each congruence f(x,,...,x,)=a(modp), a=0,1,...,p—1, has at least one
-solution and’ i .

> [f(al, s @)P TP = 0(mod p1) for t=1,..,p—1.
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Proof. Put k,=number of solutions from M, of f(x,, ...,x,,)za(modp),-
a=0, 1, ..., p—1. Since c=d(mod p) implies ¢?" *=d?""*(mod p"~ "), we get

) p—1 .
S U@y e = 3 ka™? (modpm) for t=1,..,p—1,
(@y,..,a,) EMY a=0
Suppose now that f is a permutation polynomial modp, then k,=p"~! for all
a=0,1,...,p—1 and we .are done. s
. Conversely, suppose that the condition of the theorem is satisfied. Then

S ka” = 0(mod =) forall =1,...,p—1.

a= 0

Since the above congruence also holds for =0 (wnth 00=1), we get a system of
homogeneous linear equations in ko, ..., k,_, over the residue class ring modulo
p"' with determinant D being a ‘Vandermonde determinant. Thus
p= I (=i,
. T O=i<j=p-1

Since i*""” (mod p) would imply i=j(mod p), we have DzO(mod p)ie D

is not a-zero d1v1sor in the residue class ring modulo p™~ !, Therefore k,=0(mod p"~1)
~for a=0, 1, ..., p — 1. By hypothesis, k,=1 for all a=0, 1, ...,p—1 and so k,z=p"~!

pn2

-1 .
for alla=0,1,...,p—1. From 12’ k,=p" it follows that k, = p"~' for all
a=0
"a=0,1,..,p—L '
Theorem' 2. f€Z[x,, ..., X,] is a permutation polynomial mod p if and only if

2™ p S o Jorall m=1,..,p—1.

Proof. Again puttmg k,=number of solutions from M of f(xl, s Xp) =
=a(mod p), a=0,1, —1, we have

20i 2 f(ay,...,8,) 22 ) ’
empf(dl a)= Zkae mi A for m:l,,,.,p_.l.

(a‘,...,an)eM'[‘, . a=0 ) . . B
So if k‘,=p"‘1 for all a=0, 1, ..., p—1, then the necessity of the condition follows

easily.
' pot o, A
Conversely, suppose that a=20 k,e -* =0 for all m=1, ..., p—1. This gives

rise to the following system of linear equations for k;,,kl, o kpoyt
ko+ky+-+k,_y =p",

Zm—a

2 ' =0 . (m=1,..,p—1).
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The determinant A of this system is a Vandermonde determinant, hence

.5
2ni —

2mi L
p—e P)s0.

So. there is a unique solution to the system, and this solution is ky=k ==
.: p_lzpn_l'
Remark. Theorem 2 clearly holds for n=1 as well. Actually, Theorem 2 is

contained in a general result of CarLITZ [2, Theorem 4. 6.] but we have included
the foregoing proof because of its simplicity.

3. Some auxiliary results,

Lemma 1 (NOBAUER. [11]). If f€Z[x,, ..., x,] can be written in the form
Sy s x) =80y, oo, x)+HA(X sy ey X)), 1=k <n, where h€ Z[Xy 4y, ..., X,] &S
a permutation polynomial mod p and g€ Z[x,, ..., x;], then f is a permutation poly-
nomial mod p. o

Lemma 2. Let f€Z[x,, ..., x,] be a permutation polynomial mod p. If x; =
=y tapyete @y, tb (@€Z, bEZ, 1=i=n, |=j=n) is a linear sub-
stitution with det (a;;) 20 (mod p), then the resulting polynomial g(y, . ..., y,) is again
-a permutation polynomial mod p. ' '

Proof. This simply follows from the fact that a linear substitution of the above
form transforms a given M} into another Mj. ' '

Definition 2. Let Z;, denote the residue class ring Z/(p). Forf€Z[x,, ..., x,],
let f be the image of f under the canonical homomorphism from Z[x,, ..., x,] into

Z,[xy,...,x,). Two polynomials f,; g€ Z[x,, ..., x,] are said to be equivalent mod p
if there exists a linear substitution T" of the form mentioned in Lemma 2 such that
7=2. |

Equivalence mod p is easily seen to be an equivalence relation in Z[x,, ..., x,].

Lemma 3. Let f be equivalent modp to g; f, g€Z[x,, ..., x,). Then fis a
permutation polynomial mod p if and only if g is one.

Proof. This follows from Lemma 2 and Definition 2.

4. Linear polynomials.

Theorem 3. f(x,, ..., X,) = b1x1+--~~i-b,,x,,+bEZ[xl, ey X zs a permuta-
tion polynomial mod p if and only if g.cd. (b,, ..., b,, p)=1. -
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Proof. If g.c.d. (by, ..., b,, p)=p, then f(a,, ..., a,)=b(mod p) for all lattice
points and so f is not a permutation polynomial mod p. If g.c.d. (b,, ..., b,, p)=1,
then WLOG g.cd. (b,, p)=1. But then b,x, is a permutation polynomial mod p
and so we can infer from Lemma 1 that fitself is one.

S, Quadratic polynomials, case p =2.

. Theorem 4. Let f¢Z[x,,...,Xx,} be. a polynoMial of degree 2. Then f is a
permutation polynomial mod p if and only if f is equivalent mod p to a polynomial
of the form g(x,, ..., X)) = h(x;, ..., X,_ ) +b,x, with h€ Z[x,, ..., x,_,], g.c.d.
(bn, p)=1. o

Proof. The sufficiency of the condition follows froni Lemma I and Lemma 3
and the fact that b,x, is a permutation polynomial mod p.
" Conversely, suppose that f is a permutation polynomial mod p. Since Z is a
field of characteristic p2, f is equivalent mod p to a polynomial of the form '
F(Xyy ooy X,) = Uy X7+ Aty XE A dy X+ Hdyx,+d, 0=k=n, g.cd. (u;, p)=1
for l<z<k If k<n and g.c.d. (d ;»p)=1 for at least one j, k+1=j=n, then we are
done, Otherwise, f is equlvalent modp to s(xy,...,x,) = u,xI+ +u,x2+d,
0<k=n. By Lemma 3, s is a permutation polynomial mod p. On the other hand, we
have for m =.1, ..., p—1: '

. . m . m p—1 L m 2 p—1 .m 2“-
2ai—s(ay,..., a,) _  p_k 2ni—d 2ni —uy a1 2ri—uaic]
2. e el = pt ke p > et 3 et =
a,

@y,008,) EMT

A,"_k 2,-”'_"’_d . ith
=p" %™ %¢,...0, with g; = Z

L - = 1”27:1'
If mu; is a quadratic residue modulo p, then o; = ,,2 . and thus |a ]l-—ﬁ ([6]
a=0

-1 m— _b_

ch. 2). If mu; is a quadratic nonresidue modulo p, then ¢ ; + Z e P=2 2 "=
-and thus |all—1/p In any case we have ;70 for all _]—1 , k angi thlS contradlc-
tion to Theorem 2 completes. the proof. . ‘ e

From a close inspection of the precedmg proof we are led to a s1rnp1e and
systematic method for detecting quadratic permutation polynonuals whlch is based
on coefficient matrices. To fix this idea, we give the following definitions:

Definition 3. Let 4 be a matrix whose elements are rational numbérs of
the form a/b with p{b. Then rank, A is the rank of 4, consndered as a matrlx
over Z,. - .



Petmutation polynominals in several variables 57

Definition 4. Let f(x,,...,x,) = 2> a;x;x;+ > c,x,+c be a quadratic
. : 1=iSj=n r=1
polynomial from Z[x,, ..., x,). Then
1 1
ayy 7“12 - Ealn

_ ¢
. 1 ] Cl
A(f)y=|2%2 G2 F % A (fy=|AN]| ]
T Cn

5[11" Eaz,,... [ &

Let us note that the & in the proof.of the preceding theorem is nothing else
than rank, 4(f). Furthermore, f will be equivalent mod p to a polynomial of the
form given in Theorem 4 if and only if the last column of the augmented matrix
A’(f), considered as a vector over Z is linearly independent of the preceding
column vectors. Therefore: :

Theorem 5. A quadratic polynomial f €Z[xy, ..., X,) is a permutation polynomial
- mod p if and only if rank,A’(f)=rank,A(f). ‘ :

6. Quadratic polynomials, case p=2. Since a’=a(mod 2) for integers a, we
can replace terms x? by x; whenever they occur. Having this convention in mind,
we can prove the following )

- Theorem 6. 4 polynomial f¢ Zlx,, ..., x,] of degree 2 is a permutation polyno-
mial mod 2 if and only if f'is equivalent mod 2 to a polynomial of the formg(x,, ...,x,)=
=h(X,, ey Xy )X, HEZ[Xy, oy Xyl

. Proof. The sufficiency of the condition follows from Lemma 1 and Lemma 3.
Conversely, suppose that fis a permutation polynomial mod 2 whose degree modulo
2 is two (otherwise Theorem 3 yields the desired result). By possibly renaming the
variables, we get modulo 2: ' '

f(xlﬂ s n) - xl(x +X + +x +b)+f1(x29 )

with 2=}, <i,<.-<i;=n. Thus f is equ1valent mod 2 to x,x,+r(x,, ..., X,).
Consider r(x,, ..., x,) modulo 2. Let M be the least integer such that a term of
the form x,,x;, M <j, occurs in r, or M = n+1if r is linear. If r contains a linear
term x; with 3=i/< M, then we are done. Otherwise, f is equivalent mod 2 to x, x, +
+ex,+85(xpy, .., X,). If M=2, then we apply the above reduction process to s
and we get f equivalent mod 2 to x;X,+x,x3+2(x3, ..., x,} which, in turn, is
equivalent mod 2 to x, x,+¢(x5, ..., x,). Since this is also true for M=2, we obtain
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by repeated application of the reduction process: f is either equivalent mod 2 to
the desired form or, after possibly renaming the variables, to a polynomial of the
form g(x,, ..., X)) = X X, +X3Xx5+ -+ X1 X2k

We complete the proof by showing that ¢ cannot be a permutation polynomlal
mod 2. In fact, using Theorem 2 with m=1, we have:

2 erig(ay,....q,) — 2n—2k[ 21' Zl' (—])"l"z] [ 21' 21' (_1)“2k-1"2k] # 0.

{ay,....a)EM3 a,=0a,=0 ay =0 a5,=0
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