
Basic study of general products and homogeneous 
homomorphisms. I 

By TAKAYUKI TAMURA in Davis (California, U.S.A.)*) 

§ 1. Intruduction 

We frequently meet the problem to study semigroups S which are homomorphic 
onto a given semigroup T. Of course the problem in this form is too vague to be 
treated in general. Let us restrict ourselves to the following problem: 

Given a semigroup T, study semigroups S such that S is homomorphic onto 
T under a map / and such that the cardinal number of the inverse image set of 
each element of T is constant, i.e. given m 

| f / - i | = m for all 

Such a homomorphism of S is called a homogeneous homomorphism. Let A be a 
set with cardinality m: We will introduce a concept "general product" of a set A 
by a semigroup T, which will be equivalent to the concept of homogeneous homo-
morphism. This concept includes the various known concepts. Then the first problem 
proposed above will be connected with the second restricted problem, that is, if 
S is homomorphic to T then the homomorphism can be extended to a homogeneous 
homomorphism of certain semigroup S' to T. Related to general product, we will 
consider the system of all binary operations defined on a set. 

A part of the outline of this paper was reported in [11], [12] without proof. 
This paper is to report basic results of general products but its development and 

. applications will be reported as the continuation in the future. Computational 
results related to this paper will be separately reported though a part of those were 
done in [12]. 

*) This research was partly supported by NSF GP-5988 and GP-7608. 
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§ 2. The system of operations 

Let £ be a set and be the set of all binary operations defined on £ . Let 
x,y£E, 0£@E and let хву denote the product of x and у by 6. A groupoid with 
в defined on E is denoted by E(0). The equality of elements is defined as 
follows: 

0 = t] if and only if хву=хцу for all x,y£E. 

Let a £ E be fixed. Two binary operati ons aTl and П а are defined in g$E as follows: 

•(1) х(ваПф = (х9а)пу and x(Onat])y = xO(ai]y) for x,y£E. 

Jt is clear that в is associative if and only if ва*в = в*ав for all a£E. 

P r o p o s i t i o n 1. y is a semigroup with respect to aII and Па for all a£E. 

P r o o f . To prove Ц,Пг])а*в = £аП(г10П9), 17, We have 

хШаЩ)аПв]у= {х(саПф}ву= {(хса)ча}0у = 

= ( х с а ) ^ а т ) у = х[^П(ЧаПв)]у for all x , y £ E . 

Likewise we can prove (Щаг])Пав=Ща(ц*ад). 
The semigroups <%E with аП and Па are denoted by @Е(аП) or £8{аП), and 

^ Е ( П а ) or %(П а) respectively. 
Let q> be a permutation of E. For Ocp is defined as follows: 

(2) х(0<р)у = {(х<р-1)0(у<р-')}1р 

or, by substituting x for x<p~l, 

<3) (хву)<Р=Ш(в(р){У(р). 

The mapping в-~вср is a permutation of 1%E. For any t]£<%E, define в by 

хву^х^чСуср)]?-1. 

Then we can easily prove Qcp — r]. Hence the mapping 0 — Ocp is onto. To prove 
one-to-one. Suppose в(р = г}(р. Then 

[(x<p*)в (у<р ~ 1)]ср = [(x<p~1)// (yep~ ^¡(p. 

Since (p is a permutation of E, we have (x(p~i)9(ycp~1) = (x<p~1)ii(y<p~i) where 
-X(p~l, y<prun throughout E and hence д = ц. 

Thus (p induces a permutation of This permutation is still denoted by cp. 

P r o p o s i t i o n 2. (0аПч)(р=(0<р)а1рП(Лср) and (0Паф = (в(р)Па((>(>1(р). 
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P r o o f , we have 

•х{0аПг1)<РУ = 1х<р-1(ваПп)у(р-1](р = [{(х(р-1)ва}г1(у(р-1)]ср = 

= [х{в(р){аф)]{г](р)у = х[(в(р)ач,П{г](р)]у for х,у£Ё. 

For we define 0' as follows: 

(4) xO' v — yOx. 
Then we have 

P r o p o s i t i o n 3. {eanri)' = i]'JlaQ'. 

P r o o f . For all x,y£E, x{0 Jlrf)'у=у{в аПц)х^{уОа)пх=ху'(ува) = хц'(аО'y) = 
=х(ч'Пав')у. 

P r o p o s i t i o n 4. @(аП)=@(ьП) and @{Па) ssЗв(Пь) for all a, b£E. Further-
more, 3S{aTI) is anti-isomorphic with £%(Па). 

P r o o f . Let cp be a permutation of E such that acp=b. By Proposition 2, 
(ваПг])(р — (вф)ьП{ц(р). This shows that (p is an isomorphism of 38{аП) onto 38{ЬП). 
Similarly we have by the second part of Proposition 2 that (p is an isomorphism 
of ЩПа) onto @(ПЬ). 

§ 3. General product of a set by a groupoid 

Let S be a set and T be a groupoid. Consider a mapping 0 of TXT into 3$s: 

(a,p)0 = exJ, (a, f})£ TxT. 

Now SXT = {(x, a); x£S, a£T} in which (x, a) = (y, /?) if and only if x=y, a = fi. 
Given S, T, 0 , a binary operation is defined on SXT as follows: 

(5) (х,а)(у,Р)=(хвв111у,аР). 

D e f i n i t i o n . The groupoid SXT with (5) is called a general product of a set 
S by a groupoid Г with respect to 0 , and is denoted by SXeT. If it is not necessary 
to specify 0 , it is denoted by SXT. 

D e f i n i t i o n . If a groupoid D is isomorphic onto some SXeT, | 71>1, 
then D is called general-product decomposable (gp-decomposable). 

Immediately we see that SxeT is homomorphic onto T by the mapping 
p:(x, a) — a. This mapping is called the projection of SX T onto T. Likewise we 
can define the projection of SXT onto S. 

з A 
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P r o p o s i t i o n 5. SXeT is a semigroup if and only if T is a semigroup and 

O,,pand^r/ = eXifiynae0J for all a£S, all a,p,yiT. 

P r o o f . The proposition is immediately proved as follows: 

[(*, o O O y ) = (xOaJy, xp)(z, y) = ((xe^y)exl>,yz, №)y), 

(x, a)[(y, P)(z, y)] = (x, a)(yOp:vz, fiy) = (xOa,ilï(yOil_ïz), a (fly)). 

D e f i n i t i o n . Let g be a homomorphism of a groupoid D onto a groupoid T: 
D= U£>„; Dag = a. If either |/>J = 1 for all a or if \T\=\, g is called trivial; other-

ugT 
wise g is called proper. If \Dx\ = \Dp\ for all x, then g is called a homogeneous 
homomorphism (//-homomorphism) of D, or D is said to be homogeneously homo-
morphic (//-homomorphic) onto T. 

T h e o r e m 6. A groupoid D is isomorphic onto SX0T for some S and some 
0 if and only if D is h-homomorphic onto T. More precisely, D is gp-decomposcble 
if and only if D has a proper h-homomorphism. 

P r o o f . Suppose that D is homogeneously homomorpKic onto T under g: 

D=\JD„ Dxg = a. 

Let S be a set with |S 1 = 1/^1 for all a £T, and fa be a one-to-one mapping of Dx 

onto S. After fixing a system {fa; for each (a, P)£TXT we define a binary 
operation on S as follows: Let 

(6) x e ^ y ^ i x f - ' K y f f 1 ) ] ^ 

x,y£S, where a/? is the product in T. Now 

D= U A, where Dx = {xdD ; xg = a). 

Let a be any element of D, hence a£Da for some a £T. We define a mapping <¡/ of 
D onto SXT as follows: a\j/=(af, a). Then ip is one-to-one: suppose (afx, a.) — 
= (bfp, P). By the definition of equality we have a — P, afx = bfe. Since f is one-to-one, 
a=b. It is clear that ij/ is onto. We shall prove (ab)\l/ = (ail/)(b\jj). Let a^Dx, 
By (6) 

iab) = ((ab)fo, = ( W Ù « / * ) = ( o f , a) (bfp, fi) = (ai/z)(b^). 

Consequently D^SxeT. 

Conversely, suppose D is isomorphic with Sxe T'under a mapp ing / : / ) — SxBT, 
Let p be the projection of SXsT onto T: 

( X , «) £ Of. 
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Then f p is a homomorphism of D onto T. Let Dx = {a£D; a(fp) = a}, D'a = 
= {(.r, a); J t£S}. S i n c e / i s one-to-one, |Z) a |= |Dj | = | 5 | for all a£T. This completes 
the proof of the theorem. 

As seen in the proof of Theorem 6, even if D, S, T are given, 0 depends on 
the choice of {f;x£T}. Suppose that for given D, S, T, 

0:{e,y, (a,P)iTXT) is determined by {/ a ; a f T } , 

e ' l K , ; ( i j e r x r } is determined by {f'a\ a^T). 

What relationship is there between 0 and 0 ' ? 
To state the problem generally we need to introduce some terminology: 

D e f i n i t i o n . Let g and g' be homomorphisms of groupoids A and B onto a 
groupoid C. An isomorphism h of A into (onto) B is called a restricted isomorphism 
of A into (onto) B with respect to g and g' or A is restrictedly isomorphic into 
(onto) B with respect to g and g' if there is a permutation k of C such that the fol-
lowing diagram is commutative: 

h-g' = g-k "J ]* 
B—,~C 

9 

The permutation k of C is an automorphism of C. Let a , a = xg, P—yg 
for some x,y£A. We have 

(*-№ = l(xg) (yg)]k = [(xy)g]k = l(xy)h]g' = (xhg) (.yhg') = [ (xsM t(v.?)A] = (ak) (flk). 

Now the problem is this: Given S and T, let D=SX0T, D' = SXeT. Let 
p and p' be the projections of D and D' onto T respectively. Under what condition 
on 0 and 0 ' is D restrictedly isomorphic onto D' with respect to p and p"l 

D e f i n i t i o n . Let G(6) and G'(Q') be groupoids with binary operations 6, 6r 

respectively. If there are three one-to-one mappings h,q,r of G(9) onto G'(9') 
such that (x9y)r = (xh)9'(yq) for all x,y£G(9), then we say that G(9) is isotopic 
to G'(6') (see [1]). If it is necessary to specify h, q, r, we say G(9) is (//, q, /-)-isotopic 
to G'(9'). We denote it by 

G(9) * G'(9') or G(9)^G'(0'). 
(h, q,r) 

T h e o r e m 7. Let S and T be fixed. Let (a, 0)0=0^, (a, P)0' = 9^, a, J3£T. 
SX0T is restrictedly isomorphic with SXe>T with respect top,p' if and only if there 
is an automorphism a—a' of T and there is a system { f ; a£T} of permutations 
of S such that S(O^) is ('fx,f,,fafi)-isotopic to for all a, j8<iT. 

3 
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P r o o f , Let h be a restricted isomorphism SXeT-~ SX&T with respect to 
the projections p, p' as follows: 

SxeT-S~T 
A! • !* 

s k e T - r T 

Let (x, a)£SX0T and (x, a)h = (x', a ' )€ SXeT. Immediately x=<xk, further 
(x, <x)h = (y, f))h implies x=y and a = p. Thus x — x' is a permutation of 5 depending 
on a. This permutation is denoted by 4 and then (x, a)h=(xla, a'), where a'=ak. 
By using this notation, 

[(x,a){y,p)]h = (xe^y,ap)h={(xe^y%fi,(xp)'), 

(x, x)h-(y, P)h = (xlx, ak){yl„ pk) = ((xOd^Jyl,), a (I') 

and we have (<y.p)' = a'p', (x0xJy)/^ = (xlx)0't.tP.(ylfi). Therefore 

(7) S(V*,p)a r , S W ' . r ) f o r a 1 1 

Conversely suppose there is an automorphism k:<x^a of T and a system 
{4; oc£T} of permutations of S satisfying (7). We define a mapping h of SX0T 
onto SXe^T as follows: (x, a)h — (xla, of). Then we can easily see that h is one-to-one 
and [(x, a)(y, P)]h = (x, a)/; • (y, P)h. To prove that h is a restricted isomorphism, 
observe that (x,a.)hp' — (xlx, a)p' = a and (x, a)pk — ak=a for all (x, a )£SX0T; 
hence hp' —pk. Thus the proof of the theorem is completed. 

As usual the product g-a of binary relations g, a on D is defined by 

g • a — {(x, y); (x, z) 6 g, (z, y) 6 a for some z£D). 

Let co = DXD, i = {(x, x); x£D). 
The following theorem characterizes general product in terms of relations. 

T h e o r e m 8. A groupoid D is gp-decomposable if and only if there is a congruence 
g on D and an equivalence a on D such that g^co, o^co, 

(8) . g • a = co, and 

(9) g n e - = i , 

in which (8) can be replaced by a-g = co. Then D = (Dja)X(D/g). 

P r o o f . Suppose D s SX0T. Let g be the congruence induced by the homo-
m o r p h i s m g : / ) — T. As stated in the proof of Theorem 1, D= |J Dx where |Z)a| = |S | . 

' ot ¿ r 
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Let fa be a one-to-one mapping of DI onto S. Now we define a relation a on D as 
follows: xay if and only if x f = y f e for a and /? such that x£Dx, y£Dp. 

Now take a,b£D arbitrarily and assume a£Da, b£Dp. Let c = b f p f ~ i . Then 
c£Z)a, and age, cab. Thus we have proved q-o = co. Suppose agb and aab,. that 
is, a, b^Dx and af = bfa. Since fa is one-to-one, a—b; therefore gPia=i. 

Conversely, suppose that there is a congruence g, q t^io, and an equivalence 
a, a^co, on D such that (8) and (9) are satisfied. Let T be the factor groupoid Dig 
and S be the factor set Dla. Let A and B be any ¿»-class and cr-class respectively 
and let x£A, y£B. By (8) there is z£D such that xgz and zay. This means that 
A fl B ?i0. Suppose xgz, zay, xgz' and z'ay. Then zgz' and zaz'. By (9), we have 
z=z'. Thus ADB consists of exactly one element. Therefore the cardinal number 
of each g-class is equal. By Theorem 6, we have D = S XT. 

§ 4. Examples 

The following well-known concepts are regarded as examples of general product. 

E x a m p l e 1. Direct Product. Suppose 0 maps (a, fi) to a constant element 
0, that is, (a,P)0 = Q for all a,P£T. Then 0 is automatically associative by Pro-
position 5. In other words 5 is a semigroup with 9. Thus SXsT is the direct product 
of S and T. 

E x a m p l e 2. Semi-direct product (see [3], [6], [7]). Let S and T be semigroups, 
and Y be a homomorphism of T into the endomorphism semigroup of S, t^-Y,. 
The semi-direct product of S b y Twith respect to Y is the set SXT with the operation 

(st, tx)(s2, i2) = (si(Yti(s2)), r,/2). 

This is regarded as Sx0T in which J]0, ,2i2. = " i ^ ) -

E x a m p l e 3. Rees' regular representation of completely simple semigroups 
(see [2]). Let G be a group and F be a rectangular band 

Let P={pll>), X<iA be a matrix over G. If we define 0 by 

then GX0F is a completely simple semigroup. 

E x a m p l e 4. Commutative archimedean cancellative semigroups without 
idempotent (see [9]). Such a semigroup is called an 9i-semigroup. Let G be an abelian 
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group and N be the set of all non-negative integers. Suppose a function I:KXK — N 
satisfies 

(a) /(«,/*) = / ( &«)• • 
(b) I(a,P) + i(aP,y) = I(a,f}y) + m y ) . 
(c) /(e, fi)=l, £ being the identity element of G. 
(d) For every a£G there is a positive integer m such that /(«"', a ) > 0 . 

Define an operation on the set 5 = NXG by 

(m,a)(n,l3) = (m+n + I(<x,P), a/]) 

Then S is an 91-semigroup. Every 9l-semigroup is obtained in this manner. 

S ^ NXeG where mO^n = m+n + I(a, ft). 

E x a m p l e 5. Group extensions (see [3], [5]). Let N and H be groups and let 
G be the group extension of N by H. A mapping a-^fx associates with each a f_ H 

' an automorphism /2 of N such t h a t / 3 / j ( x ) =fj],(x), x C N. Consider another mapping, 
(a, c>jP of HXH into N such that 

caj/tifi(.X)Cap,y—foLp{X)fai(CP,T)Ca,Py 

for all a, P,y£H and all x 6 N . Then 

G = NX0H where xe^ey = xfx(y)catf. 

E x a m p l e 6. Schreier Extension. Let A and B be commutative semigroups 
with identity element. A Schreier extension of A by B in HANCOCK'S sense [4] or 
REDEI'S sense is an example of general product. Examples 4 and 5 are Schreier 
extensions. . 

E x a m p l e 7. H-semigroups (see [10]). 

As an extremely special case finite semigroups S havjng property that all 
homomorphisms of 5 are homogeneous were studied. 

§ 5. Left (right) general product 

D e f i n i t i o n . A general product SxeT is called a left general product of S 
by T if 

(10) (a, 0 ) 0 = (a , y)G for all a,P,y£T. 

S X q T is called a right general product of S. by T if 

( U ) (a,P)0=(y,P)0 for all a, ¿3 , y£T . 
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. In the case (10) 9X^ depends on only a, so 6 i s denoted by 9X. Then (5) be-
comes 

(12) 0x.an0*e. = Q*.na9ll. for all a,P£T, all a£S. 

In the case (11), 9X^ is denoted by 9,p and we have 

(13) 9.0U,n9.„ = 9.alsn„9.,, for all a,p£T, all a£S. 

a By a left congruence we mean a left compatible equivalence, i.e. an equivalence 
satisfying 

(14) xoy^zx a zy for all z. 

T h e o r e m 9. Let D be a groupoid. D is isomorphic with a left general product 
of a set S, | S | > 1 , by a groupoid T, j 7"| > I, if and only if there is a congruence o on 
D and a left congruence a on D such that Q^W, a^io, D)Q = T, \D/G\ = |S|, and 
Q • G = CO, Q C\G=L. 

P r o o f . Theorem 8 is applicable to this theorem except for (14). Suppose' D 
is isomorphic with a left general product of 5" by T under a map h. Let g = hp and 
f=hq 

D—~SxT~~T 

s 

Let _/̂  denote the restriction of / to Dx and let Dxg = a, (x, a)£ SxT, (x,a)p=a, 
(x, a)q=x; Q and A are defined as in the first part of the proof of Theorem 8. We 
need prove (14) only. Suppose a, b, c£D and bac and let 

ah = (x,a), bh = (y,P), ch = (y,y). 

Then (x,a)(y, P) = (x9x.y,aP), (x, a)(y, y) = (x0x.y, ay). This shows that (ab)fx„ = 
— {ac)fxy or ab a ac and we have proved.(14). 

Conversely suppose that a congruence Q and a left congruence G on D exist. 
By Theorem 8, D is isomorphic with a general product D\OXD\Q, Q and A naturally 
induce relations on D/GXD/Q. In this sense Q and A can be regarded as the relations 
o n D/GXD/Q. By t h e a s s u m p t i o n , (y,P)A(y,y) imp l i e s (x, tx)(y, P)G(X, a)(y, y), 
hence xOx^y = x9xyy which means that x9xfy is independent of /?. Thus we have 
proved that D/GXD/Q is a left general product. 
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§ 6. The structure of ® E (J1 ) . 

Let a be a fixed element of E, | £ | > 1 , and l e t - 0 6 ^ £ . We define fe and ge by 

(15) xfe=x0a and xg0 = aOx. 

Then fe and g0 are transformations of E, 

(16) feann=f»fr, a n d genan = gnge-

In fact, xfe n,,=x(Oil a tj)a=(xdajija=x/efn for all x£E. This proves the first relation 
(16); the second one can be similarly obtained. Let h be an arbitrary transformation 
of E. If 0 is defined by 

x6y = xh for all x,y£E, 
then f„ = h. 

Let STE denote the full transformation semigroup over E. F rom the above 
fact, it is clear that 0—/0 is a homomorphism of ^ £ ( 0 / 7 ) onto STE. Likewise 0 
is "an anti-homomorphism of @E(na) onto STE. 

Let g be the congruence on 28E(J1) induced by the homomorphism fe. 
In addition we define a relation a on @ E ( a n ) as follows: 

Oct] for 0, rid^E 'f a n < l o n ' y 'f x0y = xr\y for all y^a and all x. Clearly a is 
an equivalence on ME . Since | £ | > 1 , we have g^co, a^co . . 

To prove g • a = a>, let 0, rj £88E. We define £ as follows: 

x£,y = x6y if y=a, and x£y=xrjy if y^a. 

Then Ogc and £077, hence we have proved g-a = a>. By the definition of g and a, 
Ogtj and Oat] imply 0 = tj, that is, gC\o = i. We easily see that 

dan implies (tam)<j((,aTlr\) for all 

that is, a is a left congruence. By Theorem 9, @E(a*) is isomorphic with a left 
general product of SSEj(, by 38Eje. For the further study of its structure, we will 
explain a general case as follows: 

Let T be a semigroup, £ be a set, \F\=m; let x denote a mapping of F into 
T\),x — a ; , « ^ r . The set of all mappings x of F into T is denoted by S. 
We define a scalar product /?-x of /}£T and xdS as follows: if Ax = a;_ then 
A(fi-x) = f$a)_. Clearly (07) -x = fi-(y-x). Then we define a binary operation 
on G — SXT as follows: 

(17) (x,a)(y,p) = (a.y,ap). 

G is a left general product of S by T in which x0a fiy = a-y. It is easy to see that 
G is a semigroup. The semigroup G with (17) is determined by m=\F\ and the 
semigroup T. 
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D e f i n i t i o n . The semigroup G defined above is denoted by G = £f3>m(T).. 

Returning to &E(aiI), as we mentioned, the homomorphism 0—fg is from 
@E(an) onto STE. Further each <r-class is associated with a mapping of E— {a} 
into STE. Accordingly we have the following theorem: 

T h e o r e m 10. @E(aTl) is isomorphic with where m = |£| — 1, 
is the full transformation semigroup over E. 

§ 7. Sub-general product 

Let U be a subset of SXT. We define a notation 

prjT(U)={aeT; (x,a)eU). 

D e f i n i t i o n . If U is a subgroupoid of S ' X e T ' a n d if prJ ( U ) = T, then U is 
called a sub-general product of SXeT. 

Clearly U is homomorphic onto T, and if SX&T is a semigroup, V is a sub -
semigroup. 

As is well known, a subdirect product U of groupoids A and T is defined to 
be a subgroupoid U of the direct product A X T and prjT(U) = T and prjA(U) = A 

In this section we will prove that if a semigroup D is homomorphic onto a -
semigroup T, then D is isomorphic onto a sub-general product of SX0T for some 
set 5 and some 0, in other words, any homomorphism (p of D onto T can be ex-
tended to a //-homomorphism <p' of some semigroup D' onto T in the sense that 
DQD' and (p'(x) = (p(x) if x£D. 

P r o p o s i t i o n I I . Let g be a homomorphism of a semigroup D onto a semigroup-
T. Then D is restrictedly isomorphic onto a subdirect product of D and T with respect-
to g and the projection of DXT onto T. 

P r o o f . Let D ' = { ( x , xg); x£D}. D' is a subsemigroup of the direct product 
DXT. We define h\D-*D' by xh = (x, xg). It is easy to see that h is an isomorphism 
of D onto D'. Let p be the projection DX T— T:(x, y)p = y. Then g = h-p. 
Therefore D is restrictedly isomorphic into DXT (i.e. onto D') with respect to-
g and p. 

Proposition 11 shows that the existence of a sub-general product S X e r i n t o 
which D can be restrictedly embedded. However the concept "direct product" 
has been used instead of "general product" and D has been chosen as S. Here is-
a question raised: 

Can we choose 151 as small as possible, 151^|Z)|? Theorems 12 and 13 will, 
answer this question. 
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D e f i n i t i o n (PETRICH [7]). A non-empty subset F of a semigroup D is called 
.a face of D if the complement of F is an ideal of D. 

D e f i n i t i o n . Let g be a homomorphism of a semigroup D on to a semigroup 
T. An element a of T is called lowly divisible if a has a divisor /? in T (i.e. oc = Py 
or yjS or y/ld for some y, d£T with \Dfi\^\Da\, Dpg = P, Dxg = a). 

T h e o r e m 12. Suppose that a semigroup D is properly homomorphic, but not 
h-homomorphic onto a semigroup T. Let g be the homomorphism D — 7" and let 
D= (J Da be the decomposition of D induced by g:Dxg = a. Then there is a semigroup 

<z6 T 
D which satisfies the following conditions: 

(a) D is restrictedly isomorphic onto some S0XT with respect to g and the pro-
jection S0 XT-T. 

(b) D is a face of D. 
(c) Let n = l.u.b. {|Z)a|; a £ 71}1. Define the cardinal number m by m = n +1 

if n is finite and if there is a lowly divisible element a of T such that \Dx\—n, 
and by m = n otherwise. Then |S0| = w?. 

P r o o f . Since g is prover, \T\^~\ and m> 1. For each a£T let Dx be a set 
-obtained by adjoining new elements to Dx: 

DX = DXUGX, DxnGx = Q and ( 7 , 0 ( ^ = 0 («#/?) 

such that |Da |=/J7 for all a£T. In detail we arrange {G x} as follows: Gx = 0 if and 
only if n is finite, \Dx\=n, and there is no lowly divisible element a in T with \Da\=n~, 
if n is infinite and n=\Dx\, then |Ga | = l . If Gx?±0 we let Gx contain a special element 
•Ox. Since g is not a / / -homomorphism, U 

N o w let D= U Dx. We define a binary operat ion ( o ) on D as follows: 
_ aiT _ 

If a£Dx and bdDe, and xy denotes the product of elements x and y. in D, 
then set 

aob — ab if adDx a n d b£Dp, a n d aob = 0a/3 o t h e r w i s e . 

It is easy to check that D is associative and a —a, a£Dx, is a proper / / -homomorphism 
-of D onto T, since |DJ is constant m> \ and | r | = » l . 

By Theorem 6, D is isomorphic onto S0XeT for some set | S 0 | =»7 . Let S0 

be a set with | 5 0 | = w and 0 be a special element of S0. Let fx be a one-to-one mapping 
of S0 onto Sx such that 0/^ = 0^. Then 0 = {6xfi; a,/l£T} is given as fol lows: 

_\{(xQ()FMY ¡f xf£Da, y f ^ D , , 
x U ^ y - \ 0 . otherwise 

1 We assume the well-ordering principle. Since | D j 5 | £ > | , the least upper bound exists. 
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D is isomorphic into SOX0T under a mapping xfa— (x, a), a£T. It is easy to see 
that this is a restricted isomorphism with respect to g and the projection 5 0 X T — T. 
Clearly U Gx is the complement of D and is an ideal of D. Therefore D is a face 

aiT 
of D. Thus the proof of the theorem has been completed. 

T h e o r e m 13. Suppose that a semigroup D is properly homomorphic, but not 
h-homomorphic onto a semigroup T. Let g be the homomorphism D-+T and let 
D= U Dx be the decomposition of D induced by g. Then there is a semigroup D 

which contains D such that 

(a) D is restrictedly isomorphic onto some S0XT with respect to g and the 
projection Sq 

x t ^ t -
(/?)' D is an inflation of D (cf. [2]); 
( y ) \S0\=n where « = l.u.b. {|£>J; a£T}. 
P r o o f . Let DX=DX U Gx, \Dx\=n, for each a where DxnGx — Q and Gx may 

be empty; Gx f! C^ = 0 (a^/J). Choose exactly one element from each Dx: {px, a 6 T}, 
pxdDx. Let D= |J Dx. We define an operation ( o ) on D as follows: 

_ " LT 

. If a £ Dx, b eDp, then let 
'ab if a£Dx, b£Dfi, 
app if a £ £>., b^Gp, 
pxb if aeGx, b£Dp, 
pxpfs if a£Gx, b£Gp, 

aob 

where the products on the right side are in D. 
It is easy to prove that D is a semigroup and àn inflation of D and satisfies 

(a) through (y). By the way OxyP is given as follows: Let x, y£ S0,- \S0\=DX, and 
let fx:S0-+Dx be a one-to-one, onto mapping. 

( ( x f x ) ( y f p ) ) f - p l if xfadDx, y f p £ Dp, 

((xfJp„)Lh' if xf«iDx, yj), £ G ¡I, 
( P a i y f M y if xf«iGx, y f p € Dfi, 
(PiPcVah ' if xfaeGa, y f p € Gp . 

R e m a r k . |S0 | in Theorem 12 is not necessarily minimum of |S | for which 
D can be embedded into Sx T in our sense, strictly speaking, |5 0 | is either minimum 
or minimum plus one, while |.S01 in Theorem 13 is certainly minimum. In Theorem 12, 
even if D is s-indecomposable, that is, if D has no proper semilattice homomorphic 
image, then 5 0 x r i s not. In Theorem 13, however, if D is 5-indecomposable, S0XT 
is also; but S0 X T is not simple even if D is simple. On the other hand in Proposition 
11, if D is simple, DXT is simple. 
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