Bas:c study of general products and homogeneous
homomorphisms. I '

By TAKAYUKI TAMURA in Davis (California, U.S.A)%)

§ 1. Intruductlon

We frequently meet the problem to study semlgroups S which are homomorphlc

" onto a given semigroup 7. Of course the problem m this form is too vague to be

treated in general. Let us restrict ourselves to the following problem: :

Given a semigroup 7, study semigroups S such that S is homomorphic onto

T under a map f and such that the cardinal number of the mvelse image set of
each element of T is constant, i.e. given m

<ltf-‘1l=m for all (€T

Such a homomorphism of S is called a homogeneous homomorphism. Let A be a
set with cardinality m. We will introduce a concept “‘general product” of a set 4
by a semigroup 7, which will be equivalent to the concept of homogeneous homo-
morphism. This concept includes the various known concepts. Then the first problerh
proposed above will be connected with the second restricted problem, that is, if '
S is homomorphic to T then the homomorphism can be extended to a homogeneous
homomorphism of certain semigroup S’ to 7. Related to general product, we will
consider the system of all binary operations defined on a set. ’

A part of the outline of this paper was reported in [I l] [12] without proof.
This paper is to report basic results of general products but its development and
-applications will be reported as the continuation in the future. Computational
results related to this paper will be separately reported though a part of those were:
done in [12].

*) This research was partly supported by NSF GP-5988 and GP-7608.
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§ 2. The system of operations

Let E be a set and B, be the set of all binary operations defined on E. Let
X, yEE, €%, and let x0y denote the product of x and y by . A groupoid with
.0 defined on E is denoted by E(0). The equality of elements 0, 71695 is deﬁned as
follows:
0=n if and only if x0y=xr;y for all x,y€E.

et a€ E be fixed. Two binary operati ons [T and 1, are defined in #; as follows:

(1) x@,Mn)y=(x0a)ny and x(OM,ny=x0(any) for ¢,n€RB;, x,y€E.

It is clear that 0 i_s associative if and only if 8a*8=0%a0 for all a€ E.
Proposition 1. @ is a semigroup with respect to 11 and H,; Jor all acE.
Proo.f. To prove ((,In)a*0=¢,01(y,010), €, 1, 06€B;. We have '

| * [T, I101y = {x (Z,Tn)a}y = {(xEana}0y =
=(xEa)(,I10)y =x[E T (n,[10)]y  for all x,ycE.

Likewise we can prove (¢11,m)11,0= EH (n* ab).

The semigroups & with ,IT and II, are denoted by 935( H) or 99(,,11) and
B(1,) ot B(I1,) respectively.

Let ¢ be a permutation of £. For 8¢, Og is defined as follows

) - x(0p)y=[(xe~ )0 o .

or, by substituting x for xp~!,

(3) - (e =(x9)(09)(y9).

"The mapping 8 —0¢ is a permutation of Z.. For any n€ %, define 0 by

1

20y =[x (yo)lp~

‘Then we can easily prove Gp=n. Hencé the mapping 8 ~8¢ is onto. To prove
-one-to-one. Suppose d¢=n¢. Then '

[(xo =)0 (yo~Hlo=[xe~ Y (ye~Hle.

Since ¢ is a permutation of E, we have (Mp—l)()(yqo H= (x(p“)q(yqo‘l) where
x@ ™1, yo~! run throughout E and hence 8=n. )
Thus ¢ induces a permutation of-%#.. This permutation is still denoted by o.

Proposition 2. (0,/Ime=(0¢),,!1(ne) and (611,n)p=(0¢)I1,,(ne).
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Proof., we have
X(O Mn)ey=I[x¢~"(0.Mn)ye o= [{(w“)ﬂa}n(w D=
—[X(9<P)(a</3)](r1(p)y x[(09) o1 (n@)ly for 'x, y€E.
For GE%’E we define 0’ as follows:
“) o X0y = ybx.

Then we ‘ have

Proposition 3, (0,1y)'=y"11,0".

Proof. Forall x, ye E, x(0,[Tn)y=y(0, H;])x (yBa)nx=xy (yHa) =xn (a9 =
=x('11,0)y.

Proposition 4, B(,I1)=2%(,I) and 93(17,,) B(I1,) for all a,beE. Further-
more, B(II) is-anti-isomorphic with .@(I'Ia)

Proof. Let ¢ be a permutation of E such that ap=54. By Proposition 2,
(0.1n)p =(0¢) I (nep). This shows that ¢ is an isomorphism of Z(,IT) onto B(,I1).
Similarly we have by the second part of Proposmon 2 that ¢ is an isomorphism
of #(I1,) onto B(1,).

§ 3. General product of a set by a groupoid

Let S be a set and T bé a groupoid. Consider a mapping @ of TXT into %s:

(0, O =0,,, (o, ﬂ)ETxT

Now SXT = {(x,a); x€ S, «a€T} in Wthh (x, a)=(y, B) if and only if x= =y, a= /3'
~Given S, T, ©, a binary operation is defined on S><T as follows:

&) ' o (s BYy=(x0, 4y, aB).

Definition. The groupoid SX T with (5) is called a general product of a set
S by a groupoid T with respect to O, and is denoted by SXQT If it is not necessary
to specify O, it is denoted by SXT.

Definition. If.a groupoid D is isomorphic onto some SX g7, |S|=1, |T]>1
then D is called general-product decomposable (. 8p- decomposable)

Immedlately we see that S><9T is homomorphic onto T by the rriapping'
p:(x, @) ~o. This mapping is called the projection of SXT onto T. L1kew1se we
can define the projection of SXT onto S.

3 A



34 T. Tamura

Proposition 5. SX T is a semigroup if and only if T'is a semigroup and
0, a10,5.,=0, 511,05, for all a€S, all o B,y€T.
Proof. The proposition is immediately proved as follows:
(%, D) (3, Bz, ) =(x0,,57; 2B) (2, ¥) = ((x0, 5¥) Oup 2, (2B) ),
e, DIy, Bz Y= (x, ) (¥0y;,2, Br)= (x0s,5, (¥65,,2), 2(BY))-

Definition. Let g be a homomorphism of a groupoid D onto a groupoid T

D = | D,; D,g=u If either [D,|=1 for all a or if |T|=1, g is called trivial; other-
acT
wise g is called proper. If |D,|=|Dy| for all «, B T, then g is called a homogeneous

homomorphism (h-homomorphism) of D, or D is said to be homogeneously homo-
morphic (h-homomorphic) onto T.

Theorem 6. A4 groupoid D is isomorphic onto SXgT for some S and some
@O if and only if D is h-homomorphic onto T. More precisely, D is gp-decomposcble
if and only if D has a proper h-homomorphism.

Proof. Suppose that D is homogeneously homomorphic onto T under g:
D= U Da) Dagza'
a€T

Let S be a set with |S|=|D,| for all «¢T, and f, be a one-to-one mapping of D, '
onto S. After fixing a system {f,; «¢ T}, for each (u, )€ TX T we define a binary
operation 0, , on S as follows: Let

©) XOo,py =[S N5 Mfan
x, y€ S, where aff is the product in 7. Now
D=\ D, where D,={x¢D;xg=a}.-
a€T

Let a be any element of D, hence a¢ D, for some «¢ 7. We define a mapping ¢ of
D onto SXT as follows: a =(af,, «). Then y is one-to-one: suppose (af,, a)=
=(bfs, B). By the definition of equality we have «a=f, af,=bf;. Since f, is one-to-one,
a=b. It is clear that y is onto. We shall prove (ab)y =(ay) (by). Let a€ D,, b€ Dy.
By (6) . .
(@b)y = ((ab)fp, 2B)=((a1)0...5 (Bfp), aB) = (afs, %) (bf . B) = (@) (BY).

Consequently D=SX,T.

Conversely, suppose D is isomorphic with SX g 7 under a mapping /:D — SXo7T.
Let p be the projection of SX T onto T:

(x,a) % a.
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Then fp is a homomorphism of D onto T. Let D, ={aeD; a(fp)=a}, D,=
={(x, 2); x€ S}. Since fis one-to-one, |D,|=|Dj|=|S| for all ¢ T. This completes

" the proof of the theorem.
As seen in t'heA proof of Theorem 6, even if D, S, T are given, & depends on -
the choice of {f,;2€ T}. Suppose that for given D, S, T, '

O:{6,4; (o, YETXT} is'determ_inéd by {f,; 2T},
O {0, 4; (a, B)ETXT} is determined by {f.; acT}.

What relationship is there between © and ©'?
To state the problem generally we need to introduce some terminology:

‘Definition. Let g and g’ be homomorphisms of groupoids 4 and B onto a
groupoid C. An isomorphism & of 4 into (onto) B is called a restricted isomorphism
of A into (onto) B with respect to g and g” or A is restrictedly isomorphic into
(onto) B with respect to g and g’ if there is a permutatlon k of C such that the fol-
lowing diagram is commutative:

A—"—C
h.g’:g.k. hl lk
: B—C

The permutation & of C is an automorphlsm of C. Let «, ﬂEC au=xg, f=yg
for some x, yEA We have

(k= [(xg) ( Yok =[(xy)glk =[(xy)hlg’ =(xhg") (yhg")=[(xg)k][(yg)k] = (k) (BK).

Now the problem is this: Given S and T, let D=SXo7, D' = SX¢T. Let
p and p’ be the projections.of D and D’ onto T respectively. Under what condition
on @ and O’ is D restrictedly isomorphic onto D’ with respect to p and p’?

Definition. Let G(0) and G’(6") be groupoids with binary operations 6, §”
respectively. If there are three one-to-one mappings 4, ¢, r of G(8) onto G'(6')
- such that (x0y)r=(xh)0’ (yq) for all x, ycG(6), then we say that G(0) is isotopic
. to G'(8") (see [1]). If it is necessary to specify h, g, r, we say G is (h, q, r) 1sotop1c
to G'(8"). We denote it by

G(6) (hx )G’(B’) or G(G)Q.G’(H’).
s qs T
Theorem 7. Let S and T be fixed. Let (2, YO =0, 5, (a, )@’ =0, ,, o, BE T.
SX o T is restrictedly isomorphic with SX T with respect to p, p’ if and only if there .

is an automorphism «—o' of T and there is a system {f,; o€ T} of permutations
of S such that S(0,,) is (fa,j},f,,,,) zsoropzc to S(0, p) for all o, BcT.

kL
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Proof. Let /& be a restricted isomorphism SXg7 —+S8Xg T with respect to
the projections p, p” as follows:

SReT 2~ T
hl Ik
sxe T——* T

t (x,0)€SXeT and (x,)h=(x", )€ SXoT. Immediately o' =ak, further
(x, )h=(y, B)h implies x=y and a=f. Thus x —x" is a permutation of § depehding
on a. This permutation is denoted by /, and then (x, @)h=(xl,, &), where o’ =ak.
By using this notation, : '

[(x, ®) ()’, Bh=(xb,,4, aﬂ)"—((XQa sz, @BY),
(x, h-(y, Byh = (xl,, ak)(yly, ﬂk) = ()07 g (¥lp), ')
and we have (aﬁ) =a'f, (x0,, Wi ,,_-(x )05 g(ylp). Therefore

m 5.,

Conversely suppose there is an automorphism k:ox—a’ of T and a system
{l,; €T} of permutations of S satisfying (7). We define a mapping & of §XgT
onto SX ¢ T as follows: (x, a)h=(x/,, «). Then we can easily see that / is one-to-one
and [(x, a)(y, B)h = (x, )h-(y, P)h. To prove that # is a restricted isomorphism,
- observe that (x, a}ip’=(xl,, «")p'=a" and (x, a)pk=ok=a" for all (x, oz)Eng
hence hp’=pk. Thus the proof of the theorem is completed. :

S(B,r,ﬂ,) for all o, B€T.

(lll

As usual the product g .o of binary relations 0, o on D is defined by
0-0 = {(x,5); (x,2)€¢,(z,y)€c for some zED}

Let w = DXD, l—{(x, x); x€D}.
~ The following theorem characterizes general product in terms of relations.

The orem 8. A groupoid D is gp-decomposable if and only zf there is a congruence
¢ on D and an equivalence ¢ on D such that Q;éw, oW, '

3% . ‘ 0-0=w, and
¢ ' oNo=1,
in which ®) can be replaced by ¢-0 = w. Then D =~ (D[o)X(D/9).

4 Proof Suppose D = SXoT. Let ¢ be the congruence induced by the homo-
morphism g:D —~ T As stated in the proof of Theorem 1 D= U D, where |D,|=|S|.
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Let £, be a one-to-one mapping of D, onto S. Now we define a relation ¢ on D as
follows: xoy if and only if xf,=yf for a and B such that x€D,, y€Dyg.

Now take @, b€ D arbitrarily and assume a€ D,, b€ D,. Let-c=bff*. Then
c€D,, and agc, cob. Thus we have proved ¢-6 = w. Suppose agb and agb, that
is, a, b¢ D, and af,=bf,. Since f, is one-to-one, a=b; therefore ¢ No=1.

Conversely, suppose that there is a congruence g, ¢#w, and an equivalence
o, 6 Zw, on D such that (8) and (9) are satisfied. Let T be the factor groupoid D/g
and .S be the factor set D/o. Let A and B be any g-class and o-class respectively
and let xc A4, y€ B. By (8) there is z¢ D such that xgz and zoy. This means that
AN B=0.. Suppose xo0z, zoy, x0z" and z’ay. Then zgz’ and zoz’. By (9), we have
z=z’. Thus AN B consists of exactly one element, Therefore the cardinal number
of each g-class is equal. By Theorem 6, we have D = SXT.

§ 4. Exampies'
The following well-known concepts ére regarded as examples of general product.

Example 1. Direct Product. Suppose © maps (a2, f) to a constant element

-0, that is, (x, f)@=0 for all «, B¢ T. Then 0 is automatically associative by Pro-

position 5. In other words Sisa semigroup with 0. Thus SX g T is the direct product
~of Sand T. ' o

Example 2. Semi-direct product (see [3], [6], [7]). Let S and T be semigroups,
and Y be a homomorphism of T into the endomorphism semigroup of S, 1+ Y,.
The semi-direct product of S by T with respect to Yis the set SX T with the operation

- (81, 4)(s;, 72):(51 (Yr,(si))a ’1’2)-
This s regarded as SXoT in which 5,0, , s, = s5,-Y, (s5,).

Example 3. Rees” regu/ar' represéniation of completely sz’mpfe 'sémigroups
(see [2]). Let G be a group and F be a rectangular band

F={(A, w); Ac A, ueM}, G )(v, =(4, 8.
Let P=(p,,), ;z'e M, 1€ A be a matrix over G. If we define @ by -
X002 u30,0)Y = XPu >
then GX F is a completely simple semigroup.

Example 4. Commutative archimedean cancellative semigroups without
idempotent (see [9]). Such a semigroup is called an 9t-semigroup. Let G be an abelian
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group and N be the set of all non-negative integers. Suppose a function I: KX K—N
satisfies '

(@ I(, By=1(B,0). .
(b) I(o, By+1(af, y) = 1(o, By)+1(B, 7).
~ (c) I(e;&)=1, & being the identity element of G.
(d) For every a € G there is a positive-integer m such that 1(a™, 0)=0. )

Define an operation on the set S = NXG by
(m, )(n, ) = (m+n+1I(a, p), 2f)
Then S is an 9t-semigroup. Every ‘R-semigroup is o:btaiued in this mannor.
S = NX¢oG where ml, gn = m—Fn'—l-I(oc, B).

Example 5. Group extensions-(see [3], [5]). Let N and H be groups and let
G be the group extension of N by H. A mapping o —f, associates with each a¢ H
"an automorphism f of N such that £, (x)= fa S (%), xEN Consider another mapping,
(a0, B)—c,p Of HXH into N such that

Cy ﬁf;zB(x)caﬂ y—f;zﬂ(x)f;z(cﬂ 7) ca By ‘
for all o, B, y€ H and all x€N. Then
G=NXgH where x@a,’y,,y:xfa,(y)ca,p.

Example 6. Schreier Extension. Let A and B be commutative ‘semigroups
with identity element. A Schreier extension of A by Bin HANCOCK’s sense -[4] or -
- REDEr’s sense is an example of general product. Examples 4 and 5 are Schreier
extensions. '

~ Example 7. H—sengroups (see [10])

As an extremely spemal case finite semlgroups S havmg property that all -
homomorphisms of S are homogeneous were studied. :

§ 5. Left (right) general product

Definition. A general product SXeT iscalled a lefr general producr of §
by T if”
(10) (o PO =(a, 1)@ for all o, B, veT.

SXeT is called a right general product of S by T if
(1 @ PHO=(;, O for all o, B, yET:
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. In the case (10) 0, 5 depends on only a, so 0, , is denoted by 6,. Then (5) be-
comes _ _ '
(12) 0,.,010,5.=0,.11,0, for all a, T, all acsS.

In the case (1 1‘)', 0,5 is denoted by 0., and we have
(13) 0.,,010.5=0,411,0,, for all o, BT, all acs.

o By a left congruence we mean a left compatible equivalence, i.e. an equivalence
satisfying '
(14 X0y =zX o zy for all :z.

Theorem 9. Let D be a groupoid. D is isomorphic with a left general product
of.a set S, |S|=1, by a groupoid T, |T|=1, if and only if there is a congruence g on
D and a left congruence o on D such that ¢#w, 6w, D/o=T, |Djc|=|S|, and
e-6=w, pNo=L

Proof. Theorem 8 is applicable to this theorem except for (14). Suppose D
is isomorphic with a left general product of S by T under a map /. Let g=hp and
f=hgq

Dl SXT-L.T"
AN
S

Let f, denote the restriction of f to D, and'let D,g=a, (x, )€ SXT, (x, )p=a,
(x,0)g=x; ¢ and o are defined as in the first part of the proof of Theorem 8. We
need prove (14) only. Suppose a, b, c€ D and boc and let

ah=(x,), bh=(y, B), ch=(»,7).

Then (x, ) (y, B)=(x0,.y, aB), (x, &) (y, )=(x0,.y, ay). This shows that (ab)fop="
=(ac)f,, or ab ¢ ac and we have proved (14).

Conversely suppose that a congruence ¢ and a left congruence ¢ on D exist.
By Theorem 8, D is isomorphic with a géneral product D/o X D/¢, ¢ and ¢ naturally
induce relations on D/ X D/g. In this sense ¢ and ¢ can be regarded as the relations
on D/O’XD/Q By the assumption, (y, ﬂ)a(y, y) implies (x, 2)(y, B)o(x, ®)(y, ),
hence x0, ;y=x0,, WY which means that x0, ,,y is independent of . Thus we have
proved that DjoX D/o is a left general product. :
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§ 6. The structure of Z.(,IT).

Let a be a fixed element of E, |E|=>1, and let.0 ¢ %;. We define fp and g, by
(15) . xfe=x0a and xg,=abx. ' ’ '
Then f; and g, are transformations of E,

(16) fo.,nn=fofr, and " gop .= gnge

In fact, xf, n,,-x(&]] ma=(x0ayna=xfyf, for all x¢€ E. This proves the first relation
(16); the second one can be similarly obtained. Let / be an arbitrary transformation
of E. If 0 is defined by
x0y=xh for all x,y€cE,
then fy=
Let JE denote the full transformatlon semigroup over E. From the - above
‘fact, it is clear that 0 —f, is a homomorphism of #;(,[T) onto . Likewise- B»go
is ‘an anti-homomorphism of #;(I1,) onto Jy.
Let ¢ be the congruence on %.(,J1) induced by the homomorphlsm 0 —fy.
In addition we define a relation ¢ on %(,I1) as follows:
Oon for 0, n€ B if and only if x0y=xny for all ys2a and all x. Clearly o is
an equivalence on %;. Since |E|=>1, we have ¢#w, 6 =w. .
- To prove g-0 = w, let 8, n€%B,. We define ¢ as follows:

<

xéy=x60y f y=a, and xEy=xpy if ys=a.

Then 0@5 and £on, hence we have proved ¢-0 = w. By the definition of ¢ and o,
6on and Oon imply 0=n, that is, ¢(No=1. We easily see that

fon implies ({ JJ18)6({ MIn) for all (€B,

that is, o is a left congruence. By Theorem 9, % (a*) is isomorphic with a left
general product of %, by #Bg,. For the further study of its structure we will
explain a general case as follows:

Let 7 be a semigroup, F be a set, |F| m; let x denote a mapping of F into
T:2x = a,, A€ F, a;, € T. The set of all mappings x of F into T is denoted by S..
We define a scalar product f- -x of BET and x¢ S as follows: if Ax=a, then
2(B-x) = Pa,. Clearly- (B7)-x = B+(y-x). Then we define a binary operatlon
on G = SXT as follows: :

(17) (x, @)(3, B) = (- », 4B).
© G is a left general product of S by T in which X0, 5y = x-y. It is easy to see that

G is a semigroup.- The semigroup G with (17) is determined by m=|F| and the
semigroup T. ' '
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- Definition. The semigroup G deﬁﬁed above is denoted by G=9@m(T).,

Returning to #p( 1), as we mentiened, the homomorphism @ —f, is from
Be(,IT) onto J;. Further each o-class is associated with a mapping of E-—{a}
into 7. Accordingly we have the following theorem: 1

Theorem 10. B (1) is isomorphic with ¥9,(F) where m = |E|—l, T
is the full transformation semigroup over E. :

§ 7. Sub-general produ_ct

Let U be a subset of S><T We define a notation

p,,T(U) {oeT; (x W eU}.
Deflnltlon If U is a subgroupoid of- SXQT and lfp,j (U)=T, then U is:
- called a sub-general product of SXeT

Clearly U is homomorphlc onto 7, and lf SXeTisa semlgroup, U is a sub--
semigroup. _
As is well known, a subdirect product U of groupoids A and T is deﬁned to-
~ be a subgroupoid U of the direct product. 4 XT and p,JT(U) T and p,; (U)=4

In this section we will prove that if a semigroup D is homomorphic onto a.

semigroup T, then D is isomorphic onto a sub-general product of SX, T for some
set S and some O, in other words; any homomorphism ¢ of D onto T can be ex--
tended to a h-homomorphism ¢’ of some semigroup D’ onto T in the sense that:
DED and ¢’'(x)=9(x) if x€D.

Proposition 11. Let g be a homomorphism of a semigroup D onto a semigroup-
T. Then D is restrictedly isomorphic onto a subdirect product of D and T with respect
10 g and the projection of DXT onto T.

Proof. Let D'={(x, xg); x€D}. D’ is a subsemigroup of the direct product
"DXT.. We define h: D ~ D’ by xh=(x, xg). It is easy to see that & is an isomorphism
of D onto D’. Let p be the projection DXT~T:(x,y)p =y. Then g =h-p.
Therefore D is restrictedly isomorphic into D><T (i.e. onto D’) with respect to-
g and p.

Proposition 11 shows that the existence of a sub-genera] product SXoT into-
which D can be restrictedly embedded. However the concept ‘“direct product™
has been used instead of “general product” and D has been chosen as S. Here is-
a question raised: . -

Can we choose |S| as small as possnble |S|<|D|” Theorems 12 and 13 will.
answer this questlon
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Definition (PETRICH [7]). A non-empty subset F of a semigroup D is called
.a face of D if the complement of F is an ideal of D.

Definition. Let g be a homomorphism of a semigroup D onto a semigroup
T. An element « of T is called lowly divisible if « has-a divisor § in T (i.e. =By
cor yB or ypd for some y, 8¢ T with |Ds|<|D,|, Dyg=4, D,g=0a).

Theorem 12, Suppose that a semigroup D is properly homomorphic, but not
h-homomorphic onto a semigroup T. Let g be the homomorphism D —~T and let

D= U D, be the decomposition of D induced by g: D,g = a. Then there is a semigroup
acT
D which satisfies the following conditions:

(a) D is restrictedly isomorphic onto some Sy X T with respect to g and the pro-
JjectionSo X T—T.

(b) D is a face of D.

(¢) Let n=lub.{|D,|; «a € T}'. Define the cardinal number m by m = n+1
if'n is finite and if there is a lowly divisible element o of T such that |D,|=n,
and by m=n otherwise. Then |Sy|=m.

Proof. Since g is prover, [T|>i and m=>1. For each a¢ T let D, be a set
obtained by adjoining new elements to D,:

.EazD&UGa, DaﬂGa___Q and GamGﬂ:ﬂ (x#p)

-such that |D,J=m for all a€T. In detail we arrange {G,} as follows: G;-—-O if and

-only if n is finite, |D,}=n, and there is no lowly divisible element o in 7" with |D,|=n;
if n is infinite and n=]D,}, then |G,|=1. If G 0 we let G, contain a special element
-0,. Since g is not a h-homomorphism, U G,=0.

a€T

Now let D= |J D,. We define a binary operation (o) on D as follows:
aeT

If aeD, and b¢D,, and xy denotes the product of elements x and y.in’ D,
‘then set

aob=ab if aeD, and beD;, and aob =0, otherwise.

'It is easy to check that D is associative and a —a, a€ D,, is a proper h- homomorphlsm
-of D onto T, since |D,| is constant mi>1 and |T|=>1.

By Theorem 6, D is isomorphic onto S, X7 for some set |Sy|=m. Let S,
be a set with |Sy|=m and O be a special element of S,. Let £, be a one-to-one mapping
of Sy onto S, such that 0f,=0,. Then ©={f,,; o, fcT} is given as follows:

: {((Xf)(yfﬁ))fa/i if xf,€D;, yf€ Dy,
X0, py=

0 . " otherwise

't We assume the well-ordering principle. Since |Da|§|D], the least upper bound exists.
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D is isomorphic into Sy X7 under a mapping xf, —~(x, o), «€ T. It is easy to see

that this is a restricted isomorphism with respect to g and the projection SoXT —~T.

Clearly U G, is the complement of D and is an ideal of D. Therefore D is a face
T a€eT . .

of D. Thus the proof of the theorem has been completed.

Theorem 13. Suppose that a semigroup D is properly homomorphic, but not
h-homomorphic onto a semigroup T. Let g be the homomorphism D—~T and let

‘D= | D, be the decomposmon of D induced by g. Then there is-a semigroup D
T a€eT .
. which contains D such that

() D is restrictedly isomorphic onto some SoX T with -respect to.g and the
projection Sy XT —T; ' -

(B) D is an inflation of D (cf. [2));

(y) |So|=n where n=l.u.b. {|D,|; a€T}. -

Proof. Let D,=D,UG,, {D,|=n, for each a where D,NG,=0 and G, may
be empty; G, N G;=0 (27 p). Choose exactly one element from each D,: {p,; a€ T},

" p.ED,. Let D= |J D,. We define an operation (o) on D as follows:
aeT

If aEDa,bEDﬁ, then let

ab if aeD,, bEDﬁ,
ap; if aeD., beGy,
p.b if a€G,, beDy,
PaPg if acG,, bEG/;,

aob =

where' the products on the right side are in D.

It is easy to prove that Disa semigroup and an infiation of D and satisﬁes E
(2) through (y). By the way 0, is given as follows: Let x, y€ S, |Sol , and
let £,: S, —D, be a one-to-one, onto mapping.

((xfa) (J’fﬂ))fzﬁ Vil xf,€D,, Yfp€Dg,

%0, ,y = L (Opfa"  if X €D, 3/y€ Gy,
=f (Pa(J’fﬂ))fap if J‘fa €G,, ,Vfﬂ €Dy, -

(papﬁ)f;zﬂ lf xf;E Ga’ yf;)EGﬂ

~

Remark. |Sy) in Theorem 12 is not necessarily minimum of |S| for which
D can be embedded into SX T in our sense, strictly speaking, |S,| is either minimum
or minimum plus one, while |Sy| in Theorem 13 is certainly minimum. In Theorem 12,
even if D is s-indecomposable, that is, if D has no proper semilattice homomorphic .
image, then S, X T is not. In Theorem 13, however, if D is s-indecomposable, So X T
is also; but S, X T'is not simple even if D is simple. On the other hand in Proposition
11, 1f D is simple, DXT is simple. :
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