Onla linear transformation in the theory of probability

By LAJOS TAKACS in Cleveland (Ohio, U.S.A.)*)

1. Introduction. In the theory of random fluctuations we frequently encounter
the following problem: A sequence of mutually independent and identically dis-
- tributed real random variables {¢,; n=1,2, ...} is given. We define a sequence.
of random  variables {y,; n=0,1,2, ...} by the recurrence formula #,=
= max (0, 5,_, +¢&,) (n=1,2,...), where n, is a nonnegative random variable
which is independent of the sequence {¢,}. The problem is to find the distribution
function- or the Laplace—Stieltjes transform of 5, for every n=1,2,.... We have
several methods at our disposal for finding the generating function

2 E{em™}o"
n=0

for Re(s)=0 and |¢|<1; namely, analytical methods (F. Porraczex [12], [13],
I. 1. Goop [6], J. H. B. KEMPERMAN [7]), algebraic methods (G. Baxter [2], [3],
J. G. WeNDEL [18], [19], J. F. C. KinoMmaN [8], [9], G.-C. RoTa [14]), combinatorial
methods (E. S. ANDERSEN [1], F. Spitzer [16], W. FELLER [5], L. TAKACS [17]), and
the method of factorization (see e.g. J. H. B. KEMPERMAN [7] and A. A. BorROVKOV [4])-
The method of factorization has been introduced by N. WIENER and E. HopF [21}
for solving integral equations. (See also F. SmiTsigs [15], H. Wipom [20], and N. L.
MuUSKHELISHVILI [10].) It seems that all the existing methods have certain limi-
tations. The analytic method of Pollaczek is constructive and gives the solution
in a closed form; however, certain restrictions should be imposed on the distri-
bution function of &,. Furthermore, since the solution appears as a solution of a.
singular integral equation, the uniqueness of the solution should be proved. The algeb-
raic methods are mostly descriptive, and even in the particular case when P {,=0}=1,
the solution does not appear in a closed form. In general, combinatorial methods
do not provide the solution in a closed form either, but fortunately, in some partic-
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ular cases, we can obtain explicit expressions for P {,=x} (n=1, 2, ...). The method
.of factorization is mostly restricted to the case of P {5,=0}=1.

In what follows we shall consider a more general problem than the one men-
‘tioned above, namely, the problem of finding a sequence of functions I',(s) (n=1, 2, ...)
defined for Re (5)=0 by a recurrence relation I',(s) = T{y(s)T,_, (5)}, where y(s) and
Iy(5) are elements of a commutative Banach algebra R, T is a projection and
T{ly(s)} = Ip(s). We shall define R in such a way that on the one hand R is large
-enough to contain all the important functions arising in fluctuation theory and on the
other hand R is small enough to allow an explicit representation of the transformation
T, which is suitable for calculations. We shall provide a constructive method for
finding the generating function of I',(s) (n=0,1, 2, ...), and we shall obtain the
solution in a closed form. As a byprdduct we obtain the method of factorization
"and we shall show how it can be applied in the general case.

2. A Banach algebra R. Denote by R the space of functions ‘@(s) defined for
Re (5)=0 on the complex plane, which can be represented in the form

1 o C d(s)=E{le*),

where { is a complex (or real) random variable with E{|{|} <<, and 5 is a real
* random variable. The function @(s) is uniquely determined by the joint distribution
of ¢ and 5. However, there are infinitely many possible distributions which yield
the same &(s). It follows from (1) that [®(s)|=E {|{|} for Re (5)=0.

Let us define the norm of @(s) by

P ’ | : ol =infE{|C]}

where the infimum is taken for all { for which (1) holds (w1th a suitable n) Obvi-
ously, |@(s)|=|@| for Ré (s)=0. ‘

We have | @ =0, and | ]| =0 if and only if ¢(5)=0. If « is a complex (or real)
number and @ (s)CR, then aP(s)€R and |a®P||=|«| | ®|. Furthermore, if D,(s)ER
and P,(s)€R, then &,(s)+P,(s)€R and || P, + D,]| = ||P,||+] D,|. The last state-
ment can be proved as follows: '

For any ¢>0 let @,(s)=E{{,e”"1}, where E{|¢,|} = ||®,|| +¢, and let &,(s)=
=E{(,e "2}, where E{|(,|} = |P,||+¢ Let v be a random variable which is
independent of ({y,#,) and ({;,n,), and for which P{v—l} P{v—2} 1. Let
us define {=2(, and 5n=#,. Then .

3 - E{Ce‘s”} = 0, () +P2(5) and E{[{]} = E{|{;[} +E{|{a]} < .

Thus @,(s)+ P,(s)€R, and || P, +<152[| = ||451||+|| ®,|| +2s. Since ¢>0 is arbitrary,
this proves the statement.
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In what follows we shall not make use of the completeness of R. However,
we can prove that R is complete, and therefore R is a Banach space. -

Next we observe that if @,(s)€R and @,(s)€R, then & (s)(Dz(s)ER and
|, P, =I®,|l | ®,). To prove this let us define ®,(s) and P,(s) in exactly the
same way as above. However, let us assume now that (£, #,) and ({,, ;;2) are
independent and take {={,{, and n = n,+#n,. Then »

L@ E{le™) = 0()9,(s) and E{[}} = E{{,YE{L,]) < <.

Thus @ ,(5)®,(s)€R and [®,9,] = (|, ||+e)(||<1> |l+s) Since s>0 is arbxtrary v
this proves the statement.
Accordingly, R is a commutatlve Banach algebra.

3. A linear tansformatmn T Let us define a transformation T in R by
g o : T{cb(s)} = (b“’(s) E{e """},

where n* =max (0, n). As we shall show explncnty in Theorem 2, the functlon Pr(s)
is independent of the particular representation (1) of ®(s). Observe that ®*(s).
is a regular function of s in the domain:Re (5)=0, and continuous for Re (5)=0..
Furthermore, |®*(s)|=| @] for Re (s)=0.
: If a is a complex (or real) number and -@(s)€R, then T {a®@(5)}=oT {P(s)}.
If &,(s)€R and P,(s)€R, then T{P (5)+P,(s)} = T{P,(s)}+T{P,(s)}. This’
follows immediately from the representation (3). Obviously, || T =1. Accordingly,
T is a bounded linear transformation. Moreover, T2=T, that is, T is a projection.
We note that if &,(s)€R and @,(s)€R, and T{®,(s)}=,(s) and T{P,(s)}=
- =®,(s), then T{P,(5)P,(5)}=P,(s5)P,(s). Furthermore, if &,(s)€R and &,(s)€R,
and T{®,(s)}=c, and T{®P,(s)}=c,, where ¢, and ¢, are complex (or real) con-
stans, then T{®,(s)®,(s)}=c,c,. These statements follow immediately from the
representation (4). :

4, A recurrence relation. The problem mentioned in the Introduction and
many other problems in the theory of probability and stochastic processes can be
reduced to the problem of finding a sequence of functions {I',(s)} satisfying a recur-
rence relation of the form

T =T{ o ()} (1=1,2,...), with T{Io(s)} = Io(s) and y(s)€R.
" To solve this problem we need the following auxiliary theorem.

Lemma. Let @(s)€R for n=0,1,2, ... and let a, (n=0; 1, 2, ...) be complex
(or real) ,numbers. If ' '

Z || @l < e,

n=0
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then

) ¥(s) = é’) a0, 8,(s)€R and T{¥(s)} = g,; 4, T{®,(5))-

Proof. If we refer to the facts that R is complete and T is continuous, then
the Lemma follows immediately. However, we are not making use of the completeness
of R and therefore a separate proof is required.

For n=0,1,2, ... let ®(s)=E{{,e "}, where E{|(,|}=2||®,]|. Let v. be a
discrete random variable which is independent of the sequence ((,, n,) (n=0,1,2,...)
and which takes on nonnegative integral values with probabilities P {v=n}=p,=0
for n=0, 1, 2, .... Define {=a/{,/p, and n=n,. Then

E{{e "} = "=ZOP{v = n}%E{C"e"”n} = ";;a,,di,,(s)

and _ ' .
B(e) = 2P =n 2 B(r) =2 Sialie,) < -

Accordingly, P(s)=E {{e™*"} and ¥ (s)€R. Furthermore, we have

T{¥(s)} = E{Ce*" } = Z P{v—n}—"E{c,. -f""} = Z a,T{®,(s)}

which is in agreement with (6). Thls completes the proof of the Lemma.

In particular, it follows from the Lemma that if ®(s)€R, then e?®@¢R for
any ¢, and [1—o®(s)]"'€R and log[1—o®(s)]¢R whenever || [|®]<1. If we
form the power series expansions of these functions, then we can apply T term
by term.

Theorem 1. Let us suppose that y(s)€R, To(s)€R and T{o(s)}=T0(s).
Deﬁne I,(s) for n=1,2, ... by the recurrence relation

@ r©=T{ ) My ()}
If le| Iyl <1, then

ca

) 3 Ta(s)@" = e~Tosl1-exOD T{I (s)e=losli—exol+Tllosli—ex}

for Re (s)=0.

. Proof. Let us denote the right-hand side of (8) by U(s, ). Obviously,
U(s, 0)€R and T{U(s, 0)}=U(s, g¢). Now we shall show that U(s, ¢) satisfies
the following equation '

® U(s, )~ TS UG, 9} = To(s).
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Let us introduce the function
- h(s)= elosli—ev@)-Tlog[1—ex(s)])
for Re (s)=0. It is obvious that 4(s)€R, 1/h(s)€R, and Iy(s)/h(s)ER. We can

also sée immediately that

109y ' - T{h(s)}=1

and .
Fo(s) o To(s)| _
(1) T{h"(s) -T h(s)}_o.
Now (10) and (11) impiy that ‘
@ tho |G- <o
that is,
(13) Tl —eoy (s)] UGs, o)} = T (s)

whence (9) follows.
Let us expand U(s, g) in a power series as follows

14 _ Us,0) = > Us(s)e"
n=0
This series is convergent if |g]|{y] <1 and evidently U,(s)€R for n=0,1,2, ....
If we put (14) into (9), then we obtain that U, (s)=I"y(s) and
(15) o Uy =T Vs s (5))

for n=1,2, .... Accordingly, the sequence {U, (s)} satisfies the same recurrence.

relation and the same initial condition as the sequence {I',(s)}. Thus U,(s)=T (s)

for n=0, 1, 2, ... which was to be proved. :
We note that by -the Lemma we have

2
T{log[1 = oy @)} = = 2 - T{r©)I')
for |o| lIyl<1. .
If, in particular, ['o(s)=1, then (8) reduces to

(6 DI T,(s)e" = e-Thesti ~erl = exp { 2T (S)]"}}

where [o{ [yl <1.

The usefulness of formulas (8) and (16) depends on the applicability of the
transformation T. Our next aim is to give a method for finding T{®(s)} for
@(s)€R and, in particular, for finding T {log [1 —oy(s)]} for y(s)€R and |o| |y[<1.

2%
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5. A representation of T. If we know @(s)€R for Re (s)=0, then ¢*(s5)= .
=T{P(s)} is uniquely determined for Re (s)=0 as a function which is regular in
the domain Re (5)>0 and continuous for Re (5)=0. We can obtain ®*(s) explicitly .
by the following theorem.

‘Theorem 2. If (s)ER, then for Re (s)=0 we have

: s P(2)
. o+ — TN
an o7 (s) = ¢(0)+ mo fz(s_z)
where the path of integration L (e>0) consists of the imaginary axis from z = —ies
to z = —ig and again from z=ig to z=ieo,

Proof Let C+(s>0) be the path which consists of the imaginary axis from
: 3 T
z =—jo to z = —1g, the semlclrc_le ¢t = {z:z = ge'®, Y =sa= 5} , and agam

the imaginéry axis from z=ig to z=ies. Let C] (¢=>0) be the path which consists
of the imaginary axis from z = —ije t0 z = —jg, the semicircle

S n n
¢ =1z z=—¢ge", —— =g =—
. ? 2 2

and agam the imaginary axis from z=1ig t0 z=ioo, Let CY(R) (0<e<R) be a path
taken in the negative direction and contammg C! from z = —iR to z=iR and the

' : (4
semicircle g = {z: z=Re™'", — 5 —=a= 2} Let C;(R) (0<3<R) be a path taken

in the positive direction and containing C; from z = —jR to z=iR arid the semi-
L - i T
circle ¢ ={z: z=—Re™"*, ——=a=—1.
' 2. 2

_ Since ®*(z) is regular inside C}(R) and continuous on the boundary, it follows
by Cauchy’s integral formula (see e.g. [11] p. 112) that

N P (4) 4
27i /z(s =2 (S)

“CHR)

for 0<e<Re(s) and |s|<R. Since |¢+( )=|®|| for Re(2)=0, if we let Rooo
the integral on the semicircle ¢} tends to 0. Hence we obtain that

' | s [ot@ , - .,
(18) A ' i Z(S_Z)dz._cb(s)

C+

- e
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“for 0<e<Re (s). If -0, then in (18) the integral taken along the semicircle- ¢}
tends to @7(0)/2=&(0)/2 and thus by (18)

L - o+

for Re (5)=0. _
‘ Next we observe that

(20) - CB(s)— P+ (s) = E{teT-1") — &(0)

for Re(s)=0. This follows from the identity e™"—e " = ™" (es"" — 1) =
= [-M* _1, If we extend .the definition of ®(s)—®*(s) for Re (5)=0 by 20),
then ®(s)—®*(s) becomes regular in the domain Re (5)<0 and continuous for
~ Re (5)=0. Obviously, |®@(s)—@*(s)| = 2| @] for Re (s)<0 By Cauchy’s 1ntegra]
theorem (see e.g. [11] p. 105) it follows that

S P(2)— Dt (2) ,
2mi / z(s—2) dz = 0 :
C; (R

for Re (5)=0. If we let R~ <>, we obtain that .

ey 5o

- If €0, the part of the integral taken alohg the semivc'irc]e'of radius ¢ tends to
[2*(0)— <D(0)]/2 =0, and thus by (21)

@ T /‘b(z) '@ 4 —o.

c~0 2m

&

If we add (19) and (22), we obtain (17) which was to be proved. For Re (5)=0
the function ®*(s) can be obtained by continuity or by an integral representation
similar to (17).

We note that 1f @ (s)=E {{e™*"} exists for some s>0 that is, if E{|{e™*"|}<eo,
then .

s P(2)
2ni J z(s—2z)

¢’

(23) _ . ¢+( )=

for Re (s)>s>0 For in this case (21) remains vahd if C7 is replaced by C7, ‘and
* hence (23) follows by (18). .
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6. A factorization. Finally, we show that for |g||y<1 we can also obtain
T {log [1 —ey(s)]} by another method, namely, by the method of factorization.
Let y(s)€R, lo|lyll<1 and suppose that

@49 I—oy(s)=T1(s (50

for Re (s)=0, where I'*(s, ¢) and I'"(s, ¢) as functions of s satisfy the following
requirements:

Ay: I'*(s, @) is regular in the domain Re (s5)=0,
A,: I'*(s, ¢) is continuous and free from zeros in Re (s)=0,
Ay: log I't(s, 0)/s —0 if Re(5)=0 and [s]| —oo,
B,: I'(s, @) is regular in the domain Re (5)<0, .
B,: I'(s, g) is continuous and free from zeros in Re (5)=0,
By: log I'(s, 0)/s—0 if Re (s)=0 and |s|—+<e.
Such a factorization always exists. For example,
(25) - T'*(s, 0y=€Mosii-ox and I~ (s, g) = elosll—ex-Tllogl1 ~ vl

satisfy all the requirements. Actually, the above requirements determine I *(s, 0)
- and I'~(s, @) up to a factor depending only on Q This is the content of the next
theorem. .

Theorem 3. If y(s)€R, lo| Iyl <1 and
(26) l—Qv(S) =TI*(s,0I (s, 0)
- for Re (s) 0, where I'*(s, 0) and r=(s, o) satlsfy the requirements Al, AZ, Ay
. and B,, B,, By respectively, then ‘
en . T{log[l —ey ()]} = logI'* (s,.¢) +log '~ (0, 0)
for Re (5)=0. - ' '

Proof. We prove (27) for Re (s)>0; the case Re(s)=0 then follows by
- continuity. Let us define the pawrs L,, C;-, C;, CH(R), C;(R) in the same way

e 2

as in the proof of Theorem 2. Then we have
. s logl'*(z,0) , +
(28) %f 26=2) dz = log ' (s, 0)
C+

for 0<g<Re (s5) and )
K} log I'" (z, 0) dr=0

(29) 2mi J z(s z)
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for Re (s)>0 Indeed, (28) and (29) follow in a similar way as (18) and (21): first

we integrate along the paths C*(R) and C (R), respectlvely, and then let R —oo,

If e—0 in (28) and.(29), then we get

LS logF (z,0) +
: . _ = =7 r+
(30). i o [ 2 ED e tog 0.0 = log ™ (5.0
’ L

and .
s [logI' (z,0)

@D e~0 21i z(s—2)

(]

dz—%logl"‘(o, 0)=0

for Re (s)=0. Adding- (30) and (31) we obtain (27) for Re (5)=0. This completes
the proof of the theorem.
By using (27) we can express (8) also’in the form

ey 2 ()¢ = " TG0 T{ F(EES)Q)}’
where Re (5)=0 and |o] |7l <l 1f Fo(s)_l then (8) or (32) reduces to

1

ey ZF(s)a" "f+(s,g)r o

where Re (s)=0 and |g| [[y[[<1 :

The above results have numerous possible applications in the theory of prob-
ability and stochastic processes. Without going into details, we mention only the
solution of the problem -formulated in the Introduction. If we denote by y(s) the
Laplace—Stieltjes transform of P{¢,=x}, that is, y(s)=E{e~*} for Re (5)=0
and n=1,2, ..., and by I',(s) the. Laplace—Stieltjes transform of P {n,=x}, that

I(s)=E{e ™)} for Re (s)=0 and n=0, 1,2, ..., then the generating function
of the sequence {I(s)} is given by (8) or by (32) for ]Q|<1 If, in particular,
P{ne=0}=1, that is, I'o(s)=1, then :

(39) Z T(s)e" = e-Tltoelt e = exp{Z T{[v(s)]"}}

for |g|<1 and Re (8)=0. The first version of (34) is the general case of a formula

of F. PoLLACZEK [12] and the second version can be reduced to a formula of
F. Spitzer [16]. '
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