Remarks on endomorphism rings of torsion-free abelian groups

By L. C. A. van LEEUWEN in Delft (Holland)

1. The commutativity of the endomorphism ring

In this paper we study endomorphism rings of torsion-free abelian groups.
In [2], Problem 46(a) FucHs asks to determine all abelian groups with commutative
endomorphism ring. Later FucHs has shown the following [3]. Call a family of
groups G, (z€1) a rigid system if Hom (G,, G;) =0 or a subgroup of the rationals
according as a# f or a=p. To every cardinal m, less than the first inaccessible
aleph, there exists a rigid system consisting of 2™ torsion-free groups of cardinal-

ity m. .
' The groups in a rigid system are obviously always indecomposable and they
have commutative endomorphism rings. So the question arises: if the endomor-
phism ring of a torsion-free abelian group G is commutative, is G then indecompos-
able? It is easy to construct a counter-example. Let p, p, be different primes. G,
is the group of the rationals whose denominators are powers of p;; G, is similar
with respect to p,. Then {G,,‘, an} is a rigid system and E(G)EE(G,,I)—%E(GPZ)
(ring-direct sum), since G, is a fully invariant subgroup of G = G, —+—Gl,2 (direct
sum) (i=1, 2). Hence E(G) is commutative, but G = G,,1+Gp2 is decomposable.

Conversely, assume that G is an indecomposable group. Is £(G) then a com-
mutative ring? For well-known indecomposable groups, such as the group Z of
integers, the group Q of rationals, the group Z(p) of p-adic integers, any pure sub-
group G of Z(p), this is true. However, one can construct a counter-example as
follows: '

Let R be the ring of integer quaternions i.e. elements of the form a,+a,i+
+ayj+ak with a,€Z (i=0,1,2,3) and i’=j?=k*=—1, ij=k = —ji, ik =
= —j = —ki, jk = i = —kj with obvious addition and multiplication. R is a reduced,
torsion-free ring of rank 4. By a theorem of CorNER [1] every reduced torsion-free
ring A of finite rank » is isomorphic to the endomorphism ring E(G) of some
reduced, torsion-free group G of rank 2n. Hence R is isomorphic to the endo-
morphism ring E(G) of some reduced, torsion-free group G of rank 8.
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Since R has no zero-divisors, the same is true for E(G). Hence 0 and [ are the
only idempotents in E(G). But this implies that G is indecomposable, forif G =G, + G,
for subgroups G,, G,, then the projections =;: G—~G,, i =1, 2, are orthogonal
idempotents of E(G) whose sum n, +7, = 1. So we get either n;, =1, 7, =0 or
n, =0, 7, =1 which means either G, =0 or G, =0. Hence G is indecomposable,
but E(G)=R is not commutative. Thus we have to impose stronger conditions
on the group G in order that its ring of endomorphisms be commutative. We recall
from [4}:

Definition 1. (cf. [4], definition 2, 1) For groups G and H, we say that

(i) G is quasi-contained in H (GSH) if nGSH for some non-zero integer n;
(i) G is quasi-equal to H (G=H) if GEH and HZG;

(iii) G is quasi-decomposable if there exist non-zero independent groups A and B
" such that G = A+ B;

(iv) G is strongly indecomposable if G is not quasi-decomposable.

Now suppose that G is a torsion-free group of rank 2. Then G is strongly in-
decomposable or G = G +G,, G, =G,, or G = G, +G,, G; of incomparable
types, or G = S+ B, type B<type S.

Let E(G) be the ring of endomorphisms of G. Then E(G) is a torsion-free ring
and QFE(G) is the minimal Q-algebra containing E(G). QE(G) can be characterized
as the set of linear transformation @ of QG (minimal Q-a]gebra containing G)
such that n®(G)S G for some n=0 in Z.

The algebra QE(G) is the ring of quasi-endomorphisms of G and will be denoted
by E(G). Now if G is strongly indecomposable then E(G) is a quadratic number

field, Q, or the ring of 2 X 2 triangular matrices {(g 2)

elements. In all cases E(G) is commutative, hence E(G), which is a subring of E(G),
is commutative. Hence:

a,be¢ Q} with equal diagonal

If G is a strongly indecomposable group of rank 2, then E(G) is commutative.

Although the condition of strong indécomposability of G is sufficient for the
commutativity of E(G) it is not necessary, as may be seen from G = G, +G,, G;
of incomparable types (cf. first counter-example). We can extend this result to
torsion-free groups of prime rank, in case G is irreducible.

Definition 2. A group G is irreducible if it has no proper non-trivial pure
fully invariant subgroups (cf. [4], definition 5. 1).

Now let G be a strongly indecomposable group of prime rank. If G is irreducible,
then E(G) is commutative. By Corollary 3. 6 [4], E(G) =T is a division ring and by
Theorem 5.5, [[:Q]l=rank G=p (p a prime).
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Now let F be the center of I', then [I:Q]=[I":F][F:Q]=p; but [[:F]l=n?,
so n?|p which implies n=1, hence I'=F or E(G) =T is commutative. Then E(G),
as a subring of E(G), is commutative. For irreducible groups G of prime rank,
REID [4} has shown that G is either strongly indecomposable or equal to a direct
sum of isomorphic rank one groups. Hence for these groups indecomposability
implies strongly indecomposability. Hence:

Theorem 1. Let G be an irreducible, indecomposable torsion free group of prime
rank. Then E(G) is commutative. '

One might ask whether strong indecomposability is always sufficient for com-
mutativity of the endomorphism ring. The answer is no and the counter-example
is again the ring R of integer quaternions. As we have seen, R=2 E(G), where G is
a reduced torsion-free group of rank 8. Now the ring E(G) of quasi-endomorphisms
of G is the quaternion field F with basis 1, i, j, k over Q.

Since Fis a field it is a local ring, that is, a ring R with identity such that R/J(R)
is a division ring, where J(R) is the Jacobson radical of R.

By Corollary 4.3 [4], a torsion-free group G of finite rank is strongly inde-
composable if and only if E(G) is a local ring. Since F=E(G) is such a ring, it fol-
lows that G is strongly indecomposable. However, E(G)= R is not commutative.

For the class of irreducible groups of prime rank we have seen that they are
either strongly indecomposable or equal to a direct sum of isomorphic rank one
groups.-Now assume that G is such a group and E(G) is commutative. Then the
number of direct summands in a direct sum representation of G cannot be greater
than one. ,

Hence G is strongly indecomposable or G is a rank one group. A rank one
group is clearly strongly indecomposable. Hence, if we use Theorem 1, we get:

Theorem 2. Let G be an irreducible group of prime rank. Then E(G) is com-
mutative if and only if G is strongly indecomposable.

If we omit the condition that the rank of G should be prime, we have the fol-
lowing result:

Theorem 3. Let G be an irreducible group of finite rank k, such that k is square
free. Then E(G) is commutative if and only if G is strongly indecomposable.

Proof. Assume E(G) is commutative, then E(G) is commutative. Since G is
irreducible, E(G)=T,, where I' is a division algebra, m is the number of strongly
indecomposable summands in a quasi-decomposition of G and m[I":Q]=rank G
[4]. Since I',, is commutative, it follows that m=1, E(G)=T and G is strongly in-
decomposable. Conversely, assume that G is strongly indecomposable. Since G is
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irreducible, G has a quasi-decomposition G = Zm'Gi with each G; strongly in-
i=1

decomposable [4]. It follows that m=1 and E(G)=T is a division ring. Moreover
[I': Q] =rank G =k. Since the dimension of I" over its center must be a square divid-
ing k, this dimension is I and E(G) =T is commutative. Hence E(G) is commutative.
Note that Theorem 2 is a special case of Theorem 3.

From [4] we use the

Definition 3. Let G be a torsion-free group of finite rank. Let S be the pure
subgroup of G generated by the collection of non-zero minimal pure fully invariant
subgroups of G. We call § the pseudo-socle of G.

REID [4] has shown that G=S if and only if E(G) is semi-simple. So we inve-
stigate the commutativity of E(G) under the condition that the radical of E(G) is
zero. First we remark that the quasidecomposition of a torsion-free group of finite
rank is essentially unique i.e. if G has finite rank then any quasi-decomposition of
G has only finitely many summands and if

N s

; ‘ SH, =G= 3K/
i i=1 s j=1
with the H; and K; strongly indecomposable (i=1,...,s; j=1, ..., 1), then s=¢
and for some permutation = of {l, 2, ..., t} we have K; is quasi-isomorphic to H,;,
(j=1,..,1 4.

. N rd .
Theorem 4. Let G be a torsion-free group of finite rank with E(G) semi-simple.
but not simple. Then E(G) is commutative if and only if in any quasi-decomposition
of G the summands have commutative endomorphism rings.

Proof. Assume E(G) is commutative, then E(G) is commutative. Since E(G)
has D.C.C. on right ideals and is semi-simple, we get E(G) = 4, +--- +4,, (direct
sum), where 4; is a field (=1, ..., m). Identify E(G) with this direct sum and write

E(G) = 3 fE(G), where 4,=f,E(G) (i=1, ..., m) and f; induces the projection
i=1 v
of E(G) onto 4;. To this decomposition of E(G) there corresponds a quasi-decomposi-
tion of G = > Gf; with E(Gf)=f,E(G)f,=4,, so that E(Gf) is a field. Hence
i=1 .

Gf; is strongly indecomposable (i=1, ..., m) ([4], Corollary 4. 3). Hence any quasi-
decomposition of G has m strongly indecomposable summands and each of these
summands has a commutative quasi-endomorphism ring and therefore a commuta-
tive endomorphism ring,

Conversely, assume that the condition for G with respect to quasi-decompos-
ability is satisfied. Since E(G) has D.C.C. on right ideals and is semi-simple, it
may be identified with a finite direct sum of matrix rings over division rings: E(G) =
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= A,+ - +4, (Wedderburn). This implies there is a set {e,, ..., e,} of non-zero
mutually orthogonal idempotents of E(G) whose sum is the identity in E(G):1 =

‘= e;+e,+ - +e,. Then there is a quasi-decomposition G = ">’ Ge; of G, which
i=1

corresponds to the direct decomposition of E(G) ([4], Theorem 3. 1). Now E(Ge;) =~
- =e;E(G)e;=4;e;=4,;, since ¢; is the unit element for 4;, so that 4; must be com-
nwtative. Hence E(G) is commutative and therefore E(G) is commutative. This
completes the proof of the theorem. o

From the semi-simplicity of E(G) one easily derives that the components Ge;
in a quasi-decomposition of G have a semi-simple quasi-endomorphism ring E(Ge;),
since the radical of ¢;E(G)e; (=E(Ge,)) is e;Ne;, where N is the radical of E(G).
Hence Theorem 4 reduces the case of groups G of finite rank with E(G) semi-simple
but not simple to the case of strongly indecomposable groups G of finite rank
with E(G) semisimple but not simple.

Next assume that G is a strongly indecomposable group with semi-simple
E(G). Then E(G) is a division algebra ([4], Corollary 4.3). Now we have the
following sufficient condition in order that E(G) be commutative: G has a com-
mutative E(G) if' G has a non-zero minimal pure fully invariant subgroup P, whose
rank k is square-free.

(Note that the case G =P or G is irreducible is contained in Theorem 3.)

Indeed, if the condition.is satisfied, then rank P={E(G):Q]=k, k square-free.
Since the dimension of E(G) over its center must be a square dividing k, E(G) is
commutative and an algebraic number field. Hence E(G) is commutative.

The condition is satisfied if the rank of G is 2 or 3. If G is irreducible, G=P
and the rank of G is square-free. If G is not irreducible, there exists a minimal non-
zero pure fully invariant subgroup P in G, distinct from G, and the rank of P is 1
or 2. Hence the condition is satisfied.

2. The Jacobson radical

All the groups G considered here are torsion-free groups of finite rank. So
E(G) always satisfies the D.C.C. for right ideals. It is well known that under this
condition G is strongly indecomposable if and only if E(G)|N is a division ring,
where N is the Jacobson radical of E(G) (Corollary 4. 3, [4]), i.e. E(G) is a local ring.

We prove now

Theorem 5. Let G be a torsion-free group such that E(G) satisfies the D.C.C.
on right ideals. Then the Jacobson radical of E(G)(=J(E(G))) is zero implies that
the Jacobson radical of E(G)(=J(E(G))) is zero i.e. E(G) is semi-simple.

9 A
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Proof. Since E(G) satisfies D.C.C. for right ideals, J(E(G)) coincides with
the union of all left nilpotent ideals in E(G) and J(E(G)) is nil. Hence J(E(G)) is
a pure ideal in E(G), since the nil radical of a torsion-free ring is a pure ideal ([2],
p. 271). It follows that nil radical of E(G)=E(G) nil radical of E(G), according
to the correspondence between pure ideals in E(G) and E(G). So we get nil radical
of E(G) = E(G)NJ(E(G)) and then E(G)NJ(E(G)) € J(E(G)).

Now suppose J(E(G))=0 and let ¢ € J(E(G)). Then ¢ €E(G), so In=0cZ
such that ng € E(G). Also np € J(E(G)), hence np € J(E(G)) N E(G) & J(E(G)) = 0,
50 np =0, which implies ¢ =0, since E(G) is torsion-free. Hence J(E(G))=0. This
completes the proof of Theorem 5.

Since E(G) is semi-simple if and only if G=3S, it follows 1mmed1ately

Corollary. Let G be a torsion-free group of finite rank. If the Jacobscn radical
J(E(G)) of the endomorphism ring E(G) is zero, then G=S.

One may ask whether J(E(G))=0 is a necessary condition in order that
- J(E(G))=0. This is not the case as may be seen from the following example. Let
G =Z(p) be the group of p-adic integers. Then E(G)=Z(p) and E(G)=K(p), the
p-adic number field. Hence J(E(G))=0, but J(E(G))=pZ(p), so J(E(G))=0. Of
course, if E(G) satisfies D.C.C. on right ideals, then nil radical of E(G):J(E(G)):z
= E(G)NJ(E(G)). Hence J(E(G))=0 if and only if J(E(G))=0 in this case.
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