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1. The Fourier—Laguerre expansion of a function f(x)€ L[0, =] is given by

(1' 1) f(A) ~ 2 CZ"L(“)(X),

where "=

(1.2) r'@+1) [”J“") a, = [ e=>xf(x) LY (x) di,
0

and L®(x) denotes the Laguerre polynomials of order « > —1, defined by the
generating function
w

tac) i§L#K@w"=(1—wr%*em{_T§zJ.

n=0

The nth Cesdro sum of order k of the series

1.4 Z L9 (t)

=

is, by definition, the coeflicient of #" in the expression

(1 -—I’) k—1 Z L(“)(t)r" _ (1 r)—k—l(l __r)-—oz-—l exp [_ ltr r] ,
n=0 -
and is therefore equal to L&+#+1)(y),
In this paper we shall discuss the order of Cesaro means of the series (1. 1)
at the point x=0. On account of the relation L®(0) = [’Hr;“] , we have

(1.5) 2 GLOO = {L@+D)" Ef-wmmwm

=0

(see SzEGHO [7], p. 269). Using the Cesaro means of the serics (1.4), we find that the
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nth Cesaro means of order k& of the series (1. 5) are given by

co

(1.6 PO = {APT @+ D) [ et f () LE () dr,
0
where AP = (’H];k].

The Cesaro summability of the series (1. 5) has been studied by KOGBETLIANTZ
[2] and SzEGHS [6]. It has been shown by SzeG6 [6] and [7], p. 270, that if f(x) is con-
tinuous at x =0 and if

So

(7 f e~ X2y k=113 | f(x)| dx < oo,
1

then the series (1. 1) is (C, k)-summable at the point x =0 with the sum f(0), provided
that k = a+1/2. '

In Theorem I of this paper we estimate the order of Cesaro means of the series
(1. 5) after replacing the continuity condition in Szegd’s theorem by a much lighter
condition. Similar results for Fourier-trigonometric series and for ultraspherical
series on a sphere were established by OBRECHKOFF [3], [4]. In Theorem Il we prove
an extension of Theorem I by introducing a parameter p thus arriving at a deeper
insight into the beﬁavioqr of Cesaro means. Such extensions in the case of Fourier-
trigonometric series were given by WaNG [8] and SunoucH! [5], while the author
[1] has earlier studied such a problem for the ultraspherical series on a sphere.

Theorem 1. If

(1.8) F(1) =f@du = o[log—:—]

and

oo

fe—t/Zta—kf-I/:s'f(’)ld’ < oo,

i
then .
a®(0)=o0(logn),

provided that k > a+1/2,

2. In the proof of the theorem we shall require the following order estimates
and asymptotic values of the Laguerre functions given by SzeG6 [7], pp. 175 and 239.
Order estimates. 1f o is an arbitrary real number, and c and w are fixed positive
constants, and n - <o, then.
X~V Q(p2- 1% if cn=x=o,

2.0 L (x)= {0 (),

if 0=x=c/n.
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Asymptotic property.*) If « and A are arbitrary real numbers, a >0 and 0 <y <4,
then for # —>eo
2.2) max e *2x* | L@ (x)| ~ no,

where

2.3) _ {1nax(/1—1/2, w2—1/4) if a=x=(@4—nn,

max (A—1/3, a/2—1/4) if x=a,

and the maximum at the left hand member of (2. 2) is taken in the respective interval
pointed out in (2. 3).

3. Proof of Theorem I. From (1. 6),

1/n 1 oo
3.1) a(0) = {A,S")F(a—l—l)}‘l[f + [+ [ } =L +L+1,.
0 1/n 1
Using the order estimate (2.1) we find that**)
l'ln 1/n
L=00™ [ ete|f)n+ttdt = 0@+ [ 1|/ @) di =
0 0
i/n

= 0 [ FOW" + 0+ [ 1+~ F(rydr =
(.2) °

1/n

1 1/n 1
=0+ [t"o [r log —]] + 0@+ f 0 [t“ log—] dt =
t)lo P t

1/n

= o(logn)+ 0@+ [log 1 [ 1" g7
=o(logn)+O0m**") gt @t Tl .

= o(logn)+o(logn)+o(l) = o(logn).

In I,, we make use of the first estimate of L%(x) given in (2. 1) and we obtain

T

all . o . . . . «
) If b0 and the sequence :b—l has finite positive limits of determination, we write a,~ b,,.
*¥) Condition (1.8) implies that
{2
. 1
F@) = / |f@)| du = o [t logT) .

0
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1
12 — O(n—k) fe—r,alf(,)ln(a+k+1)/2—1/41—(z+k+ 0/2-1/4 44 —
1/n - .

1
.3 =.0[n—-k+(a+k+ /2= 1/4] j 15I2=K12=3038 | (1) dt =

1/n

[+]

1/n o

1
= O[nalz—k/2+1(4,1—a/2+k/2—1/4] f—lf(tt)l dr = 0(1)

Ajn

= 0(1)o(logmy+0() [ @m = o(logn)+ O(1) = o(log ).
]
Finally, from (2.2) and (1.9),

I = 0@ [ e~ | f(O] | LEH+ D (1)) dit =

— O(n'k) f e—r/ztk+ 1/3|L,(,°‘+"+”(t)le“/2t°“ I/S_k]f(f)l dt =
(3.4 '
= 0(n % f e~2pe k1B £ O () dr = O(1) = o(log n).

The theorem gets proved on account of (3. 1), (3.2), (3.3) and (3. 4).

4. An additional parameter p, —1 <p <o, may be introduced into the theo-
rem proved above so as to obtain a still finer result:

Theorem II. If

[N p+1 v
tf ‘fiu)| dll:ol[lOg%] ] (t~0, -1 <p <o),
and if

oo

[ ezt f) it < o,

1

then o (0)=o[(logn)?*!], provided that k > a+1/2.
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Proof. As in the proof of Theorem I, we break the integral into I, +1, + 1.
I, gets disposed off exactly as before. Coming to 7,, we have

1/n

]1 — 0(/1"‘) [ e~ 1% If(f)l a+l.+1dt 0( u+1)f 1f(t)l ti+egr —

— 0(n1+1) [_,a+1 _/lelL)ldu] +0(na+1) (@+1) f [flf(u)l du ]dt

t

1/n

pt1 .
= o[(logn)** ']+ o(n** 1) f te [log %] dt = o[(logn)**1].
0
The estimate for /, is immediately obtained from (3. 3). This completes the proof.

I am grateful to Prof. R. S. MisHRA for his kind advice during the preparation
of the paper and to the referee for his valuable suggestion regardmg the presenta-
tion.

References

[1] D. P. GupTa, Sur I'approximation de la fonction par les moyennes arithmétiques de la série
ultrasphérique, Boll. Un. Mat. Ital., (3) 17 (1962), 166—171.

[2] E. KOGBETLIANTZ, Sur les séries d’Hermite et de Laguerre, C. R. Acad. Sct Paris, 193 (1931),
386—389.

[3] N. OBRECHKOFF, Sur la sommation des séries trigonométriques de Fourier par les moyennes

. arithmétiques, Bull. Soc. Math. France, 62 (1934), 84—109, 167—184.

[4] N. OBRECHKOFF, Sur la sommation de la série ultrasphérique par la méthode des moyennes arith-
métiques, Rend. Circ. Mat. Palermo, 59 (1936), 266—287.

[5] G. SunoucHi, Notes on Fourier Analysis, XLIV, On the summation of Fourier series, Tohoku
Math. J., 3 (1951), 114—122.

[6] G. SzEGH, Beitrige zur Theorie der Laguerreschen Polynome 1, Entwicklungssitze, Math. Z.
25 (1926), 87—115.

[71 G. SzeGO, Orthogonal Polynomials (New York, 1959).

[8] F. T. WaNG, On the convergence factors of Fourier series at a point, T6hoku Math. J., 41 (1963),
91—107.

( Received November 16, 1969; revised April 8, 1970)

o



