Bi-ideals in associative rings

By S. LAJOS and F. SZASZ in Budapest

Throughout this paper, by a ring 4 we shall mean an arbitrary associative ring.
For the terminology we refer to N. Jacosson [5], N. H. McCoy [16] and L. REDEr
[18]. In analogy to the notion of bi-ideal in semigroups (cf. A. H. CLiFFOrRD and
G. B. PrEsTON [3] vol. I) we shall study some properties of bi-ideals in rings.

For the arbitrary subsets X and Y of a ring A by the product XY we mean
the additive subgroup of the ring A which is generated by the set of all products
xy, where x€ X, and y€ Y. By a bi-ideal B of aring 4 we ‘understand a subring B of
A satisfying the following condition:

) S : - BABCB.

Obviously every one-sided (left or right) ideal of A is a bi-ideal, and the intersection
of a left and a right ideal of A is also a bi-ideal. We note that the bi-ideals in semi-
groups are special cases of the (i, n)-ideals introduced by S. LAjos [7]. He remarked
that the set of all bi-ideals of a regular ring is a multiplicative semigroup [10]. Some
generalizations of biideals of rings were discussed by F. SzAsz [22]. The con-
cept of the bi-ideal of semigroups was introduced by R. A. Goop and D. R. HUGHES.
[4]. Interesting particular cases of bi-ideals are the quasi-ideals of O. STEINFELD
[19]: A submodule Q of an associative ring A is called a quasi-ideal of 4 if the follow-
ing condition holds: '

@ QANAQ S Q.

It is known 'that the product of any two quasi-ideals is a bi-ideal (cf. S. LAsos [8]).
It may be remarked that in case of regular rings the notions of bi-ideal and quasi-
ideal coincide (see S. Lajos [10]). It was shown by the first'named author that there
exists semigroup S containing a bi-ideal B which is not a quasi-ideal of S (see. S.
Lasos [13}). :

Next we formulate some general properties of bi-ideals in rings. Then we cha-
racterize two important classes of associative rings in terms of bi-ideals.
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Propositi.on 1. The intersection of an arbitrary set of bi-ideals B, (A€ A) of a
ring A is again a bi-ideal of A.

Proof. Set B = (1 B,. Evidently B is a subring of A. From the inclusions
LEA
B,AB, S B; and BE B; (VA€ A) it follows that
3) BABC B.AB,CB, (VieA)

and consequently we have
) BARCB.
‘This proves Proposition 1. '

" Proposition 2. The intersection of a bi-ideal B of a ring A and of a subring
S of A is always a bi-ideal of the ring S.

Proof. Let us assume that

) C = BNS.
‘Since § is a subring and C< S we conclude

©) CSCC SSSCS.
‘On the other hand ' i
(7 CSCCS BSBS BABC B,

whence CSC € BNS = C.

Proposition 3. For an arbitrary subset T of a ring A and for a bi-ideal B of
A the products BT and TB both are bi-ideals of A.

Proof. By TAS A and BABC B we have
{8) B(TA)B < BAB < B.

Moreover, we have the following monotonity property of the product defined in the
introduction above:

9) ' XS Y=2XZEYZ
for arbitrary subsets X, Y, Z of the ring A. Then (8) and (9) imply the relation
(10) (BT)A(BT) < BT,

which together with (BT)BT) = (BTB)T € (BAB)T < BT means that the product
BT is a bi-ideal of the ring A. The proof concerning the product T8 is similar to that
-of BT.

In an analogy to the case of semigroups (cf. S. Lajos [8]) we obtain the follow-
ing result.
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. Proposi tion 4. Let Bbean arbitrary bi-ideal of the ring A, and C be a bi-ideal
of the ring B such that C 2=C. Then C is a bi-ideal of the ring A.

Proof. The suppositions BABgB and CBCESC imply
an . CAC=C?4C?*CC(BAB)CSCBCSC

which proves the statement.

Proposition 5. An arbitrary associative ring A contains no non-trivial bi-
ideal if and only if" A either is a zero ring of prime order or A is a division ring. .

Proof. Suppose that the ring A contains no non-trivial bi-ideals. Then clearly
A contains no non-trivial right ideals, and thus A satisfies the minimum condition
on right ideals. Suppose that A4 is not semi-simple in the sense of JacossoN. Then A
is an Artinian radical ring, which is nilpotent by a well-known result due to CH.
Hopkins (cf. N. JAcoBsoN [3]), and finally 4 is a zero ring of prime order in absence
of non-trivial right ideals. On the other hand, if 4 is semi-simple then it is a division
ring by the famous WEDDERBURN-—ARTIN structure theorem (cf. Jacosson {5} or
REDEI [18]), which proves the “only if” part of Proposition 5. '

Conversely assume that A either is a zero ring of prime order or a division ring.
We shall show that A has no non-trivial bi-ideals. This assertion is trivially true for
a.zero ring of prime order because every additive subgroup in a zero ring is a two-
sided ideal. If A4 is a division ring and B is a non-zero bi-ideal of A4, then the con-
dition
(12) BABS B

implies B= A, because in a division ring 4 we have xA = A = Ax for every non-zero
element x € A, consequently

(13) _ BAB=B(AB)=BA=AZBCA.

Remark 1. An elementary and short proof of the fact that a ring 4 contain-
ing no non-trivial right ideals either is a zero ring of prime order or a division ring,
can be found in a paper of F. SzAsz [20].

Proposition 6. Let T be a non- empr y subset of the ring A. Then the bi-ideal of
A generated by T is of the form:

(14) ' Toay = IT+T?*+TAT,
where I denotes the ring uf rational integers.

Proof. The verification of the statement is almost trivial and we omit it.
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Remark 2. By Proposition 1 the intersection of any set of bi-ideals of a ring
A is also a bi-ideal of 4, and thus the bi-ideal T, ;, defined above evidently commdes
with the intersection of all the bi-ideals of A containing T. -

Remark 3. By Proposition 6 we have:
(i) The principal bi-ideal (x)(1 1y generated by the single element x of A can be
represented as follows:

(15) . )11y = Ix+Ix* +xA4x.
(it) In the particular case of an idempotent element e of the ring 4 we obtain:
(16) . (€),1y=ede.
(iti) For an additive subgroup T of A one has: '
(17) ' T(l,l) = T+ T2+TAT.
(iv) If S isa subring of the ring A4 then
- (18) Siay = S+ SAS.

Proposition 7. For any associative ring A denote by A the set of all additive
subgroups of A, and A, the set of all bi-ideals of A. Then A and A, are semigroups under
multiplication of subsets (defined in the introduction of this paper), and A, is a two-
sided ideal of A.

Proof. The statement of this proposition is an immediate consequence of
Proposition 3 and the definition given in the introduction for the multiplication of
subsets.

Remark 4. The multiplicative semigroup of all non-empty subsets of an
'arbitrary semigroup was formerly investigated by S. Lajos [8]. He proved that the
set of all bi-ideals of a semigroup is a two-sided ideal of the multiplicative semi-
“group of all non-empty subsets of the semigroup.

Remark 5. J. CaLAls [2] gave an explicite example for a semigroup having

two quasi-ideals whose product fails to be a quasi-ideal. In this connection it may -

be remarked that one of the authors, S. Lajos [10] proved that for the case -of re-
gular rings as well as for regular semigroups the product of any two quasi-ideals is
again a quasi-ideal. '

For the verification of the interesting fact that every left ideal of a right ideal
of an arbitrary associative ring can be represented as a right ideal of a suitable left
ideal of the ring, we shall prove the following statement in analogy to'a semigroup-
theoretical result due to S. Lajos [7]. '
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Theorem 1. For an arbitrary non-empty subset B of an a;v_soqiative ring the
Jollowing conditions are pairwise equjvalent.' ’

(1) B is a bi-ideal of A.
. (I) B is a left ideal of a right ideal of A.
(111) B is a right ideal of a left ideal of A.

Proof. It is enough to prové that (I) is equivalent to (II), because condition
(I11) is the left-right dual of (II), therefore the proof of the equivalence of (I) and (III)
is similar to that of (I)<=(II). '

To show that (1) implies (I1), suppose that the subset B is a bi-ideal of the ring
A. Let (B), be the right ideal of A generated by B. It will be verified that B is a left
ideal of the ring (B),. Indeed, the relations (B), = B+BA and BABC B imply

(19) . (B),B = (B+BA)B S B*+BAB C B.

Conversely, to prove that condition (IT) implies (I), assume that the subset B of
A is a left ideal of a right ideal R of 4. Then the inclusions

(20) RASR, RBCBH
imply o
?J)) BABZ (RA)BS RBC B,

which together with the obvious fact that B is a subring of A yields the wished
assertion. 4 '

In what follows we will be concerned with different properties of bi-ideals
in special classes of associatiye'rings. Among other things the characterization of
some classes of rings will be given by means of bi-ideals.

Theorem 2. For an associative ring A the following conditions are mutually
equivalent:

() - A is regular.

(I) ° LNR = RL for every left ideal L and for every right ldeal R of A.
(IIl)  For every pair of elements a, b of A, (a), N\ (b), = (a), (b),

(IV)  For any element a of A, (@), (a), = (a).(a);- -

V)  (@)q,1)=(a).(a), for any element a of A.

(VD) (@)1,1y=aAa for any element a of A.

(VII) QAQ = Q for any quasi-ideal Q of A.

(V) BAB= Bfor any bi-ideal B of A.

Proof. 1) (I)c»(II) This was proved- by L. KovAcs [6] It is ev1dent that

1) The equivalence of conditions (I)—(VI) in case of semigroups was proved by Lajos [9], (11].
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(Il):(lll)=>(lV) The implication (EV)=(1) was proved by F. SzAsz [21] Thus we
have shown the equivalence of the first four conditions.

(1)=(V). Assume, that A4 is a regular ring. Then the solvability of any equation
axa=a implies

(22) (@), =(ax),=axA
and :
(23) (@), =(xa), = Axa

where (ax)?=ax and (xa)?=xa. Hence

(24) " (a),(a), = axA-Axa SaAa
and we conclude .
(25) . (@),(a), S la+1a®+ada = (a),)-

Conversely, by condition (IV), it is obvious that
(26) @1 & @.N(a) = (@, (a),
Thus (I) implies (V).

To prove that (V)=(l), suppose that the ring A satisfies condition (V). Then
we have

(27) : (d)(l,l) = (a),(a),
for any element a in A. (27) ifnplies
(28) ac(la+aA)(la+ Aa) = la®+ada+aAd?a = la? +aAa.
In other words, there exists a rational integer m and an element b€ A4, such fhat
29) _ a = ma*+aba = a(ma-+ ba).
For the element e = ma+ ba we obtain a=ae and e2=e, whence
a = ae? = a(ma+ba)? = a(m®a?+ maba + mba® + baba) € aAa.
This implies (1). |
' It is casy to show that in case of regular rings we have
(30) ’ (a)r (a)l =aAa’
therefore (I) <= (VI). ' r
(I)e(VII). This has been proved by J. Lun [15]
(I)=(VIII). This follows at once from a result of S. LAJOS [10], Theorem 1, and
from the above mentioned .assertion of J. LUH.

(VIII=(). If A is a ring satisfying condition (VIII), then it satisfies also (VII),
which implies (I). :
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Therefore Theorem 2 is completely proved.

Theorem 3. The fo]lowing fifteen conditions for an associative ring are pairwise
equivalent:
D A is strongly regular.
(II) A is a two-sided ?) regular ring.
“(Il) A is a subcommutative ®) regular ring.

(IV)  B2=B for any bi-ideal B of A.

(V)  0Q2=Q for any quasi-ideal Q of A. :

(VI) RL = LN R C LR for any left ideal L and for any right ideal R of A.

(VII) LN R = LR for every left ideal L and for every right ideal R of A.

(vill) L,\L, = L, L, and R, "R, = R, R, for any left ideals L,, L, and for
any right ideals R,, R, of A. '

(IX) LNT = LT and RNT = TR for every left ideal L, for every right ideal
R, and for every two-sided ideal T of A.

(X)  Aisregular and it is a subdirect. sum of division rings.

(IX) A is a regular ring with no non-zero nilpotent elements.

XMl) L,NL, = L,L, for any two left ideals. of A.

(XIII) R, N R, = R R, for any two right ideals of A.

(XIV) LN\T = LT for any left ideal L and for any two-sided ideal T of A.

(XV) RNT = TR for any right ideal R and for any two-sided ideal T of A.

Proof. (I)«(Il). This was proved in [14].
(I) = (II). Assume that A4 is a two-sided regular ring. Then every onesided
(left or right) ideal of A4 is a two-sided ideal in 4, consequently we have

3D AxASxA and AxAE Ax.

The solvability of any equation aya=a (aEA) implies acaAd and a€ Aa, for every
a€ A, therefore by (31)

32) : AxSxA and xAgAx.'

Thus we conclude that x4 = Ax for every element x in A. This exactly is the (two-
sided) subcommutativity of the regular ring 4. :

(ITI) = (II). Suppose that A is a (two-sided) subcommutative regular ring.
"Then every principal right ideal (a), of 4 can be generated by an idempotent element
e of A, that is '

33 | @, =(@),=ed, e*=e.

%) An associative ring A is said to be a two-sided (or duo) ring if every one-sided (left or right)
ideal of A4 is a two-sided ideal (cf. e.g. THIERRIN [25]).

%) For the definition of subcommutative ring we refer to BARB]LIAN [1]: a ring A is called
(two-sided) subcommutative if a4 = Aa for any a€ A.
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From condition (IIT) and Theorem 2 we conclude
(34 A(a), =A(ed) =eA%=eA =(a),,

whence (a), is a two-sided ideal. Consequently an arbitrary right ideal R of A4 is
also a two-sided ideal of the ring A. Similarly it can be proved that every left ideal -
L of A is also a two-sided ideal in 4. Thus we have proved that (II)«=(III).

() (V). This follows from Theorem 2 of L. Kovacs[6] and from authors’
Theorem in [14].

Next we show that (IV)<(V). :

The implication (IV)=(V) is evident. The converse of thls statement is a con-
sequence of the above mentioned result of L. KovAcs, and Theorem 1 of S. Lasos [10]. -

Finally the equivalence of the conditions (VI)—(XV) with each other and with
condition (I) was proved [14].

Thus Theorem 3 is proved. ,

1t is known that every regular ring is semisimple in the sense of N. JACOBSON.
The following assertion characterizes the semisimple rings A in the class of rmgs
with property: ,
(%) The lattice of all right ideals of A is a chain®).

Proposition 8. For a ring A with property (%) the following conditions are
equivalent:

(1) - A is semisimple.

(1) A is regular.

(II) A is strongly regular.

(IV) A is direct sum of division rings.

(V) - A is a division ring.

Proof. In what follows we assume that the ring A satisfies the condition ().
Tt is easy to see, that Proposition 8 will be proved if we demonstrate the equivalence
of (I) and (V), because every class (V) of rings in Proposition 8 contains the class of
rings with property (N +1), where N=I, IL III, IV.

" Suppose that A is a ring with radical J =0. Then the intersection of the modular
maximal right ideals R; (A€ A) of A4 is (0) by N. Jacosson [5], Chapter I. In virtue
of property () and of the maximality of the right ideal R, we conclude R, =0,
whence A contains no non-trivial right ideals. Therefore A4 is a division ring.

Proposition 8 is completely proved.

Remark 6. A subclass of the class of rmgs with property (%) was earlier
discussed by E. C. PosnER [17]. Moreover, L. A. SKORNJAKOV [24] has obtained some
results concerning rings with the left-right dual of property ().

%) Cf. SzAsz [23].
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~ Remark 7. Lét A be the ring of all matrices of type 22 over the field with
two elements. Then A is a ring with sixteen elements having the property that BAB=B
holds for every bi-ideal B of A. Moreover let B0 be the bi-ideal generated by the

element -
0 1
o ol

Then we obviously have B} =03 B,. Evidently A4 is regular, but not strongly regular
and A does not satisfy condition (*).
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