
Bi-ideals in associative rings 

By S. LAJOS and F. SZÁSZ in Budapest 

Throughout this paper, by a. ring A we shall mean an arbitrary associative ring. 
For the terminology we refer to N . JACOBSON [5], N . H . McCoy [ 1 6 ] and L . R E D E I 

[ 1 8 ] . In analogy to the notion of bi-ideal in semigroups (cf. A . H . CLIFFORD and 
G. B. PRESTON [3] vol. I) we shall study some properties of bi-ideals in rings. 

For the arbitrary subsets X and Y of a ring A by the product XY we mean 
the additive subgroup of the ring A which is generated by the set of all products 
xy, where X, and Y. By a bi-ideal B of a ring A we 'understand a subring B of 
A satisfying the following condition: 

(1) BAB Q B. 

Obviously every one-sided (left or right) ideal of A is a bi-ideal, and the intersection 
of a left and a right ideal of A is also a bi-ideal. We note that the bi-ideals in semi-
groups are special cases of the ( M , «)-ideals introduced by S . LAJOS [7] . He remarked 
that the set of all bi-ideals of a regular ring is a multiplicative semigroup [10]. Some 
generalizations of biideals of rings were discussed by F. SZASZ [22]. The con-
cept of the bi-ideal of semigroups was introduced by R. A. G O O D and D. R. H U G H E S 

[4]. Interesting particular cases of bi-ideals are the quasi-ideals of O. STEINFELD 

[19]: A submodule Q of an associative ring A is called a quasi-ideal of A if the follow-
ing condition holds: 

(2) QAHAQQQ. 

It is known that the product of any two quasi-ideals is a bi-ideal (cf. S. LAJOS [8]). 
It may be remarked that in case of regular rings the notions of bi-ideal and quasi-
ideal coincide (see S. LAJOS [10]). It was shown by the first named author that there 
exists semigroup S containing a bi-ideal B which is not a quasi-ideal of S (see. S. 
LAJOS [ 1 3 ] ) . 

Next we formulate some general properties of bi-ideals in rings. Then we cha-
racterize two important classes of associative rings in terms of bi-ideals. 

\ 
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Propos i t ion 1. The intersection of an arbitrary set of bi-ideals B, (/ £ A) of a 
ring A is again a bi-ideal of A. 

Proof. Set B = H B,. Evidently B is a subring of A. From the inclusions 

BXABXQBX and figfi;. (VAe A) it follows that 

(3) BABQBkAB;fgBk (V/G/1) 

and consequently we have 
(4) BABQB. 
This proves Proposition 1. 

Propos i t ion 2. The intersection of a bi-ideal B of a ring A and of a subring 
S of A is always a bi-ideal of the ring S. 

Proof. Let us assume that 
<5) C = B(~)S. 

Since S is a subring and CQS we conclude 

(6) CSCQSSSQS. 
On the other hand 
(7) CSCQBSBQBABQB, 

whence CSC Q BHS = C. 

Propos i t ion 3. For an arbitrary subset T of a ring A and for a bi-ideal B of 
A the products BT and TB both are bi-ideals of A. 

Proof . By TA<gA and BABQB we have 

<8) B(TA)B Q BAB Q B. 

Moreover, we have the following monotonity property of the product defined in the 
introduction above: 

(9) X^Y=>XZ^YZ 

for arbitrary subsets X, Y, Z of the ring A. Then (8) and (9) imply the relation 

<10) ( B T ) A ( B T ) Q B T , 

which together with (BT)(BT) = {BTB)T gj (BAB)TQBT means that the product 
.fir is a bi-ideal of the ring A. The proof concerning the product TB is similar to that 
of BT. 

In an analogy to the case of semigroups (cf. S. LAJOS [8]) we obtain the follow-
ing result. 
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Propos i t ion 4. Let B be an arbitrary bi-ideal of the ring A, and C be a bi-ideal 
of the ring B such that C2 = C. Then C is a bi-ideal of the ring A. 

Proof. The suppositions BABQB and CBCQC imply 

(11) CAC=C2AC2QC(BAB)CQCBCQC 

which proves the statement. 

Propos i t ion 5. An arbitrary associative ring A contains no non-trivial bi-
ideal if and only if A either is a zero ring of prime order or A is a division ring. 

Proof. Suppose that the ring A contains no non-trivial bi-ideals. Then clearly 
A contains no non-trivial right ideals, and thus A satisfies the minimum condition 
on right ideals. Suppose that A is not semi-simple in the sense of JACOBSON . Then A 
is an Artinian radical ring, which is nilpotent by a well-known result due to CH. 
H O P K I N S (cf. N . JACOBSON [5]), and finally A is a zero ring of prime order in absence 
of non-trivial right ideals. On the other hand, if A is semi-simple then it is a division 
ring by the famous W E D D E R B U R N — A R T I N structure theorem (cf. JACOBSON [5] or 
REDEI [18]), which proves the "only if" part of Proposition 5. 

Conversely assume that A either is a zero ring of prime order or a division ring. 
We shall show that A has no non-trivial bi-ideals. This assertion is trivially true for 
a zero ring of prime order because every additive subgroup in a zero ring is a two-
sided ideal. If A is a division ring and B is a non-zero bi-ideal of A, then the con-
dition 
(12) BAB^B 

implies B = A, because in a division ring A we have xA = A =Ax for every non-zero 
element x£A, consequently 

(13) BAB = B(AB) = BA=AQBQA. 

Remark 1. An elementary and short proof of the fact that a ring A contain-
ing no non-trivial right ideals either is a zero ring of prime order or a division ring, 
can be found in a paper of F. SZASZ [20]. 

Propos i t ion 6. Let T be a non-empty subset of the ring A. Then the bi-ideal of 
A generated by T is of the form: 

(14) T(Ut) = IT+T2 + TAT, 

where I denotes the ring of rational integers. 

Proof. The verification of the statement is almost trivial and we omit it. 
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Remark 2. By Proposition 1 the intersection of any set of bi-ideals of a ring 
A is also a bi-ideal of A, and thus the bi-ideal T(l ^defined above evidently coincides 
with the intersection of all the bi-ideals of A containing T. 

Remark 3. By Proposition 6 we have: 
(i) The principal bi-ideal (*)(i,i) generated by the single element x of A can be 

represented as follows: 

(15) (*)(i,u = Ix + lx2 + xAx. 

(ii) In the particular case of an idempotent element e of the ring A we obtain: 

(16) (e ) ( l i l ) = eAe. 

(iii) For an additive subgroup T of A one has: 

(17) T(U1) =• T+T2 + TAT. 

(iv) If S is a subring of the ring A then 

(18) S (1 ;1 ) = S + S A S . 

Propos i t ion 7. For any associative ring A denote by A the set of all additive 
subgroups of A, and A t the set of all bi-ideals of A. Then A and A, are semigroups under 
multiplication of subsets (defined in the introduction of this paper), and A, is a two-
sided ideal of A. 

Proof. The statement of this proposition is an immediate consequence of 
Proposition 3 and the definition given in the introduction for the multiplication of 
subsets. 

Remark 4. The multiplicative semigroup of all non-empty subsets of an 
arbitrary semigroup was formerly investigated by S . LAJOS [8]. He proved that the 
set of all bi-ideals of a semigroup is a two-sided ideal of the multiplicative semi-
group of all non-empty subsets of the semigroup. 

Remark 5. J. CALAIS [2] gave an explicite example for a semigroup having 
two quasi-ideals whose product fails to be a quasi-ideal. In this connection it may 
be remarked that one of the authors, S . LAJOS [10 ] proved that for the case of re-
gular rings as well as for regular semigroups the product of any two quasi-ideals is 
again a quasi-ideal. 

For the verification of the interesting fact that every left ideal of a right ideal 
of an arbitrary associative ring can be represented as a right ideal of a suitable left 
ideal of the ring, we shall prove the following statement in analogy to a semigroup-
theoretical result due to S. LAJOS [7]. 
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Theorem 1. For an arbitrary non-empty subset B of an associative ring the 
following conditions are pairwise equivalent: 

(I) B is a bi-ideal of A. 
(II) B is a left ideal of a right ideal of A. 
(III) B is a right ideal of a left ideal of A. 

Proof. It is enough to prove that (I) is equivalent to (II), because condition 
(III) is the left-right dual of (II), therefore the proof of the equivalence of (I) and (III) 
is similar to that of (1)<=>(II). 

To show that (I) implies (II), suppose that the subset B is a bi-ideal of the ring 
A. Let (B)r be the right ideal of A generated by B. It will be verified that B is a left 
ideal of the ring (B) r . Indeed, the relations (B)r = B + BA and BABQB imply 

(19) {B\B = (B + BA)B Q B2+BAB Q B. 

Conversely, to prove that condition (II) implies (I), assume that the subset B of 
A is a left ideal of a right ideal R of A. Then the inclusions 

(20) RA<gR, RBQB 
imply 
(21) BABQ(RA)BQRB<^B, 

which together with the obvious fact that B is a subring of A yields the wished 
assertion. 

In what follows we will be concerned with different properties of bi-ideals 
in special classes of associative rings. Among other things the characterization of 
some classes of rings Will be given by means of bi-ideals. 

Theorem 2. For an associative ring A the following conditions are mutually 
equivalent: 

(I) A is regular. 
(II) Lf]R — RL for every ¡eft ideal L and for every right ideal R of A. 
(III) For every pair of elements a, b of A, {a)rC\(b)l = (a)r(b),. 
(IV) For any element a of A, (a)rn(a), = (a)r(a),. 
(V) (a)(i, i) =(a)r(a)2 for any element a of A. 
(VI) (a)(Ui} = aAa for any element a of A. 
(VII) QAQ = Q for any quasi-ideal Q of A. 
(VIII) BAB = B for any bi-ideal B of A. 

Proof. 1) (I)-O-(II). This was proved by L . KOVÁCS [6]. IT is evident that 

The equivalence of conditions (I)—(VI) in case of semigroups was proved by LAJOS [9], [11]. 
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(IL)=KLL1)=>(LV). T H E implication (IV)=»(L) was proved by F . SZASZ [21]. Thus we 
have shown the equivalence of the first four conditions. 

(I)=>(V). Assume, that A is a regular ring. Then the solvability of any equation 
axa = a implies 
(22) (a)r = (ax)r = ax A 
and 

(23) (a)i = (xa)i = Axa 

where (ax)2 = ax and (xa) 2 =xa . Hence 
(24) (a)r(a)i = ax A-Axa QaAa 
and we conclude 

(25) (a),^ Q Ia + Ia2 + aAa = (a\ui). 

Conversely, by condition (IV), it is obvious that 
(26) («)<,,„ i (a),0(0), = (a)r(a)t, 
Thus (I) implies (V). 

To prove that (V)=>(I), suppose that the ring A satisfies condition (V). Then 
we have 

(27) (<0(i,. > = (*),(«)« 

for any element a in A. (27) implies 

(28) a 6 (la + aA)(Ia + Aa) = la2 + aAa + aA2a = Ia2 + aAa. 

In other words, there exists a rational integer m and an element b£A, such that 

(29) a = ma2 + aba = a(ma + ba). 

For the element e = ma + ba we obtain a = ae and e2 = e, whence 

a = ae2 = a(ma + ba)2 = a(m2a2 + maba + mba2+baba)£aAa. 

This implies (1). 
It is easy to show that in case of regular rings we have 

(30) (a)r(a),=aAa, 
therefore (I)o(VI). ' 

(I)<=>(VII). This has been proved by J. LUH [15]. 
(I)=>(VIII). This follows at once from a result of S . LAJOS [10], Theorem 1, and 

from the above mentioned assertion of J. LUH. 
(VIII =>(I). If A is a ring satisfying condition (VIII), then it satisfies also (VII), 

which implies (1)! 
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Therefore Theorem 2 is completely proved. 

Theorem 3. The following fifteen conditions for an associative ring are pairwise 
equivalent: 

(I) A is strongly regular. 
(II) A is a two-sided2) regular ring. 
(III) A is a subcommutative3) regular ring. 
(IV) B2 = B for any bi-ideal B of A. 
(V) Q 2 = Q for any quasi-ideal Q of A. 
(VI) RL = LC) R Q LR for any left ideal L and for any right ideal R of A. 
(VII) L H R = LR for every left ideal L and for every right ideal R of A. 
(VIII) Ll C)L2 = Lx L2 and 7?, C)R2 = RlR2for any left ideals Lx, L2 and for 

any right ideals R, ,R2 of A. 
(IX) L fl T = LT and RC\T = TRfor every left ideal L, for every right ideal' 

R, and for every two-sided ideal T of A. 
(X) A is regular and it is a subdirect. sum of division rings. 
(IX) A is a regular ring with no non-zero nilpotent elements. 
(XII) Llf]L2 — LyL2 for any two left ideals, of A. 
(XIII) R, C\R2 = Rt R2 for any two right ideals of A. 
(XIV) L Pi T = LT for any left ideal L and for any two-sided ideal T of A. 
(XV) 7?H T = TR for any right ideal R and for any two-sided ideal T of A. 

Proof. (I)o(IJ). This was proved in [14]. 
(II) => (HI). Assume that A is a two-sided regular ring. Then every onesided 

(left or.right) ideal of A is a two-sided ideal in A, consequently we have 

(31) AxAQxA and AxAQAx. 

The solvability of any equation aya = a (a£A) implies a£aA and adAa, for every 
a £A, therefore by (31) 
(32) AxQxA and xAQAx. 

Thus we conclude that xA=Ax for every element x in A. This exactly is the (two-
sided) subcommutativity of the regular ring A. 

(III) (II). Suppose that A is a (two-sided) subcommutative regular ring. 
Then every principal right ideal (a)r of A can be generated by an idempotent element 
e of A, that is 
(33) (a\ = (e)r = eA, e2 = e. 

2) An associative ring A is said to be a two-sided (or duo) ring if every one-sided (left or right) 
ideal of A is a two-sided ideal (cf. e.g. THIERRIN [251). 

3) For the definition of subcommutative ring we refer to BARBILIAN [1]: a ring A is called 
(two-sided) subcommutative if aA = Aa for any azA. 
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From condition (III) and Theorem 2 we conclude 

<34) A(a)r = A(eA) = eA2 = eA = (a)r, 

•whence (a)r is a two-sided ideal. Consequently an arbitrary right ideal R of A is 
also a two-sided ideal of the ring A. Similarly it can be proved that every left ideal 
L of A is also a two-sided ideal in A. Thus we have proved that (II)<=>(111). 

(I)o(V). This follows from Theorem 2 of L. KOVÁCS [6] and from authors' 
Theorem in [14]. 

Next we show that (IV)-o-(V). 
The implication (IV)=>(V) is evident. The converse of this statement is a con-

sequence of the above mentioned result of L . KOVÁCS , and Theorem 1 of S . LAJOS [10] . 

Finally the equivalence of the conditions (VI)—(XV) with each other and with 
condition (I) was proved [14]. 

Thus Theorem 3 is proved. 
It is known that every regular ring is semisimple in the sense of N . JACOBSON. 

The following assertion characterizes the semisimple rings A in the class of rings 
with property: 
(*) The lattice of all right ideals of A is a chain*). 

Propos i t ion 8. For a ring A with property (*) the following conditions are 
equivalent: 

(I) A is semisimple. 
(II) A is regular. 
(III) A is strongly regular. 
(IV) A is direct sum of division rings. 
(V) A is a division ring. 

Proof. In what follows we assume that the ring A satisfies the condition (*) . 
It is easy to see, that Proposition 8 will be proved if we demonstrate the equivalence 
of (I) and (V), because every class (N) of rings in Proposition 8 contains the class of 
rings with property (N + I), where N = I, II, III, IV. 

Suppose that A is a ring with radical J~0. Then the intersection of the modular 
maximal right ideals Rx (/.€ A) of A is (0) by N. JACOBSON [5], Chapter I. In virtue 
of property ( * ) and of the maximality of the right ideal Rx we conclude Rk = 0, 
whence A contains no non-trivial right ideals. Therefore A is a division ring. 

Proposition 8 is completely proved. 
Remark 6. A subclass of the class of rings with property ( * ) was earlier 

•discussed by E . C . POSNER [17] . Moreover, L . A . SKORNJAKOV [24] has obtained some 
results concerning rings with the left-right dual of property (*'). 

4) Cf . SZÁSZ [23]. 
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Remark 7. Let A be the ring of all matrices of type 2 X 2 over the field with 
two elements. Then A is a ring with sixteen elements having the property that BAB = B 
holds for every bi-ideal В of A. Moreover, let B0 be the bi-ideal generated by the 
element 

0 Í 
0 0 ' 

Then we obviously have В1=0^Во. Evidently A is regular, but not strongly regular 
and A does not satisfy condition (*). 
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