Bi-ideals in associative rings

By S. LAJOS and F. SZÁSZ in Budapest

Throughout this paper, by a ring A we shall mean an arbitrary associative ring. For the terminology we refer to N. Jacobson [5], N. H. McCoy [16] and L. Réder [18]. In analogy to the notion of bi-ideal in semigroups (cf. A. H. Clifford and G. B. Preston [3] vol. I) we shall study some properties of bi-ideals in rings.

For the arbitrary subsets X and Y of a ring A by the product $X Y$ we mean the additive subgroup of the ring A which is generated by the set of all products $x y$, where $x \in X$, and $y \in Y$. By a bi-ideal B of a ring A we 'understand a subring B of A satisfying the following condition:

$$
\begin{equation*}
B A B \subseteq B \tag{1}
\end{equation*}
$$

Obviously every one-sided (left or right) ideal of A is a bi-ideal, and the intersection of a left and a right ideal of A is also a bi-ideal. We note that the bi-ideals in semigroups are special cases of the (m, n)-ideals introduced by S. LAJOS [7]. He remarked that the set of all bi-ideals of a regular ring is a multiplicative semigroup [10]. Some generalizations of biideals of rings were discussed by F. Szász [22]. The concept of the bi-ideal of semigroups was introduced by R. A. Good and D. R. Hughes [4]. Interesting particular cases of bi-ideals are the quasi-ideals of O. Sternfeld [19]: A submodule Q of an associative ring A is called a quasi-ideal of A if the following condition holds:

$$
\begin{equation*}
Q A \cap A Q \subseteq Q \tag{2}
\end{equation*}
$$

It is known that the product of any two quasi-ideals is a bi-ideal (cf. S . Lajos [8]). It may be remarked that in case of regular rings the notions of bi-ideal and quasiideal coincide (see S. Lajos [10]). It was shown by the first named author that there exists semigroup S containing a bi-ideal B which is not a quasi-ideal of S (see. S . Lajos [13]).

Next we formulate some general properties of bi-ideals in rings. Then we characterize two important classes of associative rings in terms of bi-ideals.

Proposition 1. The intersection of an arbitrary set of bi-ideals $B_{\lambda}(\lambda \in \Lambda)$ of a ring A is again a bi-ideal of A.

Proof. Set $B=\bigcap_{i \in A} B_{\lambda}$. Evidently B is a subring of A. From the inclusions $B_{\lambda} A B_{\lambda} \subseteq B_{\lambda}$ and $B \subseteq B_{\lambda}(\forall \lambda \in \Lambda)$ it follows that

$$
\begin{equation*}
B A B \subseteq B_{i} A B_{i} \subseteq B_{\lambda} \quad(\forall \lambda \in \Lambda) \tag{3}
\end{equation*}
$$

and consequently we have

$$
\begin{equation*}
B A B \subseteq B \tag{4}
\end{equation*}
$$

This proves Proposition 1.
Proposition 2. The intersection of a bi-ideal B of a ring A and of a subring S of A is always a bi-ideal of the ring S.

Proof: Let us assume that

$$
\begin{equation*}
C=B \cap S \tag{5}
\end{equation*}
$$

Since S is a subring and $C \cong S$ we conclude

$$
\begin{equation*}
C S C \subseteq S S S \subseteq S \tag{6}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
C S C \subseteq B S B \subseteq B A B \subseteq B \tag{7}
\end{equation*}
$$

whence $C S C \subseteq B \cap S=C$.
Proposition 3. For an arbitrary subset T of a ring A and for a bi-ideal B of A the products $B T$ and $T B$ both are bi-ideals of A.

Proof. By $T A \subseteq A$ and $B A B \subseteq B$ we have

$$
\begin{equation*}
B(T A) B \subseteq B A B \cong B \tag{8}
\end{equation*}
$$

Moreover, we have the following monotonity property of the product defined in the introduction above:

$$
\begin{equation*}
X \subseteq Y \Rightarrow X Z \cong Y Z \tag{9}
\end{equation*}
$$

for arbitrary subsets X, Y, Z of the ring A. Then (8) and (9) imply the relation

$$
\begin{equation*}
(B T) A(B T) \subseteq B T \tag{10}
\end{equation*}
$$

which together with $(B T)(B T)=(B T B) T \subseteq(B A B) T \subseteq B T$ means that the product $B T$ is a bi-ideal of the ring A. The proof concerning the product $T B$ is similar to that of $B T$.

In an analogy to the case of semigroups (cf. S. Lajos [8]) we obtain the following result.

Proposition 4. Let B be an arbitrary bi-ideal of the ring A, and C be a bi-ideal of the ring B such that $C^{2}=C$. Then C is a bi-ideal of the ring A.

Proof. The suppositions $B A B \subseteq B$ and $C B C \subseteq C$ imply

$$
\begin{equation*}
C A C=C^{2} A C^{2} \sqsubseteq C(B A B) C \cong C B C \cong C \tag{11}
\end{equation*}
$$

which proves the statement.
Proposition 5. An arbitrary associative ring A contains no non-trivial biideal if and only if A either is a zero ring of prime order or A is a division ring.

Proof. Suppose that the ring A contains no non-trivial bi-ideals. Then clearly A contains no non-trivial right ideals, and thus A satisfies the minimum condition on right ideals. Suppose that A is not semi-simple in the sense of Jacobson. Then A is an Artinian radical ring, which is nilpotent by a well-known result due to CH . Hopkins (cf. N. Jacobson [5]), and finally A is a zero ring of prime order in absence of non-trivial right ideals. On the other hand, if A is semi-simple then it is a division ring by the famous Wedderburn-Artin structure theorem (cf. Jacobson [5] or Réder [18]), which proves the "only if" part of Proposition 5.

Conversely assume that A either is a zero ring of prime order or a division ring. We shall show that A has no non-trivial bi-ideals. This assertion is trivially true for a zero ring of prime order because every additive subgroup in a zero ring is a twosided ideal. If A is a division ring and B is a non-zero bi-ideal of A, then the condition

$$
\begin{equation*}
B A B \sqsubseteq B \tag{12}
\end{equation*}
$$

implies $B=A$, because in a division ring A we have $x A=A=A x$ for every non-zero element $x \in A$, consequently

$$
\begin{equation*}
B A B=B(A B)=B A=A \subseteq B \subseteq A \tag{13}
\end{equation*}
$$

Remark 1. An elementary and short proof of the fact that a ring A containing no non-trivial right ideals either is a zero ring of prime order or a division ring, can be found in a paper of F. Szász [20].

Proposition 6. Let T be a non-empty subset of the ring A. Then the bi-ideal of A generated by T is of the form:

$$
\begin{equation*}
T_{(1,1)}=I T+T^{2}+T A T \tag{14}
\end{equation*}
$$

where I denotes the ring of rational integers.
Proof. The verification of the statement is almost trivial and we omit it.

Remark 2. By Proposition 1 the intersection of any set of bi-ideals of a ring A is also a bi-ideal of A, and thus the bi-ideal $T_{(1,1)}$ defined above evidently coincides with the intersection of all the bi-ideals of A containing T.

Remark 3. By Proposition 6 we have:
(i) The principal bi-ideal $(x)_{(1,1)}$ generated by the single element x of A can be represented as follows:

$$
\begin{equation*}
(x)_{(1,1)}=I x+I x^{2}+x A x . \tag{15}
\end{equation*}
$$

(ii) In the particular case of an idempotent element e of the ring A we obtain:

$$
\begin{equation*}
(e)_{(1,1)}=e A e . \tag{16}
\end{equation*}
$$

(iii) For an additive subgroup T of A one has:

$$
\begin{equation*}
T_{(1,1)}=T+T^{2}+T A T \tag{17}
\end{equation*}
$$

(iv) If S is a subring of the ring A then

$$
\begin{equation*}
S_{(1,1)}=S+S A S \tag{18}
\end{equation*}
$$

Proposition 7. For any associative ring A denote by \bar{A} the set of all additive subgroups of A, and A_{1} the set of all bi-ideals of A. Then \bar{A} and A_{1} are semigroups under multiplication of subsets (defined in the introduction of this paper), and A_{1} is a twosided ideal of \bar{A}.

Proof. The statement of this proposition is an immediate consequence of Proposition 3 and the definition given in the introduction for the multiplication of subsets.

Remark 4. The multiplicative semigroup of all non-empty subsets of an arbitrary semigroup was formerly investigated by S . Lajos [8]. He proved that the set of all bi-ideals of a semigroup is a two-sided ideal of the multiplicative semigroup of all non-empty subsets of the semigroup.

Remark 5. J. Calais [2] gave an explicite example for a semigroup having two quasi-ideals whose product fails to be a quasi-ideal. In this connection it may be remarked that one of the authors, S. Lajos [10] proved that for the case of regular rings as well as for regular semigroups the product of any two quasi-ideals is again a quasi-ideal.

For the verification of the interesting fact that every left ideal of a right ideal of an arbitrary associative ring can be represented as a right ideal of a suitable left ideal of the ring, we shall prove the following statement in analogy to a semigrouptheoretical result due to S. Lajos [7].

Theorem 1. For an arbitrary non-empty subset B of an associative ring the following conditions are pairwise equivalent:
(I) B is a bi-ideal of A.
(II) B is a left ideal of a right ideal of A.
(III) B is a right ideal of a left ideal of A.

Proof. It is enough to prove that (I) is equivalent to (II), because condition (III) is the left-right dual of (II), therefore the proof of the equivalence of (I) and (III) is similar to that of (I) \Leftrightarrow (II).

To show that (I) implies (II), suppose that the subset B is a bi-ideal of the ring A. Let $(B)_{r}$ be the right ideal of A generated by B. It will be verified that B is a left ideal of the ring $(B)_{r}$. Indeed, the relations $(B)_{r}=B+B A$ and $B A B \subseteq B$ imply

$$
\begin{equation*}
(B)_{r} B=(B+B A) B \cong B^{2}+B A B \cong B \tag{19}
\end{equation*}
$$

Conversely, to prove that condition (II) implies (I), assume that the subset B of A is a left ideal of a right ideal R of A. Then the inclusions

$$
\begin{equation*}
R A \subseteq R, \quad R B \subseteq B \tag{20}
\end{equation*}
$$

imply

$$
\begin{equation*}
B A B \subseteq(R A) B \subseteq R B \subseteq B, \tag{21}
\end{equation*}
$$

which together with the obvious fact that B is a subring of A yields the wished assertion.

In what follows we will be concerned with different properties of bi-ideals in special classes of associative rings. Among other things the characterization of some classes of rings will be given by means of bi-ideals.

Theorem 2. For an associative ring A the following conditions are mutually equivalent:
(I) A is regular.
(II) $L \cap R=R L$ for every left ideal L and for every right ideal R of A.
(III) For every pair of elements a, b of $A,(a)_{r} \cap(b)_{l}=(a)_{r}(b)_{l}$.
(IV) For any element a of $A,(a)_{r} \cap(a)_{t}=(a)_{r}(a)_{t}$.
(V) $\quad(a)_{(1,1)}=(a)_{r}(a)_{2}$ for any element a of A.
(VI) $\quad(a)_{(1,1)}=a$ a for any element a of A.
(VII) $Q A Q=Q$ for any quasi-ideal Q of A.
(VIII) $B A B=B$ for any bi-ideal B of A.

Proof. ${ }^{1}$) (I) \Leftrightarrow (II). This was proved by L. Kovács.[6]. It is evident that

[^0]$(\mathrm{II}) \Rightarrow(\mathrm{III}) \Rightarrow(\mathrm{IV})$. The implication (IV) \Rightarrow (I) was proved by F. Szász [21]. Thus we have shown the equivalence of the first four conditions.
$(\mathrm{I}) \Rightarrow(\mathrm{V})$. Assume, that A is a regular ring. Then the solvability of any equation $a \times a=a$ implies
\[

$$
\begin{equation*}
(a)_{r}=(a x)_{r}=a x A \tag{22}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
(a)_{l}=(x a)_{l}=\dot{A} x a \tag{23}
\end{equation*}
$$

where $(a x)^{2}=a x$ and $(x a)^{2}=x a$. Hence

$$
\begin{equation*}
(a)_{r}(a)_{t}=a x A \cdot A x a \sqsubseteq a A a \tag{24}
\end{equation*}
$$

and we conclude

$$
\begin{equation*}
(a)_{r}(a)_{l} \subseteq I a+I a^{2}+a A a=(a)_{(1,1)} \tag{25}
\end{equation*}
$$

Conversely, by condition (IV), it is obvious that

$$
\begin{equation*}
(a)_{(1,1)} \subseteq(a)_{r} \cap(a)_{t}=(a)_{r}(a)_{t} \tag{26}
\end{equation*}
$$

Thus (I) implies (V).
To prove that $(\mathrm{V}) \Rightarrow(\mathrm{I})$, suppose that the ring A satisfies condition (V). Then we have

$$
\begin{equation*}
(a)_{(1,1)}=(a)_{r}(a)_{l} \tag{27}
\end{equation*}
$$

for any element a in A. (27) implies

$$
\begin{equation*}
a \in(I a+a A)(I a+A a)=I a^{2}+a A a+a A^{2} a=I a^{2}+a A a \tag{28}
\end{equation*}
$$

In other words, there exists a rational integer m and an element $b \in A$, such that

$$
\begin{equation*}
a=m a^{2}+a b a=a(m a+b a) . \tag{29}
\end{equation*}
$$

For the element $e=m a+b a$ we obtain $a=a e$ and $e^{2}=e$, whence

$$
a=a e^{2}=a(m a+b a)^{2}=a\left(m^{2} a^{2}+m a b a+m b a^{2}+b a b a\right) \in a A a .
$$

This implies (1).
It is easy to show that in case of regular rings we have

$$
\begin{equation*}
(a)_{r}(a)_{l}=a A a \text {, } \tag{30}
\end{equation*}
$$

therefore $(\mathrm{I}) \Leftrightarrow(\mathrm{VI})$.
$(\mathrm{I}) \Leftrightarrow(\mathrm{VII})$. This has been proved by J. LuH [15].
$(\mathrm{I}) \Rightarrow(\mathrm{VIII})$. This follows at once from a result of S. Lajos [10], Theorem 1, and from the above mentioned assertion of J. LuH.
(VIII $\Rightarrow(\mathrm{I})$. If A is a ring satisfying condition (VIII), then it satisfies also (VII), which implies (I).

Therefore Theorem 2 is completely proved.
Theorem 3. The following fifteen conditions for an associative ring are pairwise equivalent:
(I) A is strongly regular.
(II) A is a two-sided ${ }^{2}$) regular ring.
(III) A is a subcommutative ${ }^{3}$) regular ring.
(IV) $B^{2}=B$ for any bi-ideal B of A.
(V) $\quad Q^{2}=Q$ for any quasi-ideal Q of A.
(VI) $R L=L \cap R \subseteq L R$ for any left ideal L and for any right ideal R of A.
(VII) $L \cap R=L R$ for every left ideal L and for every right ideal R of A.
(VIII) $L_{1} \cap L_{2}=L_{1} L_{2}$ and $R_{1} \cap R_{2}=R_{1} R_{2}$ for any left ideals L_{1}, L_{2} and for any right ideals R_{1}, R_{2} of A.
(IX) $L \cap T=L T$ and $R \cap T=T R$ for every left ideal L, for every right ideal R, and for every two-sided ideal T of A.
(X) A is regular and it is a subdirect. sum of division rings.
(IX) A is a regular ring with no non-zero nilpotent elements.
(XII) $L_{1} \cap L_{2}=L_{1} L_{2}$ for any two left ideals. of A.
(XIII) $R_{1} \cap R_{2}=R_{1} R_{2}$ for any two right ideals of A.
(XIV) $L \cap T=L T$ for any left ideal L and for any two-sided ideal T of A.
(XV) $R \cap T=T R$ for any right ideal R and for any two-sided ideal T of A.

Proof. (I) \Leftrightarrow (II). This was proved in [14].
(II) \Rightarrow (III). Assume that A is a two-sided regular ring. Then every onesided (left or right) ideal of A is a two-sided ideal in A, consequently we have

$$
\begin{equation*}
A x A \subseteq x A \text { and } A x A \subseteq A x \tag{31}
\end{equation*}
$$

The solvability of any equation $a y a=a(a \in A)$ implies $a \in a A$ and $a \in A a$, for every $a \in A$, therefore by (31)

$$
\begin{equation*}
A x \sqsubseteq x A \quad \text { and } \quad x A \sqsubseteq A x \tag{32}
\end{equation*}
$$

Thus we conclude that $x A=A x$ for every element x in A. This exactly is the (twosided) subcommutativity of the regular ring A.
(III) \Rightarrow (II). Suppose that A is a (two-sided) subcommutative regular ring. Then every principal right ideal $(a)_{r}$ of A can be generated by an idempotent element e of A, that is

$$
\begin{equation*}
(a)_{r}=(e)_{r}=e A, \quad e^{2}=e \tag{33}
\end{equation*}
$$

[^1]From condition (III) and Theorem 2 we conclude

$$
\begin{equation*}
A(a)_{r}=A(e A)=e A^{2}=e A=(a)_{r} \tag{34}
\end{equation*}
$$

whence $(a)_{r}$ is a two-sided ideal. Consequently an arbitrary right ideal R of A is also a two-sided ideal of the ring A. Similarly it can be proved that every left ideal L of A is also a two-sided ideal in A. Thus we have proved that (II) \Leftrightarrow (III).
$(\mathrm{I}) \Leftrightarrow(\mathrm{V})$. This follows from Theorem 2 of L. Kovács [6] and from authors' Theorem in [14].

Next we show that (IV) $\Leftrightarrow(\mathrm{V})$.
The implication (IV) $\Rightarrow(\mathrm{V})$ is evident. The converse of this statement is a consequence of the above mentioned result of L. Kovács, and Theorem 1 of S. Lajos [10].

Finally the equivalence of the conditions (VI)-(XV) with each other and with condition (I) was proved [14].

Thus Theorem 3 is proved.
It is known that every regular ring is semisimple in the sense of N. Jacobson. The following assertion characterizes the semisimple rings A in the class of rings with property:
(*) The lattice of all right ideals of A is a chain ${ }^{4}$).
Proposition 8. For a ring A with property (*) the following conditions are equivalent:
(I) A is semisimple.
(II) A is regular.
(III) A is strongly regular.
(IV) A is direct sum of division rings.
(V) A is a division ring.

Proof. In what follows we assume that the ring A satisfies the condition (*). It is easy to see, that Proposition 8 will be proved if we demonstrate the equivalence of (I) and (V), because every class (N) of rings in Proposition 8 contains the class of rings with property $(N+I)$; where $N=\mathrm{I}$, II, III, IV.

Suppose that A is a ring with radical $J=0$. Then the intersection of the modular maximal right ideals $R_{\lambda}(\lambda \in \Lambda)$ of A is (0) by N. Jacobson [5], Chapter I. In virtue of property (*) and of the maximality of the right ideal R_{λ} we conclude $R_{\lambda}=0$, whence A contains no non-trivial right ideals. Therefore A is a division ring.

Proposition 8 is completely proved.
Remark 6. A subclass of the class of rings with property (*) was earlier discussed by E. C. Posner [17]. Moreover, L. A. Skornjakov [24] has obtained some results concerning rings with the left-right dual of property (*).

[^2]Remark 7. Let A be the ring of all matrices of type 2×2 over the field with two elements. Then A is a ring with sixteen elements having the property that $B A B=B$ holds for every bi-ideal B of A. Moreover, let B_{0} be the bi-ideal generated by the element

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Then we obviously have $B_{0}^{2}=0 \neq B_{0}$. Evidently A is regular, but not strongly regular and A does not satisfy condition (*).

References

[1] D. Barbilian, Teoria aritmetica a idealelor (Bucureşti, 1956).
[2] J. Calais, Demi-groupes quasi-inversifs, C. R. Acad. Sci. Paris, 252 (1961), 2357-2359.
[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. I--II (Providence, 1961; 1967).
[4] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), 624-625.
[5] N. Jacobson, Structure of rings (Providence, 1956).
[6] L. Kovács, A note on regular rings, Publ. Math. Debrecen, 4 (1955-56), 465-468.
[7] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math., 22 (1961), 217-222.
[8] S. Lajos, A félcsoportok ideálelméletéhez, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 11 (1961), 57-66.
[9] S. Lajos, A remark on regular semigroups, Proc. Japan Acad., 37 (1961), 29-30.
[10] S. Lajos, On quasiideals of regular ring, Proc. Japan Acad., 38 (1962), 210-211.
[11] S. Lajos, On characterization of regular semigroups, Proc. Japan Acad., 44 (1968), 325-326.
[12] S. Lajos, On regular duo rings, Proc. Japan Acad., 45 (1969), 157-158.
[13] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad., 45 (1969), 710-712.
[14] S. Lajos and F. Szász, Some characterizations of two-sided regular rings, Acta Sci. Math., 31 (1970), 223-228.
[15] J. Luh, A characterization of regular rings, Proc. Japan Acad., 39 (1963), 741-742.
[16] N. H. McCoy, The theory of rings (New York-London, 1964).
[17] E. C. Posner, Left valuation rings and simple radical rings, Trans. Amer. Math. Soc., 107 (1963), 458-465.
[[18] L. Rédei, Algebra. I (Budapest, 1967).
[19] O. Steinfeld, On ideal-quotients and prime ideals, Acta Math. Acad. Sci. Hung., 4 (1953), 289-298.
[20] F. Szász, Note on rings in which every proper left-ideal is cyclic, Fund. Math., 44 (1957), 330332.
[21] F. Szász, Über Ringe mit Minimalbedingung für Hauptrechtsideale. II, Acta Math. Acad. Sci. Hung., 12 (1961), 417-439.
[22] F. Szász, Generalized biideals of rings. I, Math, Nachr., 47 (1970), 355-360; II, Math. Nachr., 47 (1970), 361-364.
[23] G. Szász, Introduction to lattice theory (Budapest-New'York, 1963).
[24] Л. А. Скорняков, Цепные слева кольца, Сб. „Памяти Н. Г. Чеботарева", (1964), 75-88.
[25] G. Thierrin, On duo rings, Canad. Math. Bull., 3 (1960), 167-172.
(Received September 28, 1969)

[^0]: ${ }^{1}$) The equivalence of conditions (1)-(VI) in case of semigroups was proved by Lajos [9], [11].

[^1]: ${ }^{2}$) An associative ring \boldsymbol{A} is said to be a two-sided (or duo) ring if every one-sided (left or right) ideal of A is a two-sided ideal (cf. e.g. Thierrin [25]).
 ${ }^{2}$) For the definition of subcommutative ring we refer to Barbilian [1]: a ring A is called (two-sided) subcommutative if $a A=A a$ for any $a \in A$.

[^2]: $\left.{ }^{4}\right)$ Cf. Szász [23].

