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If A is a bounded linear operator on a complex Banach space, then a closed
linear subspace M is hyperinvariant for A if M is invariant under every. operator
which commutes with 4. It is not known whether or not every operator other than
a multiple of the identity has a non-trivial hyperinvariant subspace (i.e. other than
the zero subspace and the whole space). Several sufficient conditions for the existence
of non-trivial hyperinva'riant subspaces are known ([3], [13], [14]).

Fuglede’s theorem [6] states that every spectral subspace of a normal operator
is hyperinvariant, and this was generalized to spectral operators by DUNFORD [4].
HooVEer [5] recently showed that every n-normal operator has a hyperinvariant
subspace. In this note we present simple proofs of DUNFORD’s and HOOVER s results,,
based upon Rosenblum’s theorem on operator equatlons

1. Rosenblum’s theorem

We shall use a theorem about solutions of certain:linear.operator equations..
The theorem was proved by ROSENBLUM [11] to the case where E and F are
elements of the same Banach algebra. The result which is given below has not,
to our knowledge, appeared in print before, although many people must be aware
of it. Our proof is essentially the same as the proof of Rosenblum’s result conta-
ined in the paper of LUMER and ROSENBLUM [9]. We denote the set of bounded.
inear operators from 2 to ¥ by B(Z, ¥).

Theorem (Rosenblum). If E and F are bounded operators on the complex-
- Banach spaces % and Z respectively, and if the operator T on B(Z, @/) is defined by
T (X) = EX—XF, then

o(T)Co(E)—0o(F) = {z—w: z€0(E), wea(F)}.
Proof (similar to [9]). Define operators & and & on #(Z, %) by
E(X)=EX and F(X)=XF.
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If E—2 has in inverse, then (E—)E—2)"'X = (E—2)""(E— )X = X for every
XcBX, %), and therefore o(&) C o(E). Similarly o(F) C a(F).

Since & and & are commuting operators, (€ — F)c (&) — o(F); (simply
‘let o/ be a maximal commutative algebra containing & and & and use the fact that
the spectra relative to &/, which are the ranges of the Gelfand transforms, are the
-same as the original spectra). Hence 0(7 ) C o(E) — o(F).

The special case of this result that we shall need is the fact that o(E) M o(F)=0
and EXy =X, F imply X;=0 (51rce X is in the nullspace of the operator J(X) =
= EX—XF).

2. The Fugiede—Dunford theorem

Fuglede’s theorem [6] states that whenever a bounded operator B on a
"Hilbert space commutes with a normal operator 4, then B commutes with the spectral
‘measure of 4 (or, equivalently, then B commutes with 4*). HaLmos [7, 8] and
RosenNBLUM [12] gave simplified proofs of Fuglede’s theorem. DUNFORD [4] gener-
.alized Fuglede s theorem to the case where 4 is a spectral operator on a Banach
‘space.

In this note we give another proof of Dunford’s version of the theorem. We feel
that this proof gives some further insight even in the Hilbert space case, although
it is neither as short nor as elegant as Rosenblum’s proof.

Following DuNFORD [4] we say that a bounded operator 'A on a Banach spacé
& is a spectral operator if there exists a spectral measure E(-) (i.e. a countably
-additive mapping from the Borel sets in the complex plane into a uniformly bounded
family of projections on & such that E(0)=0, E(C)=1, and E(¢, Na,)=E(c,)E(0y)
for all Borel sets o; and o,), which commutes with 4 and Wthh has the property
‘that o(4|E(6)Z)C G for all Borel sets o.

Theorem (Fuglede—Dunford). . Iff 4 is a spectral operator, with spectral
.measure E(-), and if AB= BA, then BE(o)= E(o)B for all Borel sets o.

Proof. It obviously suffices to show that the range of E(o) is invariant under -
B for each Borel set o, and this is equivalent to showing that E(¢")BE(c) =0, where
.0’ denotes the complement of ¢. By regulanty it suffices to show that E(¢")BE(c)=0
‘whenever ¢ is closed. .

Fix a closed set o, and let gy be any closed subset of o’. From AB=BA it
follows that E(c,)AB E(c)= E(c,)B AE(6) and thus that '

[E(g0)4 £(00)] [E(00) B E(0)] =[E(00) B E(0)] [E(0) A EI(G)]-

Hence E(o,)B E(0)=0 by Rosenblum’s theorem, since E(6,)A E(o,) and
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E(c)A E(o) have disjoint spectra as operators on E(ao)%“ and E(0)Z res-
pectzve]y ' :

" Since E(oy)B E(0)= 0 whenever g, is a closed subset of o’, it follows that’
E(6")B E(6)=0 and the proof is complete.

3. Putnam’s corollary

Soon after Fuglede’s theorem was published, PUTNAM [10] observed that
Fuglede s proof could be generallzed to show that whenever A and C are normal
operators on a Hilbert space and B is a bounded operator such that AB= BC then -
A*B=BC*. BERBERIAN [1] found a simple trick for getting Putnam’s result as a
corollary of Fuglede’s. To our knowledge it has not previously been observed
that Berberian’s trick can be applied to the case of spectral operators yielding
the following result.

Corollary. If A and C are spectral operators with spectral measures E(-)
“and F(-) on the Banach spaces %' and @ respectively, and if B is a bounded operator
from ¥ to & such that AB= BC, then E(g)B= BF (o) for every Borel set o. '

Proof. We consider  @%, with ||(x, »)] = |lx| +]l»li, and let P and”Q be
the projections onto the first and second co-ordinate spaces respectively. Then the
operator T = PAP+ QCQ is spectral, and its spectral measure is defined by
G(6) = PE(0)P + QF(0)Q foreach o. A trivial computation shows that T commutes
with the operator S=PBQ. By the Fuglede—Dunford Theorem, G(0)S=SG(0)
for each ¢. Another simple computation gives B E(c)= F(c)B. -

4. Hyperinvariant subspaces of triahgﬁl_ar and n-normal operators

An operator is said to be n-normal if it is (unitarily equivalent to) an operator
in the tensor product of some abelian von Neumann algebra and the algebra of
nX n matrices. In other words, n-normal operators can be written in the form

Ay Ay, Aqy,

Ay Any oo Aps
where {4,;} is a collectlon of commutmg normal operators.

R. G. DoucLAas and: C: PEARCY showed that every 2- normal- operator has
a non-trivial hyperinvariant subspace, and T. B. Hoover [5] generalized this result
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to n-normal operators. HOOVER shows that every m-normal operator is quasi-
similar to an n-normal operator in ‘“Jordan form”, and. derives the existence of
hyperinvariant subspaces from this result together with Dunford’s characterization
of spectral operators. .

We show that the existence of hyperinvariant subspaces for #-normal operators
follows from the more easily proven result that every n-normal operator is unitarily
equivalent to an n-normal operator in upper triangular form [2], together with the
simple theorem given below.

Theorem. If A is unitarily equivalent to an operator in the upper triangular
form

An *...0%
0 * ... %

(%) ’ , “
’ 0 0.4

. nn

where the spectra of A, and A,, are disjoint, then A has a non-trivial hyperinvariant
subspace.

Proof. Let

B, x...%

be any operator in the commutant &/ of 4. The fact that the entry in position
(n, 1) of AB is equal to the entry in position (n, 1) of BA gives A4,,B,, =B, A4,,.
Since the spectra of A4,, and A4,, are disjoint, Rosenblum’s theorem implies
that B,, =0. Let x be any vector of the form (x,,0,0,0,...,0) with x, =0
and y any vector of the form (0,0, ...,0, y,) with y,70. We have shown that
(Bx, y)=0 for all B¢Z. Thus the closure of {Bx: B€ &/} is a non-trivial hyper-
invariant subspace for A.

Corollary. If A is not a multiple of the identity and is unitarily equivalent
-to an operator in the upper triangular form (x), where A, and A,, are normal, then
A has a non-trivial hyperinvariant subspace.

Proof. If the spectrum of A, consists of only one point, then 4,, is a multiple
of the identity. In this case 4 has a non-trivial-eigenspace, and it is trivial to verify
the fact that an eigenspace of A is hyperinvariant.

If the spectrum of A;, consists of more than one point, then, by the spectral
theorem, we can write 4,,=A% ©A|, and A4,,=A°% @A}, where the spectra’ of
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A9, and A, are disjoint. Then A4 is unitarily equivalent to an operator of the form

A% 0 o« *
0 A}l * *
0 O * ... %
0 0 .. Al *
0o 0 Al

Thus the Theorem above gives the result.

Corollary (Hoover). Every n-normal operator which is not a multiple of the
identity has a non-trivial hyperinvariant subspace.

Proof. A theorem of DECKARD and PEARCY [2, Theorem 2] implies that every
n-normal operator is unitarily equivalent to an n-normal operator in upper triangular
form. Thus the result follows from the previous corollary.

Remark. As Hoover [5] shows, quasi-similarity preserves the existence of
hyperinvariant subspaces. Thus the theorem and the first corollary above can be
stated with “unitarily equivalent” replaced by ¢quasi-similar”.
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