
Spectra of some Hausdorff operators 

By B. E. RHOADES in Bloomington (fndiana, U.S.A.) 

In a recent paper [2] A . B R O W N , P . HALMOS, and A . L . SHIELDS investigated 
the Cesaro matrix of order 1 and its continuous analogoues as operators over the 
Hilbert spaces I2, L2[0, 1], and L2[0, °o). In this paper I investigate similar properties 
for a class of totally regular Hausdorff matrices and their continuous analogues over 
the spaces / L " [ 0 , 1], and L"[0, for />>1 . 

1. Discrete methods 

Let n = {n„} be a sequence, A the forward difference operator defined by 
dPk = ^ ~~ 1 , = A(A"~ 1nk); k = 0, 1, 2, . . . ; n = 1, 2, 3, ... . A Hausdorff 

matrix H is defined by hnk = for kS n, hnk — 0 for k>n. For a regular 

matrix (i.e., one that preserves limits for convergent sequences) we have the represent-
ation 

l*n= fx"dq(x) (« = 0 , 1 , 2 , . . . ) , 
o 

where q£BV[0, 1], <7(0 + ) = q(0) = 0, <?(1> = 1, and q(u) = [q(u + 0) + q(u-0)]/2 
for 0 < M < 1 . If in addition q is nonnegative and nondecreasing over [0, 1], then 
H is called totally regular. For other properties of Hausdorff matrices the reader may 
consult [4, XI]. 

First we shall establish some properties for all totally regular Hausdorff matrices 
that are defined and bounded on lp , and then examine some of the specific methods. 
Let | | / / | | p denote the lp norm of such a matrix H. 

1 
T h e o r e m 1. Set H(p) = f x-ilpdq(x). Then \\H\\P = H(p). 

0 

H A R D Y [3] shows that | |Z/I | | P £ [ / / ( P ) ] p | | s i | p for any positive sequence J = {J„}€/p . 
His result is clearly extendable to an arbitrary sequence s£lp by observing that 

p 
№ 1 1 ; = 2 

n = 0 
2 hnksk k = 0 

^ i f i hJsA'. Hence \\H\\ ^H(p). 
n=o Lfc=o J 
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To prove the. converse we use the argument on pages 48 and 49 of [3] to get 

H„(s) > (1 —t])2H(p)s„ 

for = l)_a> , co = —f-e , 0 < e < —, / / > 0 and arbitrary. This result leads 
•P P , •• v , 

to | | / / | | p S/ / ( />)• 
Some of the well-known Hausdorff matrices which are bounded operators 

over I" are the Cesaro, Holder, Euler, gamma, and generalized-Cesaro. These are 
listed below along with their generating sequences and mass functions. 

r ' . 

r(a+ l)T(n+ 1) 
= r(n + a+1) ; iW=l "(I-*)"; 

/ / . : / ! , = ( « + 1)-«; 9 ( * ) = 7 ^ / ( l o g ( l / 0 ) - 1 A ; 

0, 0 ^ x < « < 1 
(F, /•): [in = a",r = (1 —a)/a; q(x) . j 

r(«)r(« + a + a) ' r(a)r(a) J U 0 ^ 

From Theorem 1, with q satisfying ]/p + \/q = 1, the corresponding /"-norms are: 

nc.ll, = W p = r ; № r ) B > = (1 + 0 1 / p ; 

r(a + a)r(a-i/p) ra-i^J na + ^ - l / p ) • 

From the above it is clear that the operators are bounded for a > 0 , /•>(), 
a > lip. 

We shall now show that r® is not bounded for 0 < a ^ 1 ¡p. If (hnk) denotes 

the corresponding matrix, then ra(e0) = {hn0}, where hn0 = ^—^ \ and 
r(n + a+ 1) :' 

lirsiis S \\ra(e0)\\r = 2iKo)» = r"(a+ 1) 2 i r f ^ t P n l " -n=o n=o U \,n + a + i ) ) 
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Using the Gauss test one can show that the series diverges for 0 < a s 1 ¡p. For the 
C* matrix, 

T ( » + a ) r ( a + - a ) 
r(a)r(n + a + a) ' 

and, as above, it can be shown that C"a is not bounded for 0 < a S 1 jp. 

T h e o r e m 2. If H?±I, the point spectrum of H is empty. 

P r o o f . Suppose Hf=)f for some X. Since H is totally regular, ¿ / „^0 for each 
n. Thus H is not a left zero divisor in Ip and X = 0 is not possible. Define g(n) = 

= 2 hkfik) for felSince g(0)=Xf(0), we must have /1=1 for any / with 
4 = 0 

/ ( 0 ) ^ 0 . 
Casel. Assume / ( 0 ) ^ 0 . Then 1 = 1 and we have ( / / — / ) / = 0. In particular 

W ( 0 ) + ( A u - l ) / ( 1 ) = 0; i.e., 
/ ' 1 0 / ( 0 ) / ( 0 = 
1 -¡hi 

But hl0 = = tlo~fli — I - / ' u 0- Therefore / ( l ) = / ( 0 ) and, by in-

duction, / ( « ) = / (0 ) , /7 = 1, 2 , . . . . Since / ( 0 ) ^ 0 , / = {/(0)}$/". 
Case IT. Assume/ (0) = 0 . Then either there exists an integer N such that liN.= X 

or else p„ X for any n. 
Case 11 A, / (0 ) = 0 and ¡i„ ¿¿X for any n. From the equation hlof(0)+hl , / (1 ) = 

= Xf( 1) we get (X-'iit)f(l) = 0 which implies / ( 1 ) = 0 . By induction, f(n)=Q; 
« = 0 , 1 , 2 , . . . . 

Case I IB. / ( 0 ) = 0 and ¡iN=X for some N. If N = 0, then X= \ and we must 
have hiOf(0)=hnf(\)=f(\); i.e., ( 1 - / ( , ) / ( l ) = 0, Since H ^ I , Therefore 

/ ( 1 ) = 0 and by induction,/(w) = 0 for /7 = 2 , 3 , 4 , . . . . 
Since / t „ 1 for each r (a well-known property for totally regular Hausdorff 

matrices / / ^ / ) , if i V > 0 then clearly/(0) = 0 implies/(1) = / ( 2 ) = • • • • = f ( N - 1 ) = 0 
and f ( N ) remains undetermined. 

I f f ( N ) = 0, then, as before, / = 0. 
If f ( N ) ^ 0 we shall show by induction that 

/ ( w + r ) = ^ r ) / ( j v ) , r - o , 1 , 2 , 

This is trivially true for r = 0. Assume the induction hypothesis. Then 

N + r + l 

2 I'N+r+i.kfik) = pNRN+r+ 1) 
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or 
N+r 

fc = JV y=o 

/H^T'IKT^ /C+i-y Pn+J-

Note that 2 • \ d r + i ~ J P n + j i s r o w ( / " + 1 ) o f t h e Hausdorf f matrix 
y=o j ) 

with generating sequence {A'w + r}n=o-
Therefore 

r + 1 M r + 1 _ J > N + y = H N - l i N + r + 1 ^ 0, 
y=o w y 

and we get / ( J V + r + l ) = 1 ) / (A0- Moreover , | / ( W + r + l ) | > | / ( W + r ) | 

so that 

T h e o r e m 3. For H?±I, H* —N has a total set of proper vectors corresponding 
to proper values of modulus strictly less than N. 

P r o o f . Define a family of sequences P0, Pi, P2> ••• w ' t h Pn = A"e0, where 
¿e0 = e0-el,Ane0=A(A"~ie0). The set {Po,Pi, •••} is total over/*, q the conjugate 
index of p. For m>n, H* P„(m)=0. For m S w 

H*PM) = 2h*mkpn{k) = 2 ^ ( - !)"[?) = k = m k = m ) 

- [ " ] > " , _ , ) • « „ . T " ( - , V < ! - ' " > ' 

< - « • ( : ) * - « * 

Therefore ( / / * - = (/i. - N)P„. 
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Based on the knownledge of the spectrum of C1 for p = 2, and Theorem 3, 
one might conjecture that a(H) is the disk {A: \X — N\ s ./V}. Unfortunately, the 
conjecture is false, as the following example indicates. 

From [2], cCCi) = {A: | A - 1 | s i}. Let z = 1 + eie. Then z2 = 2(1 + cos0)e iO . Let. 
w = x + iy = z2. Then putting w in polar fo rm yields the cardioid r — 2(1 + c o s 0). 
Since <r(Cj) = (ff(C1))2 , o(C2) is the closed bounded region with the above cardioid. 
as boundary. 

There is, however, a class of totally regular Hausdorff methods H for which 
o(H) = {A:|A — JV| ^ N). This class includes the gamma methods of order 1. 

where c = N—k. Let e„ = l//i„. If it can be shown that Hc is a bounded operator 
over V for |A|>AT, then o{N-T\) g {A':|A| S N}. Hence a ( 0 g {A: \X-N\ 
S N}. Using the method of proof of (4) of [2, Theorem 2] one can show that if A 
satisfies |A — N\ < N, then A is a simple proper value of Tl*. The fact that the 
spectrum is closed completes the theorem. 

We shall now show that He is as required. Indeed, 

T h e o r e m 4. ( j ( r j ) = { A : | A - # | S N). 
The operator iV — — A has moment generating sequence 

a 

1 
1 + 

ajc 
'n n + a — a/c J' c 

Thus 

| | / / J p ^ 1 - r + 1 - r | |//4 | | 
a 

where 5, re d. = —, and the theorem reduces to showing that | | / / J „ is finite. 
n + a — a/c . a"p 

Let x£l". Then 

Now 
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Thus \\Hsx\\p ^H]s[(p)\\x\\p,.where. 

i i 

/
—•—ti-Ke(«/c|-i , 

t " • dt, 

provided the integral exists. It remains to show that a — Re (a / c ) — 1 /p •=- 0. 
, a-N 

Note that c — N—X. Thus a — Re (a/c) = a + a 
[(a — N ) 2

 + ¡i2
 ] 

By hypothesis If we let X = a + ifi, then is equivalent to 
•a2 + P2 > N2, which can be written in the form (a~N)2 + p2 > 2N(N — a). Hence 

a - N 1 
•(a — JV) 2 + p2 ^ _ ~2N ' 

The proof is now complete, since 1 — 1/2N = l/ap. 

2. Finite continuous methods 

T h e o r e m 5. Let T be an integral Hausdorff transformation defined by 

<1) T ( f ) ( y ) = f f ( x y ) d q ( x ) , 
o 

where q is an absolutely continuous totally regular mass function. Then for each T 
which is a bounded operator over Lp[0, 1], \\T\\p = H(p). 

P r o o f . From [5, p. 243], \\Tf\\p^H(p)\\f\\p, with equality holding only for 
/ = 0 or T = I. 

To prove the reverse inequality, let fl(x)=x~p, j3 > 1 /p. Then fx£.Lv\0, 1] 
and (Tf1)(y)=y~l,H(p). Therefore \\T\\p^ H(p).' 

T h e o r e m 6. For each T?±I,NI—T has a total set of proper vectors correspond-
ing to proper values of modules strictly less than N. 

¿> 

With f„(x) = x", /7=0, 1, 2, ..., the family { / 0 , / , , / 2 , •••} is total over L"[0, 1], 

and (Tf„)(y) = f (xy)"dq(x) = Therefore ((N-T)f„)(y) = (N-pn)yn. 
o 

Since T* is playing the role over Lq[0, 1] that was played by H over /", one 
conjectures that f * has empty point spectrum. The conjecture remains to be verfied 

general, but is true in the following special cases. 

T h e o r e m 7. For a a positive integer, the point spectrum of H* is empty. 
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P r o o f . H* has kernel 

k*{x,y) = 
0, 

1 

0 < j s x 

- ( IogO/j f ) )"" 1 , 0 
[yr(a) 

Suppose H*g = lg for some nonzero g£Lq[0, 1], where q is the conjugate index 
of p. Then we have 

(2) 
i ; i l V " - 1 

r(a)J y 

If ^ = 0, then differentiating the above gives 

g{y)dy = ).g(x). 

I g{y) 
y l o g ^ - dy = 0. 

Differentiating a—1 more times leads to —g(x)/x = 0 or g = 0, a contradiction. 
With A^O, (2) implies the differentiability of g. Differentiation yields 

( 3 ) dy 

Now let w=g'(x), and regard g as a function of t, where / = l o g x . Then 
xg'(x) = D,w. Differentiating (3) (a —2) more times yields ID^w-\-{ — \y+l w = 0, 
which has solution 

a • 

k = 1 
where each ak is a root of the auxiliary equation «" + ( — l ) a + 1 = (X 

From (2) and (3) it is.clear that g and each of its first a —1 derivatives vanish 
at x = 1, giving rise to the system a a 

2Ak = 0; Zak{ak-\) ... (ak-j)Ak = 0 (y = 0, 1, . . . , a - 2 ) , 
k=1 

which is equivalent to the system a 

Z a k j A k = 0 (7 = 0, 1, a — 1). 
' k= 1 

This latter system has a Vandermonde determinant. Therefore each Ak=0 and 

-o . 

T h e o r e m 8. For a a positive integer, the point spectrum of C* is empty. 

The method of proof is similar to that of Theorem 7. The kernel fo r C* is 
0, 0 < y ^ x 

k*(x,y) 

y 
, y. 

7A 
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The condition C*g — kg becomes 

= J V- 1 - -
y 

g(y)dy. 

For A # 0 , the corresponding differential equation is 

A*V«>(JC)-( - l ) - r ( a + l ) f ( x ) -

which is of liuler-type, with solution 
a 

g(x)= 2 

As before, each Ak is zero so that g = 0. 

T h e o r e m 9. r^* has empty point spectrum. 

The kernel for r l
a* is 

0, 0 < j s x 

k*(x,y)=- a x 
y I J 

0-

The condition r ^ * g = Ag leads for Ay^O to the differential equation Axg'(x) = 
= [A(a-l)-a]g(x), which has solution g(x) = Cxa-'-aM. Since g ( l ) = 0 , C = 0, 
and g = 0. 

T h e o r e m 10. a(r'a) = {A: |A-W| S TV}. 

To prove a ( f ^ ) Q {A: [A — N\ S A'} apply the corresponding argument of Theo-
rem 4 to L"[0, 1]. 

For the opposite inclusion, suppose 

l - ^ r i J / ( * ) = A/(x). 

The resulting differential equation has solution 

/(*) = c, exp [ - a(\ -\/N(l - A)) log *]. 

It is a straightforward exercise to verify that if |A| < 1, then / £ Z / [ 0 , 1]. There-

fore point spectrum of 11 — c o n t a ' n s the ° P e n disc {A: |A| < 1}. Hence a ( r ^ ) 3 

z> {A: ¡A — JV| < N}. The proof is now complete since the spectrum is closed. 
Specializing to L2[0, 1] we have the following result. Let be a continuous bounded 

operator over L2[0, 1] with kernel 
0, 0 < x s j i 

(4) k(x, y) № 
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and adjoint kernel 
0, 0 < y s x 

where / is nonnegative and integrable over [0, 1]. 

T h e o r e m 11. T* is hyponormal. 

P r o o f . The kernels for TT* and T*T are 
I . min (x,y) f \ ( \ 

jk{x,u)k*(u,y)du = ^ ¡ y ^ j / [ - - ] , / « 

and 
i . *y 

fk*(x,u)k(u,y)du = ~ — f f(z/y)f(z/x)dz. 
0 min (x,p) 

Hence 

For any g£L2[0, 1], 

t i l i 
((/. - l 2 ) g , g ) = J J g (y) f f(wx)f(wy) dw dy g(x) dx= J(Fg, Fg) du, 

. 0 0 0 0 
1 

where F(g)(w) = f g(y)f(wy)dy. 
o 

x 
If g is absolutely continuous then we may write g(x) = / h(t) dt. An elementary 

o 
change of variable in (1) will change h to the form in (4). Thus every totally regular 
integral method with absolutely continuous mass function will have its adjoint hypo-
normal. 

3. Infinite continuous methods 

T h e o r e m 12. Let T be a bounded linear operator over Lp[0, with kernel 
defined by (4). Then \\T\\p = H(p). 

This theorem is a special case of [5, Th. 319]. 

T h e o r e m 13. For a a positive integer Ha and H* have empty point spectra. 

For a proof, combine the facts that a(HJ = (a( / / ) )" and that H = C , has empty 
point spectrum. The same applies to H*. 

T h e o r e m 14. For a a positive integer Cx and C* have empty point spectra. 
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For each operator the proof is similar to that of Theorem 8. In each case one 
shows that the only solution function in the appropr ia te space is the zero funct ion. 

T h e o r e m 15. r*a and Tl
a* have empty point spectra. 

The proofs here parallel that of Theorem 9. 

T h e o r e m 16. tr(rj) = {k:\l-N\ = N). 

To prove this theorem one follows the argument of [1] using 

W ( 0 = 7 / * ( * ) « ( 7 ) — ds 

with 

P^x(t) = f áx(st)sa" 1 ds and Q^x(t) = f ax(s)s"(l-i)-1 ds 

as the corresponding resolvents in the appropriate regions. 
Fo r p — 2 we have the following result. 

T h e o r e m 17. Let T be a continuous bounded operator over Z,2[0, 1] with kernel 
as in (4) with f now integrable over [0, <=•=). Then T* is normal. 

The kernels corresponding to TT* and T*T are 

and 

co . min u , y) / \ 
/ , = f k(x, u)k*(u,y)du = — f f ^-J/^yji/w 

1 min(Jc.J') ( z \ ( z \ 

I2=fk*(x,.ü)k(u,y}du = — f f \ j y [ - ] d z ; 

hence I i —12 = 0. 
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