Spectra of some Hausdorff operators

By B. E. RHOADES in Bloomington (Indiana, U.S.A.)

In a recent paper [2] A. Brown, P. HaLmos, and A. L. SHIELDS investigated
the Cesaro matrix of order 1 and its continuous analogoues as operators over the
Hilbert spaces /2, L*[0, 1], and L?[0, ). In this paper I investigate similar properties
for a class of totally regular Hausdorff matrices and their continuous analogues over
the spaces /7, LP[0, 1], and L?[0, <) for p=>1.

1. Discrete methods

Let u={u,} be a sequence, 4 the forward difference operator defined by
Ay = We— ey, A"e=404""1p); k=0,1,2,...; n=1,2,3,.... A Hausdorff

matrix H is defined by 4, = " A';"‘uk for k=n, h,, =0 for k=n. For a regular
. k

matrix (i.e., one that preserves limits for convergent sequences) we have the represent-
ation ' ‘

o
= [ @=0,1.2,.0)
o .

. where g€ BV[0, 1], g(0+) = g(0) = 0, ¢(1)=1, and g(u) = [g(u+0)+q(u—0)]/2
for 0<u<1. If in addition ¢ is nonnegative and nondecreasing over [0, 1], then
H is called totally regular. For other properties of Hausdorff matrices the reader may
consult [4, XI]. . '

First we shall establish some properties for all totally regular Hausdorff matrices
that are defined and bounded on /7, and then examine some of the specific methods.
Let |H||, denote the /” norm of such a matrix H. '

. .
Theorem 1. Set H(p) = [x~'?dg(x). Then |H||, = H(p). "
0

HARDY [3] shows that || Hs |? =[H(p)]" || s||? for any positive sequence s= {s5,} € /7. -
His result is clearly extendable to an arbitrary sequence s€/? by observing that

(-~ n p oo n p
| Hs|2 = 2]2 hes|" = 3 [ 3 hulsil]"- Hence 111, = H(p).
n=0]k=0 n=0 Li=o ,
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To prove the converse we use the argument on pages 48 and 49 of [3] to gét
H,(s) > (1—=n)?H(p)s,

1 ‘ 1
fors, = (n+1)7% v =—+sg, O <& <—, n>0and arbltrary This result leads
. ‘rp p aot N e
to [|H,= H(p).
Some of the well-known Hausdorff matrices which are bounded operators
over /7 are the Cesaro, Holder, Euler, gamma, and generalized-Cesaro. These are
listed below along with their generating sequences and mass functions.

-
\

Fa+1)r@+1)

Tntat+l) > gx) = 1—(L—x)%;

Coilty =

H,: u,

(1) 9 = g [ G010y dr;
SO

0, O=x<a<l
1, a=x=1;

(Esr)yip,=dar=( —_a)/a; q(x) {

Tip, = [niq] ;o q(x) =%!t“"‘(19g(l/t))““dt;
A F(a+a)F(ﬁ+a) . _ TI(a+) o a—1¢1 _ pya—1 .
Cot ty = Ir@rn+a+a)’ 9(x) = F(a)F(oz) 6/It .(1 0y dt.

From Theorem 1, with g satisfying 1/p + 1/q = 1, the corresponding /’-norms are:

ra +oc)F(l/q)

IS = =G E gy

IH, = g% I(E;s il = (1+r)'~'; 4

a ¥ oy — Tatol@—1jp)
e, = [awl/p] I

From the above it is clear that the operators are bounded for «=0, r=0,
a = 1/p. , .

We shall now show that F’ is not bounded for 0 < a = 1/p. If (h,,) denotes
F(a+1)F(n+1)

the corresponding matrix, then I'*(ey) = {h,0}, where h,, =
p ’ g a( 0) { 0} . 0 F(n+a+1)

r(n+1) ]

WS = I3y = 3 (o)t = (@ 1) Z’ [m

n=0
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Using the Gauss test one can show that the series diverges for 0 < a = 1/p. For the
c: matrrx . :
T(n+a)(a+o)

Irrn+a+ao)’

ho =

and, as "above, it can be shown that C7 is not bounded for 0 < a = 1/p.
Theorem 2. If H#1, the pomt specrrum of H is empty.

Proof. Suppose Hf )f for some ) Since H is totally regular, u, >0 for each
n. Thus H 1s not a left zero divisor i in /7 and A=0 is not possible. Define g(n) =

= Z h,,kf(k) for felP. Since g(0)=/f(0), we must have A=1 for anyfwnth

f(O);éO

Case 1. Assume f(O);éO Then A=1 and we have (H—I)f = 0. In partlcular
hiof(0)+ (hy,, —Df(1) = 0; ie.,
h1of(0)

S = =

But h,, — ((l))Auo = to—pty = 1 —hy, = 0. Therefore f(1)=f(0) and, by in-

‘duction, f(n)=/(0), n=1,2, ... . Since f(0)%0, f={f(0)}¢/".

Case 11. Assume f(0) =0. Then either there exists an integer N such that Uy=2
or else u, # 4 for any n.

Case 11A. f(0) = O and y,,¢) for any n. From the equation /110f(0)+h“f(1) =
= M(1) we get (A —ul)f(l) = 0 which rmplres f(l) 0. By mductlon f(n)=0;
n=0,1,2,.

CasellB. f(0)=0 and uy =21 for some N. If N=0, then A=1 and we must
have h,of(0) =/, f(1)=f(1); i.e., (1 —p)f(1) = 0. Since H#[ I ¢l Therefore
Sf(1)=0 and by induction, f(n) = 0 for n=2,3,4,.

Since p, >, for each r (a well-known property for totally regular Hausdorff
matrices-H: /), if N >0'then clearly f(0) =0 implies f(1) = f(2)y =---=f(N-1) =0
and f(N) remains undetermined. . ‘

If f(N)=0, then, as before, f=0.

If /(N) 0 we shall show by induction that .’

fIN+r) = [N+r]f(N), r=0,1,2, ...

This is trivially true for r=0. Assume the induction hypothesis. Then

N4+r+1

Z By srsrf (K) = iy f (N+r+ 1)
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or
N+r

(Un =My srs DS (N+1+ 1)' = ng hysri1pfk) = j%_hN+r+l,N+jf(N+j) =
=2 [N b 1»] A+ g, ) [N +’]f(N) =

j=ol N+j
—f(N)[N+r+]] Z[’*‘]Am v

=0\ J
r+1

1 . '
Note that Z [HI_ ]A’*‘”uNH is row (r+1) of the Hausdorff matrix

=0
with generating sequence {uy.,Jreo-
‘Therefore .
r+1) , '
Z[ ]A+l Tine; = Hy—Uysrer #= 0,
=\ J
N+r+1

N ]f(N) Moreover, |f(N+r+l)|>|f(N+r)]

“and we get f(N+r41) = [
so that f¢l7.

Theorem 3. For H1, H*— N has a total set of proper vectors corresponding
to proper values of modulus strictly less than N.

Proof. Define a family of sequences B, By, S, ... with f,=4"¢,, where
dey = ey —e,, A"eg=A(A""'e,). The set {B,, By, ...} is total over /%, g the conjugate
index of p. For m=n, H*,(m)=0. For m=n '

H* B, (m) = z’h B (k) = thk(—l)"[ ]=

k=m

k=m \M k=m

(R e

r+m

=3[ ammcrfs) - 5[;;] v S e 5 s -

- (1) 2 o, Z (ty
mj}j=o r=j

(n—m—n)jlr—pt

= cor[2) S [ E e () = o) = o,

j=0 5o

Therefore (H* - N)Bn = (/’ln - N)ﬂn'
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Based on the knownledge of the spectrum of C; for p=2, and Theorem 3,
one might conjecture that ¢(H) is the disk {A: |A—N| = N}. Unfortunately, the
conjecture is false, as the following example indicates.

From [2], a(Cl) ={1: JA—1] =1}. Letz = 1+ ¢ Then z* = 2(1 +cos f)e”®. Let.
w = x+iy = z°. Then putting w in polar form yields the cardioid r = 2(1 +cos 0).
Since ¢(C?) = ((I(Cl))2 o(C?) is the closed bounded region with the above cardioid.
as boundary.

There is, however, a class of totally regular Hausdorff methods H for which.
6(H) = {1:]A—N| = N}. This class includes the gamma methods of order I.

Theorem 4. o(I')) = {1:[A—N| = N}.
The operator N —I'! — 1 has moment generating sequence

-

a
n+a’

Hp = C—

where ¢ = N—A. Let ¢, = 1/u,. If it can be shown that H, is a bounded operator
over 7 for |A|=>N, then o(N—T}) & {4:]2] = N}. Hence o(I'}) S {4: |A—N|
= N}. Using the method of proof of (4) of [2, Theorem 2] one can show that if 1
satisfies [A—N| < N, then 4 is a simple proper value .of I''*. The fact that the:
spectrum is closed completes the theorem.

We shall now show that H, is as required. Indeed,

1.
1] ajc
=—|14+—].
En c[ +n+’a—a/c]

1
—H ] 2 ”H.sup,

Thus
\H, |, =

where 6, = —
n+a—ajc

Let x¢€l?. Then

1 Hyxll, = { Zg

, and the theorem reduces to showing that [|Hj|, is finite.

o X

Now

V’nk] = [ ]IA" ‘= [ ]’f fhracelesI(l_gyckdr| = .

. ] . ' . .
= [Z] f tk+a—Re(a/c)—1(l _’)n—‘kd,.
0 .
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Thus IlHaXII,, H|a|(P) llxllp, where

v—l-—-{—,'a—Re (a/c)—1

H|&|(P) f’ P S, S

provided the integral exists. It remains to show- that a— Re(q/c)A—]/p > 0.

—~N
Note that ¢ = N— A Thus a— Re(a/c) = a+a 3 2]
(@ N) +5 :
By hypothesns MI>N If we let /1 = a+1ﬁ then |i|=N is equivalent to
a*+p* > N2, which can be written in the form (o — N)? + 2 > AN(N — a) Hence

ao—N 1

@=NHp 2N
The proof is now complete, since 1 —1/2N = 1/ap.

2. Finite continuous methods

Theorem 5. Le‘t_T be an intégral Hqusdorﬂ transformation defined by
_ - | | - o ' :
a TG = [ enda),
F AR

where g is an absolutely continuous ibtally regu/dr mass function. T hen Jor each T
which is a bounded operator over LP[0, 1], |T|,= H(p).

Proof. From {5, p 243], 1711, =H(p)Ifll,, with equality holding only for
f=0or T=1

To prove the reverse inequality, let f,(x)=x"#, B > 1/p. Then fIEL”[O 1]
and (T1,)(3) =y~*H(p). Thercfore |7, = H(p)-

Th eorem 6. Foreach T#I,NI~T has a total set of proper vectors correspond-

ing to proper values of modules strictly less than N.
2

With f,(x)= x" n=0,1, 2 .., the famlly {fo,f1:/2, ...} is total over LP{0, 1],

" and (Tfn)(y)‘ f (xy)"dq(x) = ,y". Therefore ((N=T)f)(») = (N —p,) "

Since T* is playmg the role over L?{0, 1] that was played by H over /?, one
conjectures that 7* has empty point spectrum. The conjecture remains to be verfied
general, but is true in the following special cases.

Theorem 7. Foraa positive integer, the point spectrum of H *is empty.
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Proof. H} has kernel _
o 0, O<y=x

K (x,y) = 1 ‘et
yr(a)(og(y/X)) , O<x<y.

Suppose H}g = Ag for some nonzero g€ LI[0, 1], where g is the conjugate index
of p. Then we have

@ S J ;—[log %] g dy = g ().

If 2=0, then differentiating the above gives

f 46 [log ] dy = 0.‘

Diﬂ’erentiating «—1 more times Ieads to —g(x)/x = 0 or g=0, a contradiction.
With 40, (2) implies the diﬂ'erentiabi]ity of g. Differentiation yields

ORI 500 =~y [ [log "

Now let w=g’(x), and regard g as a function of r_, where t=log x.\_Then
xg'(x)=D,w. Differentiating (3) (« —2) more times yields AD*w+(—1)*"'w = 0,
‘which has solution '

gx) = 2 Ay x*s,
where each g, is a root of the auxrllary equation a*+(—1)**! = 0.
From (2) and (3) it is.clear that g and each of its first « —1 derivatives vanish
at x =1, giving rise to the system

kZ:A’FO; k_Zlak(ak—l)...(ak—j)Akzo (G=0,1, .., a—2),

which is equivalent to the system

ZakJAk =0 (j=0,1,..,a—1).
This latter system has a Vandermonde determmant Therefore each Ak—O and
g£=0. ‘
Theorem 8. For o a positive integer, the point spectrum of C¥ is empty.
The method of proof is similar to that of Theorem 7. The kernel for CJ is

0, - O<y=x

* — a—1 .
k*(x,y) =y « [1_%] . Omx=y.

TA
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The condition C}g = ig becomes

@ur=f%b—§}dﬂw@.

For 10, the corresponding differential equation is '
2x2g®(x)~ (= 1T (@ + 1 g(x) = 0,
which is of Euler-type, with solution
g0 = 2 Apx.
k=1 )
As before, each A, is zero so that g =0.
Theorem 9. I";* has empty point spectrum.

The kernel for I'}* is

'Q O<y=x .
K*(x,y) = i[i]a_l O<x—<y
yly)

The condition I''*g=1g leads for A0 to the differential equation Axg’(x) =
=[A(a—1)—a]g(x), which has solution g(x)=Cx*"!"%* Since g(1)=0, C=0,
and g=0.

Theorem 10. o(I'}) = {A:]A-N| = N}.

To prove o(I') & {A:]A—N| = N}apply the corresponding argument of Theo-
rem 4 to L?[0, 1]. : '
For the opposite inclusion, suppose

[1 —%F}] £&) = ).
The resulting differential equation has solution
f(®) = ¢, exp[—a(l —1/N(1 — 1)) log x].
It Ais a straightforward exercise to verify that if |A| <1, then f€ LP[0, 1]. There-
fore point spectrum of | 1 -71]— F;] contains the open disc {:]4] <1}. Hence 6(I"}) o

>{A:{A—~N| < N}. The proof is now complete since the spectrum is closed.
Specializing to L*[0, 1] we have the following result. Let be a continuous bounded
operator over L,[0, 1] with kernel , '
0, O<x=y

@ kG =11y A
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and adjoint kernel

. 0, O<y=x
k*(x,y) =1 1 [x]
—fl=1, O=<x=<y,
yf‘y y

wheré f is nonnegative and integrable over [0, 1].
Theorem 11. T* is hyponormal.

Proof.‘. The kernels for TT* and T*T are

1 min (x, y)
I, = fk(x, wWk*(u, y)dic = j f[ ] [ ]du

and

= [l k@i == [ geisem
s - -

min (x, p)
Hence

Li—I=— f f[ ] [ ]dz= J700f o) dv.

For any gEL2[0 1,

(Ui —1)g. g) = [ [2() [ fwx)fGwy)dwdy g(x)dx = [ (Fg, Fg) du,

wherg F(g)(w) = fg(y)f(WJ’) dy.

. Ifgis abso.]utely continuous then we may write g(x) = f hi(¢) dt. An elementary
0

change of variable in (1) will change /4 to the form-_in‘(4). Thus every totalAly regular
intggral method with absolutely continuous mass function will have its adjoint hypo-
normal. : :

3. Infinite continuous methods

Theorem 12. Let T be a bounded linear operator over LP[0, =) with kernel
deﬁned by (4). Then |T|,=H(p).

This theorem is a special case of [5, Th. 319].
Theorem 13. For o a positive inregér H, and HY have empty point spectra.

For a proof, combine the facts that ¢ (H,) =(a(H))* and that H = C, has empty
point spectrum The same applies to H*.

Theorem 14. For o a positive integer C, and C* have empty pomt spectra.

7*,
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For each operator the proof is similar to that of Theorem 8. In each case one
shows that the only solution function in the appropriate space is the zero function.

Theorem 15. I'! and T''* have empty point specn;a.
The proofs here parallel that of Theorem 9.
Theorem 16. o(I'}) = {A:[2—N| = N}.

To prove this theorem one follows the argument -of [1] using

. 1 t s a—1
PxX)(t)= —I~0fx(s)a[7] Ads
with
1 had .
Px(t) = fa‘x(st)s".‘-"O‘1 ds and Q,x(r) = l/ax(s)s"“‘“‘l ds
0 . K . 0
as the corresponding resolvents in the appropriate regions.
For p =2 we have the following result.

Theorem 17. Let T be a continuous bounded operato‘r over L,[0, 1] with kernel
as in (4) with f now integrable over [0, «). Then T* is normal.
The kernels corresponding to 77* and T*T are

ho= [res okt ndeo= 2T r [ 2] a
1“‘0 xsu) u,y u—xy P ; y u

and

z]dz;
X

The author takes this opportunity to acknowledge at least one valuable con-
versation with each of the following: A. BROWN P. HALMOs, DoNALD J. KERR, Jr.,
A. SHIELDS, and J. P. WILLIAMS: E :

oo ' min (x,y) ;
L= [ R Gk, yydu = - [ f[—y—]f[
g8

Xy g

“hence I, —1, = 0.
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