The value distribution of composite entire functions
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1. If the entire function F(z) is expressible in the form fog(z), where f and
g are transcendental entire functions, it is called composite; otherwise F(z) is said
to be pseudo-prime. OzAwA [3] proved various results about the value distribution
of composite entire functions, including the following:

If F (z) is entire and of ﬁm‘te order and if there exists a constant A such that F(z)= A
has only real roots, then F(z) is not composite.

Thus a composite entire function F(z) of finite order has none of its A-values
distributed entirely on a line and, a fortiori none is distributed on a ray. One can
strengthen this last statement and assert that there is no direction which is the sole
limiting direction of the A-points:

Theorem 1. If F(z) is an entire function of finite order and there exist complex
A and real o such that for any 6 =0 all but a finite number of roots of F(z) A lie in
the angle |arg z—a| < 8, then F(z) is pseudo-prime.

In Section 3 similar arguments to those used in the proof of Theorem1 are
apphed toa question of iteration theory.

2. Proof of Theorem 1. (i) Without loss of generality, we may suppose a =7."
Suppose - F(z) satisfies the conditions of the theorem and that, nevertheless, F=f{(g),
fand g are transcendental. Then by a result of PéLyA [4], f has zero order-and g .
has finite order (less than that of F).

Now f(w) =4 has an infinity of solutions w=w,, w,, ..., w,, ... and |w,] — .
For any 6 =0, the roots of g(z) =w, (n=>n,) all lie in the angle A(d): |largz— nl <4
and so g(z) omits the values w, in B(x—9): larg z| = n—9.

BIEBERBACH [2] has shown that if the entire function h(z) takes two different
finite values at most finitely often in an angle of aperture ax, then in every smaller
angle ' '

/@] =0{exp (Klz|''} -

for a suitable constant K.
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We deduce that g(z) is of order = irn/(n—4) in B(zr—26). Since g(z) is of
some finite order, say g, in the whole plane, in particular in 4(28) of aperture 49,
¢ arbitrary, it follows from the Phragmén—Lindel6f principle that g =1

(ii) Choose w;#g(0) and 0<§<r/16. Then g(z) may be expressed

2@ —w, =] ]][1——] P(z)n]"Y[I—Z—]'

05 A constant, P(z) polynomial. Since f(g(z,,)):A we may assume that for given
0=>0, z,€ A(0) when n=n,.

For.zeB[g—cS]: |arg z| < g—é and for nzn, we then have larg (—z/z,)| < ZE’

z
-
z

and so

> 1. Thus as z oo in B[;,—&], ]g(z)l "+ oo faster than aﬁ'yv pqwér
" of |z|. N
(iii) Next we show that for all large enough z, (|z| > K), i.e. in |arg z| <0, we
have for

M D= @e@-my= 3 2f(z—)
that - '
) o ID| >4r6=', |arg D|<25. o

-First note that the bilinear function ¢ = z/(z— ) maps the line joining f to
—B onto the real axis and the angle |arg z—arg (—pf)| < 20 into the region £
bounded by the two circular arcs joining 0 to 1 and making angles +2¢ w1th the
positive real axis at 0. Hence for n=n,, when z,€ A(d), t = z/(z—2z,) maps B((S)
which belongs to |arg z—arg (—z,)| < 26, into E, and so for each n=n,- .

3) ‘ [Im z/(z—z,)| = tan (28)-Re z/(z—z) in B(5). .

Since, for each fixed n, z/(z —z,) —~ 1'as'z oo, one hias for all z¢ B(9) with sufﬁcn-
ently large |z], that (3) holds for all n. Hence, from m, -

"~ |D|=Re D=4n6""!,
and : . . B
[Im D| < (tan 26)-Re D, |arg D| <26

e,

for z€ B(d), |z| =K, say.
(iv) Choose w,, n>n,, such that f(w,)=4 and so large that ]g(z) wk{

< |w, —w,| for |z| =K, where K is the constant which occurs in (iii). The component

C of the set {z: |g(z) —w,| < |w,— w,|}, which contains the origin, has a bounded

intersection with B(d) and this intersection contains B(6) N {|z| = K}." Then ‘the
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boundary of CN.B(d) contains an arc of a level curve y of g(z)~w, which joins a
~ point of arg z = —§ to a point of arg z=4 and lies in |z{>K. On"y one has (1) and
(2) of (iii). Hence the arc y contains no zeros of g ‘(2). If, moreover, an_ increment.

8z on y corresponds to an increment dw on |w—w,| = |w —wy under w = g(2).
then , :

T ow ‘0z Tzgl(z
@ +_=—-—AL{1+0(52)}

C(w—wy) z g)—
so that - :

and by (2) arg{ (g) (zzv } _5 < %, S0 the arc y'can be expressed as z—r(0)e"’
—0=60=/.
Putting w —w,. = |w —wk]e"", we have in (4)
i3 {1+ 0(00)) = {5’+ 50} {_%’_(EL} {1+ 0(30)}
8(z)—wi ’
- whence ‘
do|_ | 28 | oy o
%= gm0 O

As z traverses .y in the direction of increasing 0, w"t.raverses'.the circle
I': |w—wg] = |w,—w,| in the positive direction and @ increases by at least
476~1.26 = 8n. Thus w traverses the whole of I and in particularig(z)=w=w,
for some point z€yc B(5). But this contradicts the ‘fact, established in (i), -that
g(2)=w,,n>ng, has no roots outside A(5). Thus the assumption that F(z) is compos-
ite must be false.

3. A related question in iteration theory. Let f(z) be an entire function and
[1@=1@), f,@)=f(f()), ..., f,(2), ... be its sequence of iterates. Regarding the
Fatou set (/) of those points of the complex plane where {f,(z)} does not form a
normal family, it was shown in [1] that if f(z) is entire and transcendental, then
&) cannot be contained in any finite set of lines but on the other hand, for any
constant A=>0 there exists an entire transcendental function for which F(f) is
contained in the region {|lm z| <A, Re z=>0}.

The function used to show this last result was of mﬁmte order. In fact, using
the arguments of Section 2 we can show:

Theorem 2. If f is entire transcendental and for every 6 =0 the set ‘f\;( f)—
— {z, (arg z) < 8} is bounded, then f is of infinite order.
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Proof. Suppose f satisfies the hypotheses of .the theorem, but is of finite order.
& (f) has the properties (cf. [1]): :

(i) &(f) is non-empty and perfect,
(i) If f(z)=a €, then z€ §F.

We take two different values «, § in §(f) which are not Picard exceptional for
f(2). The solutions of f(z)=a, f lie in & and so, with finitely many exceptions in
larg z] < 6. Noting that §>0 is arbitrary and proceeding as in § 2 (i), we see that
J(2) has order at most %

The method of Sectlon 2 (ii)—(iv) then shows that in the angle B: |(arg z) —nl <&
obtained from larg z] <& by reflection in the origin, f(z) takes all arbitrarily large
values, in particular large values z, for which f(z,) =u, i.e. values for which z,€ §.
If f(t,)=z,, t,€ B, we have t,€§, since z,¢ §. Taking a sequence z,€ & for which
|z,] ~ <, we have |t,| ~< and hence § N B is unbounded or & —{z, |largz| < J}
is unbounded, against the assumptions of the theorem. Hence f must be of finite
order.

In Theorem 2 the transcendence of fiis essentlal Polynomials have bounded .
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