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1. If the entire function F(z) is expressible in the form f°g(z), where / and 
g are transcendental entire functions, it is called composite; otherwise F(z) is said 
to be pseudo-prime. O Z A W A [3] proved various results about the value distribution 
of composite entire functions, including the following: 

If F(z) is entire and offinite order and if there exists a constant A such that F(z) = A 
has only real roots, then F(z) is not composite. 

Thus a composite entire function F{z) of finite order has none of its ^4-values 
distributed entirely on a line and, a fortiori none is distributed on a ray. One can 
strengthen this last statement and assert that there is no direction which is the sole 
limiting direction of the ,4-points: 

T h e o r e m 1. If F(z) is an entire function offinite order and there exist complex 
A and real a such that for any <5 > 0 all but a finite number of roots of F(z) = A He in 
the angle | a rgz — a| < S, then F(z) is pseudo-prime. 

In Section 3 similar arguments to those used in the proof of Theorem 1 are 
applied to a question of iteration theory. 

2. P r o o f of T h e o r e m 1. (i) Without loss of generality, we may suppose a = 7r. 
Suppose F(z) satisfies the conditions of the theorem and that, nevertheless, F=f(g), 
f and g are transcendental. Then by a result of PÓLYA [4] , / has zero order and g 
has finite order (less than that of F). 

Now f(w) = A has an infinity of solutions w = w1, w2, ..., wn, ... and |w„| — 
For any ¿>-0, the roots of g(z) = w„ ( « > « 0 ) all lie in the angle A(5): | a rgz — n\ < 5 
and so g(z) omits the values w„ in B{n — S): ¡arg z| S n — ö. 

BIEBERBACH [2] has shown that if the entire function h(z) takes two different 
finite values at most finitely often in an angle of aperture an, then in every smaller 
angle 

l/(2)l = 0 { e x p (K\z\lla)} • 
for a suitable constant K. 
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We deduce that g{z) is of order S %n/(n — 5) in B(jz — 25). Since g(z) is of 
some finite order, say q, in the whole plane, in particular in A(25) of aperture 48, 
5 arbitrary, it follows from the Phragmen—Lindelof principle that 

(ii) Choose wkT±g(Q) and 0 < 5 < 7 r / 1 6 . Then g(z) may be expressed 

g(z)-wk =.X JF 1 - - \ = P(z) JJ 1 - - , 

O ^ A constant, P(z) polynomial. Since f(g(z„)) — A we may assume that for given 
¿ > 0 , zn (E A(S) when n S n0. 

F o r z£B\--5 
7Z 71 

: | a r g z | < — — 5 and for «j=w0
 w e then have |arg(—z/z„)| < —, 

and so 1 1. Thus as z —°° in B\ — — 5 , |g(z)| — °° faster than any power 

of |z|. 
(iii) Next we show that for all large enough z, ( | z | > / Q , i.e. in |argz[<:c>, we 

have for 

(1) 
that 

(2) 

. D = zg' (z)/{g(z) - Wk} = 2 z/(z - z„) 
n = l 

\D\>4n5~l, |arg D\<25. 

First note that the bilinear function t = z/(z — /?) maps the line joining p to 
~P on to the real axis and the angle |arg z— .arg ( — P)\ < 25 into the region E 
bounded by the two circular arcs joining 0 to 1 and making angles ± 2 5 with the 
positive real axis at 0. Hence for / iS/7 0 , when zn £ A((5), t = z/(z — z„) maps B(5), 
which belongs to |arg z —arg ( —z„)| < 25, into E, and so for each 

( 3 ) |Im z/(z - z , ) | == tan (25) • Re z/(z - zk) in B(8). 

Since, for each fixed n, z/(z—z„) — 1 as z — o n e has for all z£B(<5) with suffici-
ently large \z\, that (3) holds for all n. Hence, f rom (1), 

and 
|Im D\ 

\D\ sRe D >4n5~1, 

(tan 25)-Re D, |arg£>| -25 

for z£B(5), say. ' ! V 
(iv) Choose wn, w > « 0 , such that f{w„) = A and so large that \g(z) — wk\"< 

\w„ — for \z\-^K, where K i s the constant which occurs in (iii). The component 
C of the set {z: \g(z) — wk vn — w^l}, which contains the origin, has a bounded 
intersection with B(5) and this intersection contains B(5) Pi {|z| s K}. Then the 
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boundary of Cf):fi(<5) contains an arc of a level curve y of g{z) — wk which joins a 
point of arg z = — 5 to a point of a r g z = <5 and lies in \z\>K. On y one has (1) and 
(2) of (iii). Hence the arc y contains no zerps of g'(z). If, moreover, an. increment. 
5z on y corresponds to an increment 5w on — w t | = \w„ — wk\ under w =g (z ) „ 
then 

5w 5 z zg'(z) 
(w-wky z g(z)-wk 

(4) 

so that 
'5z 

arg I — 
% 2 5z 

arg I — 
w—wk 

dw 

:{l+o(<5z)}, 

zg'(z) 
- a r g .{l+o(<5z)}, 

and by (2) arg zg'(z) j 
g(z)-wkf 

2d < * 

(g(z)-wk) 

so the arc y ean be expressed as z = r(0)e10, 

-Ssd^S. 
Putting w — wk• = \wn — Wk¡e"p, we have in (4): 

whence 
d(p 

> - zg'W 
do g(z)-wk 

4 n s - 1 , by (2). 

As z traverses y in the direction of increasing 0, w traverses the circle 
T : \w — wk\ = \wn — wk\ in the .positive direction and (p increases by at least 
4nd~1-2S = 87c. Thus w traverses the whole of r and in particular :g(z) = w = wn 

for some point z£ycB(S). But this contradicts the fact, established in (i), that 
g(z) = w>n,n>/70,has no roots outside A(5).Thus the assumption that F(z) is compos-
ite must be false. 

3. A related question in iteration theory. Let / ( z ) be an entire function and 
/ t ( z ) = / ( z ) , / 2 ( z ) = / ( / ( z ) ) , . . . , / „ ( z ) , . . . be its sequence of iterates. Regarding the 
Fatou set SCO of those points of the complex plane where {/„(z)} does not form a 
normal family, it was shown in [1] that if f ( z ) is entire and transcendental, then 
5 ( / ) cannot be contained in any finite set of lines but on the other hand, for any 
constant A > 0 there exists an entire transcendental function for which # ( / ) >s 

contained in the region {|Im z| < A , R e z > 0 } . 

The function used to show this last result was of infinite order. In fact, using 
the arguments of Section 2 we can show: 

T h e o r e m 2. If f is entire transcendental and for every ¿ > 0 the set %{f)~ 
- {z, (arg z) < <5} is bounded, then f is of infinite order. 
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P r o o f . Suppose/sat isf ies the hypotheses of.the theorem, but is of finite order. 
$ ( / ) has the properties (cf. [1]): 

(i) 5 ( / ) ' s non-empty and perfect, 
(ii) i f / ( z ) = « € 5 , then 

We take two different values a, ß in g ( / ) which are not Picard exceptional for 
f ( z ) . The solutions of / ( z ) = a, ß lie in g and so, with finitely many exceptions in 
|argz|<<5. Noting that <5>0 is arbitrary and proceeding as in § 2 (i), we see that 

f ( z ) has order at most 
The method of Section 2 (ii)—(iv) then shows that in the angle B: |(arg z)~n\ < 5 

obtained f rom |argz|<<5 by reflection in the origin, / ( z ) takes all arbitrarily large 
values, in particular large values z„ for which /(z„) = a, i.e. values for which z„£5-
I f f ( t n ) = z n > w e have since Taking a sequence z „ £ 5 for which 

'knl~*°°> w e have |i„|— °° and hence is unbounded or g —{z, | a rgz | < <5} 
is unbounded, against the assumptions of the theorem. Hence / must be of finite 
order. 

In Theorem 2 the transcendence of / i s essential. Polynomials have bounded 5-
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