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By E C K F O R D C O H E N and K. JOSEPH DAVIS in Greenville (North Carolina, U.S.A.) 

1. Introduction. For each integer let Lk represent the set of positive 
integers n such that each prime factor of n occurs with multiplicity at least k. Let 
lk{n) denote the characteristic function of the set Lk, and for real x ^ l , let Lk(x) 
be the number of integers contained in Lk and not exceeding JC. Let Q be the set 
of squarefree integers and q{n) the characteristic function of Q. The Riemann zeta-
function will be denoted £(s) for real s. 

The starred references of this paper refer to the bibliography of the paper [2] by 
the first author. All O-constants which occur are understood to depend upon k. 

In 1934 ERDŐS and SZEKERES [5*] obtained the following estimate for Lk(x): 

(1.1) Lk(x) = ckxilk + 0(xlKk+1>) 

where ck is a constant. This was proved by elementary means without any essential 
use of Dirichlet series. Later BATEMAN and GROSSWALD obtained (1. 1) in the 
stronger form 
(1.2) Lk(x) = ckxilk + ckxlKk+i) + 0(xlKlk+1)), 

where ck, like ck, is independent of x. While the Bateman—Grosswald proof is 
elementary, it makes use of the uniqueness theorem for Dirichlet series (see 
Remark 1 below). 

It is the purpose of the present paper to establish certain weaker estimates 
for Lk(x) by strictly elementary methods. In particular, we show in §6, without 
appealing to the uniqueness theorem, that 

(1.3) Lk(x) = ckxílk + ckxíKk+l) + 0{x^k+1)). 

The argument used in the paper is an elaboration of the method of ERDŐS 

and SZEKERES [5*]. We require, in addition, estimates for some special sums (§ 4) 

and an asymptotic formula for the average of a certain divisor function (§ 5). In § 7 
we give a simple, independent proof of the slightly weaker form of (1. 3) with the 
O-term 0(xlKk+2)\og x). 
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R e m a r k 1. The case k = 2 is exceptional with respect to the above discussion 
of ( 1 . 2 ) . In fact, an elementary proof of ( 1 . 2 ) in this case has been given by 
BATEMAN [1*]; also see [2] and [3, § 3]. 

2. Density of L^. Our first estimate for Lk(x) is given in the following theorem. 
Let L2=L. 

Theorem 1. The set L has density 0; that is, 

x 

Proofs of this result have been given by FELLER and TOURNIER [6*, § 9] and 
SCHOENBERG [10*, § 12]. The corresponding result for Lk, k^2 follows immediately. 

3. 0-estimate for Lk(x). We first prove a characterization of the set Lk. 

Lemma 1. A necessary and sufficient condition that an integer n be in Lk is 
that it admit a representation of the form 

(3.1) n = didl-..diz\dk, d^.-.d^^d. 

Proof . Suppose n can be written in the form (3. 1), and let p\n, p prime. 
Then p\d and hence pk\n. This proves the sufficiency. 

Now suppose n£Lk, n=p\' ... p f , e^k (i = \,...,s) where pis ...,ps are 
the distinct prime divisors of n. Now et = qjc + r¡, #¡>0, 0^rt<k (i= 1, ..., s). 
Therefore pe

h = (pffip]'' for each i, from which it follows that n is expressible in 
the form (3. 1) in such a way that d=p\' ... pf and d1...dk_1 is the product of 
those pi for which the corresponding rt > 0. 

We are now in a position to prove the following result. Throughout this paper 
the symbol Z' will indicate that the sum is taken over integers in Lk. Let [JC] denote 
the largest integer ^ x . 

Theorem 2. For xSi, 

(3.2) Lk(x) = 0(xllk) as • 

P r o o f . Let 5 = dtd2 ...dkll. By Lemma 1, 

Lk(x) = 2 i s 2 1 
nSx idk^x 

where the last summation is over all ^-tuples of natural numbers dt, d2, ...,dk^l, 
d such that D = did2d3...dk_l divides d, DN=d. 

Thus 
Lk(x) = 2 2 i . 

ssx dksx/a 
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Summing over N, we see that the interior sum has the value, 

[x1'k/dl+u><di+2lk... d^lk-i)lk\. 
Hence 

Lk(x) s x1/k 2(di+1/kd2+2/k •••dk+i(k~iyky1 = 0(x1/k), 
d^x 

and the theorem is proved. 
A different proof of (3. 2) is indicated by HORNFECK in [8*, Lemma 2]. 

4. Lemmas. This section contains two lemmas which will be needed in the 
last two sections. 

Lemma 2. (a) For 0<s<l/A:, 

( 4 . 1 ) 2 > ± = o ( x ^ s ) , x s l . 
nsx « 

(b) For s = l/k, 

( 4 . 2 ) = ° ( l o g * ) > 
n s * ft 

(c) For s > 1 Ik, 

( 4 . 3 ) = 

Proof . By partial summation and the definition of lk(n), 

hence, by Theorem 2, since (1 + l/«)s = 1 + 0(1/«), 

2'n~s = o(2n-s-(k~m)+o(xllk-s). 
nSx nsx 

If s ̂  l/k, the first 0-term in the last expression is 0(xllk~s) or 0(log x) according 
as s<l/k or i = l/k. This proves (a) and (b). 

Similarly, for ks> 1, we have with y 

y m i i x t w l « s (« + 1)SJ ( M + l ) 5 ( [x l + l ) s 

and since both 0-terms are 0(xllk~") the lemma results as y -*• <». 
We define a*(s, n) to be the sum of the s-th powers of the square free divisors 

of n, and o{s,n) to be the sum of the j-th powers of all divisors of «. Place 
0(n) = o*(0, n). 

12* 
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Lemma 3. If 0<a <(k-l)/(k + 2), then 

(4- 4) 2 = 

«€tk+2 

P r o o f . Place 

nsx '» 
n € Lit + 2 

where e. = k + 2, t = 2k + \. We estimate S(a,x) first and then reduce the estima-
tion of S*(a,x) to that of 5(a, x). It is convenient to use <k in place of the 0-symbol 
below. 

Noting that a*( — a, n") = <r*( — a, n)Scr( — a, //), one obtains 

= 2 2 rf"a(i/<5)~c(a+1)/' = 21 ^"°t_e(a+1)/' 21 ¿-e(a+1)/i. 

nsx1/' dd=n dsx1/« d^xl/o/d 

Since (£ + 2) (a +1) < 2k +1 , it follows that 

i " Y l / < A l - e ( « + l ) / < S ( a , X ) « 2 d — « ( « + 1 > / M - ^ r < < x ( l / e - ( a + l ) / 0 2 d " « " 1 « 

dsx1/" \ " ) dsx1/' 

^xWe-i'+DIt) 
in view of the positivity of a. 

We observe that every integer n of Lk+2 has a unique representation of the 
form n=pmk+1, where p=pc

1'pc?---pcr, Pi, p2, • • P, being distinct primes, 
Pi^Pi-z Pr> and 1-2, (fc + 2) does not divide e,, p( does not divide m, 
for each i. Therefore, 

Piim 

where the second summation is over all ordered /--tuples of natural numbers 
e1} e2, ..., er such that e does not divide e;, e,->e (/'=1, ..., r) and all /-tuples of 
prime numbers plt p2, ...,pr such that PI<P2< ••• <pr (being vacuous in case 
r = 0). By the multiplicative nature of a*, a*( — a, mcp) = er*( — a, me)a*( — a, p). 
After applying this property we drop the condition that pt does not divide m in the 
third summation, getting 

S*(«, *) S 2 2 <y*(—a,p)S(a, x/p)/p<° 
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where the second summation is over the same natural numbers as before. By the 
above estimate for S(a, x), we get, dropping the condition that e does not divide 
ei but retaining the other conditions, and placing 

r = 0 P n = 0 n n = 0 n 
n € Lo + l n € ie +1 

It follows that it suffices to show the convergence of the series on the right. 
A formal computation gives 

« 6 Le +1 

Observing that ( 1 s ( l - 2 " 1 / e ) _ 1 for all p, it follows that the product, 
and hence the series, converges. 

5. A divisor function. We first recall a known estimate for the Legendre 
totient function (p(x,n), which denotes the number of positive integers S x prime to n. 

Lemma 4 (cf. [1]). If 0 S a < l , then 

(5. 1) cp(x,n) = cp(n)x/n + 0 (xarj*( — a, «)), 

where cp(n) = (p(n, n), uniformly in both x and n. 

The case a = 0 of the following lemma is Lemma 3. 1 of [4]. The general case 
is proved similarly except that the 0-term of formule (3. 5) of that paper is replaced 
by 0(x'~s) in the proof. 

Lemma 5. If ^>0 , 1, x £ l , then for l > a S 0 , 

(5. 2) Ns(x, r)= Z 1 /ns = tts)<Ps(r)lrs-<p{r)lr(s-1)**"1 + 0(jc—<T*(-a, r% 
nsx 

(",<•)=1 

uniformly in x and r, where (ps(r) = £ ¡¿(d) (r/dy, <pi(r) = (p(r), H denoting 
d\r 

the Mobius function. 
Now suppose a, b, h and m to be positive integers. For positive integers n, 

let x™'* (n) denote the number of decompositions of n in the form n = d"fb where 
(d, m) = ( f , h) = l. We now are ready to prove the main result of this section, an 
estimate for the summatory function T™'bh(x) of T™'*(/?). 



368 E. Cohen—K. J. Davis 

Put c = a + b, r = a/b, s = b/a. 

Theorem 3. (cf. 4, Theorem 3. 1 in case m = h) If b>a^\, r > a s O , then 
for x^l 

•Ttf(x) = a,„ihx1 la + bmj,xl/b + O (x<-"+l)/c gx(h, m)), 

where ga(h, m) = max (CT*( — a, h), o*( — a, m)), 

am,h = C (i) <p (m) <ps (h)l mhs, ¿>m_;, = C(r)(p(h)<pr(m)/hmr. 

Proof . We have 

= 2 *&*(«) = z 1 
nsx . d ' f ' S x 

where in the last sum, (d, m) = ( f h) — \. 
Thus 

( 5 . 3 ) T t f ( x ) = 2 1 + 2 1 - 2 1 -
dsx1!" djux1/* 

Since d and / in the summation cannot both simultaneously be >x 1 / c . Each sum 
of course still has the conditions d"fh^x, (d, m) = ( f , h) — \. Let these three sums 
be denoted by I t , I 2 , Z3 , respectively. 

For the first summation one obtains by Lemma 6, since aa /6<a 2 / 6 2 < 1, 

(xllb ) 
2t= 2 <P\z?r>h \ = xllb(p(h)Nr(x1,c, m)/h + Ox^a+ 1),c ff* (—a, h). 

i s i ' / « \ a ) 
(d,m)= 1 

Application of Lemma 7, gives 

(5. 4) 2i = x^C(r)<p(h)cpr(m)/hnf- lc + 0(Qa(h, 

and on applying a similar argument to I 2 and Z3, 

(5.5) = + 

(5.6) 2 a = + 

The theorem results on the basis of (5. 3), (5. 4), (5. 5), and (5. 6). 

6. Asymptotic estimation of Lk(x). We first introduce some notation and point 
out a few elementary facts that will be useful for the later discussion. We denote 
by Ak, Bk the sets of those positive integers all of whose prime divisors have mul-
tiplicity on the ranges k + 1 S t < 2k, and k + 2 S t < 2k, respectively, with B2 = {1}. 
Note that BkQLk+2. 
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Remark 2. If a£Lk, then a has a unique factorization a — dke where e£Ak. 

R e m a r k 3. If e£Ak, then e has a unique factorization e = gk+lh, where 
g£Q, h£Bk and (g,h) = l. 

The following result is well known. 

R e m a r k 4. For positive integers n, q{n) — 2 M(e)-
d2e=n 

The proof of our main result depends upon the following representation of lk(n). 

Lemma 8. 
4 («) = 2 

dke2k + 2fk+ lh = n 

where the summation is over integers d, e, f and h such that h£Bk and (e, h) = ( / , h) — 1. 

Proof . By Remarks 2 and 3 

/*(«)= 2 i = 2 i = 2 q(g), 
due^n <lV + 'h = n dkgk*ih = n 
eiAk g(.Q 

the last two sums with the conditions h£Bk,{g,h)=\. The lemma results by 
Remark 4. 

The folowing expansion will be needed (Cf. [4], (3. 4)): 

(6. 1) 2 KnW = rsIC(s)<Ps(r) (.S > 1). 
n=l 

(n,r)=l Since (ps («) = ns J] (I —1 jps) we have 
Pin 

Lemma 9. If s£ ' l , then (ps(n)/ns is bounded; for (ps(n)/ns is bounded 
away from zero. In particular, for each i>l, <ps(ri) has the order of magnitude of 
ns as n -«>. 

Put r = k + \, t = 2/fc + l. 

Theorem 4. If x^2, then 

(6.2) Lk(x) = ckxllk + c'kxllr + 0(x^k+2^, 

where ck and ck are defined by 

and ah = al h, bh = bi h are defined as in Theorem 3. 

Remark 5. Note that ah and bh are bounded. 
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Proof . By Lemma 8. 
(6.3) Lk(x) = 2 2 № 

hSx e2rdkf^x/h 

with h£Bk in the first sum and (e, h) = ( f , h) = \ in the second sum. Let the inner 
sum of (6. 3) be denoted by I*, h ^ x . Then 

2* = 2 Me) ttfix/he2'), 
e3(x/Ji)1/2r 

(e,«= 1 

from which, by (6. 1) and by Theorem 3, (m = 1, a = k, b = k+ 1) with k/r>aSO, 

2* = ah(x/h)llk 2 4 J + ' 

+ b„(x,hyi' 2 "ke)le2 + 0((xlh)(-°+1V'o*(-<x,h)) = 
em(x/hW2r . 

fjl/k ( Iflr \ 

Substituting this into (6. 3) one deduces by Lemma 9, Remark 5, and the fact that 
Pk = Lk+1, 

Lk(x) = ckxllk + 0{x1/k 2 h-1'k) + ckxllr + 
h>x 

h£Lk + 2 
a*(~a,h)) 

+ o(xllr 2 h-V')+o\x^» 2 
H^-X HSX 

h£Lk + 3 /ietfc + 2 

By Lemma 4c (with k replaced by k + 2) the first two 0-terms are 0(x1/(k+2)) 
and by Lemma 5 (restricting a further to 0 < a < (/: — l)/(k + 2)) the last is also 
0(x1Kk+2)). This proves Theorem 4.. 

7. A weaker form of the main result. The argument used to prove Lemma 5 
yields the following result for the case a = 0 of the sum in (4. 4) : 

(7. 1) 2 - r S i j - = 0 ( ^ / ( t + 3 ) - 1 / ( " + 1 ) I o g * ) , 
nsx « 

This result and case a = 0 in Theorem 3 yield, on the basis of the argument in the 
preceeding section, the following slightly weaker asymptotic evaluation of Lk{x): 

(7.2) Lk(x) = c ^ + cixW+v + Oix^+Vlogx). 

This is of interest, in the first place because only the regular form (a = 0) of Lemmas 6 
and 7 are needed for the proof, and in the second place because (7. 1) can be proved 
independently in a much simpler way than the corresponding result in Lemma 5. 
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To prove (7. 1) we recall that 9(n) denotes the number of square-free divisors 
of n. By the fundamental theorem of arithmetic, there is a one-to-one correspondence 
between the square-free divisors of n and the so-called unitary divisors of n (the 
divisors d of n such that (d, njd) = 1); hence 0(n) is the number of unitary divisors 
of n. With t = 2k + \ and e = k + 2, we have 

6(n) J_ _ 1 y 1 y 1 
ni/t n*» £„ «4 m u t d1" s£/d s1" ' 

n£La niL, (i.a)= 1 dSiL. d£L, 
(d,8)= 1 (d,S)= 1 

by the fundamental theorem of arithmetic. We may drop the condition (d, = 1 
provided the last equality is replaced by inequality ( s ) . Lemma 4(a) is then applicable 
(with k replaced by k + 2) and its application gives 

y l H " " 1 " lie —lit 

n f x n'" A dV'\d) <<X £ x dU* ' 

and (7. 1) results on applying Lemma 4(b). 
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