Elementary estimates for certain types of 'imtegersA

By ECKFORD COHEN and K. JOSEPH DAVIS in Greenville (North Carolina, U.S.A.)

1. Introduction. For each integer k=2, let L, represent the set of positive
integers n such that each prime factor of # occurs with multiplicity at least k. Let
I, (n) denote the characteristic function of the set L;, and for real x=1, let L(x)
be the number of integers contained in L, and not exceeding x. Let Q be the set
~ of squarefree integers and g(n) the characteristic function of Q. The Rlemann zeta-
function will be denoted {(s) for real s.

The starred references of - this paper refer to the bibliography of the paper [2] ‘by
the first author. All O-constants which occur are understood to depend upon k.

In 1934 ErDGs and Szekeres [5*] obtained the following estimate for L,(x):

ay L (%) = ¢xtfk 4 O (x/k+1))

where ¢, is a constant. This was proved by elementary means without any essential
use of Dirichlet series. Later BATEMAN and GROSSWALD obtained (1. 1) in the
stronger form '

(1. 2) Lk(x) — ckx1/k+Cl’cx1/(k+ 1) + 0(x1/(2k+1)),

where ¢, like ¢, is independent of x. While the Bateman—Grosswald proof is
elementary, it makes use of the uniqueness theorem for Dirichlet series (see
Remark 1 below). ' '

It is the purpose of the present paper to establish certain weaker estimates
for L,(x) by strictly elementary methods. In particular, we show in § 6, without
appealing to the uniqueness theorem, that

(1.3) L (%) = g x'k 4 epxt/®+D 4 O (xt/(k+2)),

The argument used in the paper is an elaboration of the method of ERDGS
and SZEKERES [5*]. We require, in addition, estimates for some special sums (§ 4)
and an asymptotic formula for the average of a certain divisor function (§ 5). In § 7
we give a simple, independent proof of the slightly weaker form of (1. 3) with the
O-term  O(x*+2jog x).
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Remark 1. The case k=2 is exceptional with respect to the above discussion
of (1.2). In fact, an elementary proof of (l.2) in this case has been given by
BATEMAN [1*]; also see [2] and [3, § 3].

‘ 2. Densnty of L,. Our first estimate for L,(x) is given in the following theorem.
Let L2 =

Theorem 1. The set L has density O, that is,

lim £,(_x)_

X—+co X

=0.

Proofs of this result have been given by FELLER and TOURNIER [6*, § 9] and
SCHOENBERG [10%, § 12]. The corresponding result for L,, k=2 follows immediately.

3. O-estimate for L,(x). We first prove a characterization of the set L.

Lemma 1. A necessary and sufficient condition that an integer n be in L, is
that it admit a representation of the form '

G.1) . n=dyd}...d-tdy, didy...d._)d.

- Proof. Suppose n can be written in the form (3. I), and let pln, p prime.

Then pld and hence p*jn. This proves the sufficiency.

Now suppose n€L,, n=p$ ..pS, ¢=k (i=1,...,5) where p,,...,p, are
the distinct prime divisors. of n. Now. ¢; = gk +r;, ¢;=0, 0=r,<k (i=1, ..., s).
Therefore pi‘i:(p")" " for each i, from which it follows that » is expressible in
_the form (3. 1) in such a way that d=p%' ... p% and d,...d,_, is the product of
those p; for which the corresponding r;=>0.

We are now in a position to prove the following result Throughout this paper
the symbol 2/ will indicate that the sum is taken over integers in L. Let [x] denote
the largest integer =x.

Theorem 2. For x=1,

3.2 . Lk(x)=0(x”")' as x-—oo;
Proof. Let 6 =d,d?.. !. By Lemma 1,
"Lk(x)=21§ >1
nsx odk=x

where the last summation is over all k-tuples of natural numbers d,, d,, ..., dy_,,
d such that D = d,d,d,...d,_, divides d, DN=d.

Thus '
Lx)y=2 2 L

ésx d*=x/6
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Summing over N, we see that the interior sum has the value,
[xllk/d11+1/kd21+2/k dkl_-l-l(k—l)/k]_

Hence
L,,(x) = xl/kéZ (d11+1/kd21+2/k... dkl_j-l(k—l)/k)—1 — O(x”"),_
 o=x : .

and the theorem is proved.
A different proof of (3. 2) is indicated by HORNFECK in [8*, Lemma 2].

4. Lemmas. This section contains two lemmas which will be needed in the
last two sections.

Lemma 2. (a) For O<s<l1/k,

.
@.1) 2';1; =0(x*"), x=1.
(b) For s = 1/k -
(4 2) ' ;1— = O(logx), x=2.
(c) For s> 1Jk, =
(4.3) . > n— - O(x" ), x=1.

Proof. By partial summation and the deﬁnition of L(n),

=S — Ik(n) 1 L (x) .
sne= 3 M0~ 510 J+ 29

nsx n=x n=x ns (I’l + 1)
hence, by Theorem 2, since (1 1/n)° = 1+ 0(1/n),
Z’/ -5 - 0( Zn—s k- 1)/k)+ O(xllk s)

n=x nsx

If s=1/k, the first O-term in the last expression is O(x'/*~%) or O(log x) accordmg
as s<1/k or s=1/k. This proves (a) and (b). :
Similarly, for ks=>1, we have with y>x,

s I ) L& . LO) _
o -‘y%ﬁ()[ns (n+1)s] EE R G

7 (Zn-s - 1)/k)+0[ sluk],

n>x

and since both O-terms are O(x*~*) the lemma results as y - co.

~ We define o*(s, n) to be the sum of the s-th powers of the square free divisors
of n, and o(s,n) to be the sum of the s-th powers. of all dmsors of n. Place
0(n) = 6*(0, n).

12#*
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Lemma 3. If O<a<(k=1)/(k+2), then

) .
: o*(—a,n
. 4) > T—i-(T)/(%k-l-_)li = O+ D=1 +0/@k+ 1)),
<o nt ,
nELkzz

Proof. Place
o*(—oa, n)

* —
S ((X, x) —— ng; n(l +a)/t s
n€Li+2
o(—a, n°)
S(Ot, X) ——nég/ewy

where e. = k+2, t= 2k+ 1. We estimate S(x, x) first and then reduce the estima-
tion of S*(a,x) to that of S(a, x). It is convenient to use < in place of the O-symbol
below. :

Noting that ¢*(—a, n°) = ¢*(—a, ) =a(—a, n), one obtains

’
ra(—“’ n) -
S(o, x) §n§§/a pe@E i
— d—*(ds —e(a+1)/t = d—a—c(a+1)/t 5—e(a+1)/t_

Since (k+2) (@ +1) <2k +1, it follows that

1/e\1—ela+ 1)/t
S, x) < d‘“'e(““)/‘[—xd ] < x(tle-l+ D) X g-a-l
. d=x1l/e

d=sxl/e
< x(le-@+1)in),
in view of the positivity of a.

We- observe that every integer n of L; ., has a unique representation of the
form n=pm**?, where p=p$p?...p%,p1,Ps,..., P, being distinct primes,
P1<py<..=<p,, and e,=k+2, (k+2) does not divide ¢;, p; does not divide m,
for each i. Therefore,

L e
Sax =23 3 —ZCEM)

r=0 mep=x
pitm

where the second summation is over all ordered - r-tuples of natural numbers
€y, €y, ..., e, such that e does not divide ¢;,¢;>e (i=1, ...,r) and all r-tuples of
prime numbers p,, p,, ..., p, such that p, <p,<...<p, (being vacuous in case
r=0)., By the multiplicative nature of ¢*, 0*(—a, m%p) = o*(—a, m*)e*(—a, p).
After applying this property we drop the condition that p; does not divide m in the
third summation, getting

S*a,x) = 2 > 0*(—O€,p)S(oc, x/pj/P(a+1)/t
r=0
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where the second summation is over the same natural numbers as before. By the
above estimate for S(a, x), we get, dropping the condition that e does not divide
e; but retaining the other conditions, and placing

B =Gt Dt

3 < 05 (—a,p) < o*(—a,n) _ - = 0(n)
§* (@, x) < 22__(1_/8___,(,, 2 e =X 2 T
n= =

n€lLes+1 n€Llest

It follows that it suffices to show the convergence of the series on the right.
‘A formal computation gives :

= 0 2 (1
ng(; nl/c = -lp]{l+[p1+1/c][1 _p—lle]}'

nELg41

Observing that (1 —p~¢)~1=(1—-2"¢)~1 for all p, it follows that the product,
and hence the series, converges.

5. A divisor function. We first recall a known estimate for the Legendre
totient function ¢(x, n), which denotes the number of positive integers = x prime to n.

Lemma 4 (cf. [1]). If O=sa<], then

6. 1) 90, ) = @xin+0 (¥'o*(~a, n),
where p(n)=@(n, n), uniformly in both x and n. |

- The case =0 of the following lemma is Lemma 3. 1 of [4]. The general case
is proved similarly except that the O-term of formule (3. 5) of that paper is replaced
by O(x*~%) in the proof.

Lemma 5. If §=0,s51, x=1, then for l1=u0=0,
5.2 Nxn)= 3 Ur=L6)e)r —p()r(s— Dx=14+0(x**c*(~a, 1),

n=x

mr=1
uniformly in x and r, where o (r) = > p(d) (r/dy,. ¢@,(r) = @(r), u denoting
. dir
the Mobius function.
Now suppose a, b, i and m to be positive integers. For positive integers n,
let 73¢(n) denoté the number of decompositions of » in the form n=d%® where

{, m) (f, h)=1. We now are ready to prove the main result of this section, an
estimate for the summatory function 77%'(x) of 7(n).
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Put ¢ = a+b, r=alb, s=b/a.
Theorem 3. (cf 4, Theorem 3.1in case m=h) If b=a=1, r>a20 then
Jor x=1
m,h(x) = mhx1/a+bmIx1/b+0(x(a+1)/cg (h m))

where g,(h, m)=max (¢*(—a, k), c*(—a, m)),

Gy = ()P (m) @, (B, by = L(r) o (B) <or(m)/hm
Proof. We have
Tmk(x) = é’ T (n) =sz; 1
where in the last sum, (d, m)=(f, h)=1.
Thus

(5.3) Tmh(x) = 2 1+ 31— 3 1.

follc d,f=xt/e

Since d and f in the summation cannot both simultaneously be =x!/, Each sum
of course still has the conditions d’f®=x, (d, m)=(f, A)=1. Let these three sums
be denoted by X, , X,, 2, respectively.
For the first summation one obtains by Lemma 6, since aofb <a2/b2<1
x1/b _ .
>, = ds%’/c @ [7, h] = x* o (B) N, (x/¢, m)/h + Ox@+Vleg* (—a, Iz).

d,m=1

Application of Lemma 7, gives

6.4 3o =x"Ur)e W) o (m)/hm — a.b_b LI O e 1 0(0u s ),

and on applying a similar argument to X, and X,

(5 5) 22 = C( )¢’£1 )(Dsh(sh) xl/a+ — a b(p’(;n) (P(h) 2/c+ O(Qa(h, m)x(¢+ 1)/c),

G. 6) 23 —_ (Pgl) (P’(;n) x2/c+0(x(a+1)/cg (h, m))

The theorem results on the basis of (5. 3), (5. 4), (5. 5), and (5. 6).

6. Asymptotic estimation of L, (x). We first introduce some notation and point
"~ out a few elementary facts that will be useful for the later discussion. We denote
by A,, By the sets of those positive integers all of whose prime divisors haye mul-
tiplicity on theranges k+1 =< 2k and k+2 = t <2k, respectively, w1th B,={1}.
Note that B,CSL,,,.
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Remark 2. If a€L,, then a has a unique factorization ¢=d*e where e€ 4,.

Remark 3. If ec4,, then e has a unique factorization e=g**1h, where
gEQ, hEB, and (g, H)=1.
The following result is well known.

Remark 4. For positive integers n, g(n) = 2 p(e).
. ' d2e=n

The proof of our main result depends upon the following representation of /(n).

Lemma 8.
: h(n) = > ue),
dke2k+ifk+1p=p

where the summation is over integers d, e, f and h such that h€ B, and (e, h)=(f, h)=1.
Proof. By Remarks 2 and 3 ' '

= 21= 2 1= 2 4(),
Fe=n degk+1h=n dkgk+1lp=n

eEAk g€Q

the last two sums with the conditions h€B, (g, h)=1. The lemma results by
Remark 4.
The folowing expansion w1ll be needed (Cf 45 G. 4))

(6. 1) %’_ ‘l#(n)/n‘ = rif{(s)os(r) (s = 1).

(=1

Since ¢, (n) = n* J[ (1 —1/p*) we have
pin .

Lemma 9. If s=1, then o/ n)/n° is bounded; for s>1, @n)/n® is bounded
away from zero. In particular, for each s>1, @ n) has the order of magnitude of
1n° as n—>eo. :

Putr=%k+1,1t = 2k+1.

Theorem4 If x=2, then
6.2 Li(x) = Ckxllk+ckx1/’+0(x1/("+2))
where ¢, and c;, are defined by

AT
] (hE‘Bk),

1/k ‘ .m
o= ("1 (2rfk) Zahl k ] =072 th[(p—(‘,;)‘
2

h=1 Dok m)’ h=1

and a,,=a1,,,, b,=b, , are defined as in Theorem 3.

Remark 5. Note that g, and b, are bounded.
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" ‘Proof. By Lemma 8. S
(6.3) L Lx=2 2 e

h=x e¥d*fr=x/h

with A€ B, in the first sum and (e, H) =(f, A)=1 in the second sum. Let the inner
sum of (6. 3) be denoted by Z*, A=x. Then
2= X we) TM(x/he™),

es(x/ml/2r
(e,)=1

from which, by (6. 1) and by Theorem 3, (in=1, a=k, b=k 1) with kjfr>a=0,

£3 — h 1/k ﬂ(e)
2 ay(x/h) eé(ﬂZmW o2rlk +
’ (e,h)=1

+b,,(x, h)l/r ) 2 (e)/ez-I-O((x/h)(“"'”/' *( a, h)) —

exs(x/m)l/

t/k .

h

P2epc () 2(h)
Substituting this mto (6. 3) one deduces by Lemma 9, Remark 5 and the fact that
ﬂk = Lk+ 2

Ly (x) = e x* + O(x11* 2 B 4 g x4+

= xl/ka l- 1(2r/k) +b,,x1/’ 1(2)[ ]—I—O(a’*( a, h)(x/h)(“”/‘)

heLk+z

r r a a*(——oc,h) .
+O(x1/ ;,>Zx h 1/)+O[x(1+ )/t ,,;,; ——}m—ﬁ——]
h€Lik42 h€Lis2

. By Lemma 4c (with k replaced by k+2) the first two O-terms are O(xH+2))
and by Lemma 5 (restnctmg o further to O<oz<(k—1)/(k+2)) the last is also
’O(x”("”)) ‘This_proves Theorem 4..

7. A weaker form of the main result. The argument used to prove Lemma 5
yields the following result for the case o=0 of the sum in (4. 4):

9
@.1) 3 ) = OG- D log ), x =2,
n=x . .
nELky2 :

This result and case «=0 in Theorem 3 yield, on the basis of the argument in the
preceeding section, the following slightly weaker asymptotic evaluation of L,(x):

7.2 ' L (x) = e xtlk4 x4 0 (x1 e+ D Jog x).

This is of interest, in the first place because only the regular form (x =0) of Lemmas 6
and 7 are needed for the proof, and in the second place because (7. 1) can be proved
independently in a much simpler way than the corresponding result in Lemma 5.
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“To prove (7. 1) we recall that 6(n) denotes the number of square-free divisors
of n. By the fundamental theorem of arithmetic, there is a one-to-one correspondence
between the square-free divisors of n and the so-called unitary divisors of n (the
divisors d of n such that (d, n/d)=1); hence 6(n) is the number of unitary divisors
of n. With =2k +1 and e = k-2, we have '

0(n) 1 1 1 1
ngc ntht : ngc ntt dgn déx (dé)llt déc di 6§Zx;d ot
neLe n€Le d.8)=1 d3€Le d€Le d€L,

,3)=1 d,8)=1

by the fundamental theorem of arithmetic. We may drop the condition (4, §)=1
provided the last equality is replaced by inequality (=). Lemma 4(a) is then applicable
(with k replaced by &k +2) and its application gives

0(n) 1 [x)Ve i 1
1/e—1/t

—_— <K — = << X —

"g; nl/t dgc dl/t d 2 d1/c’

ne€Lg d€Le d€Le

and (7. 1) results on applying Lemma 4(b).
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