The Hilbert matrix as a singular integral operator*)

By JAMES ROVNYAK in Charlottesville (Virginia, U.S.A.)

In this note we show that the theory of the Hilbert matrix {1/(j+k-+1)}7%_o
can be derived from the theory of selfadjoint singular integral operators, i.e.
operators in L?( —eo, ) of the form
+o0 .
) S: F(x)~A(X) F(x)+(@i)~*P.V. [ (x—0)" KX)K()F() de

—oo

where A(x), K(x)€L® (—eo, =) and A(x) is real valued.
If £ (x) € L%(0, <) its Mellin transform is
. 1/a

— h —=1/2+ix
F(x) = lim af z‘ 1(t) dt

where the limit is taken in the metric of L*(— o, =), We have then

+4 .
2nf(x) = lim J xR dr

where the ’limit is taken in the metric of L*(0, o), and

£ = 2=l £1% - : '
. The subscript “+ indicates that the underlying Hilbert space is L?(0, =) rather
than L?(— oo, «). We also say that f (), F(x) is a Mellin transform pair.

Theorem. Let p(x), q(x)€L?*0, ) and let P(x), Q(x) be the corresponding
Mellin transforms in L?(— oo, ). Assume P(x), Q(x)€L"(—=0, o) and P(x) is
* real valued (equivalently p(x)=x"1p(x~')). For x>0, t=>0 set

Lix,t) = t‘lé(xt'1)+2 fq(tl)cj(xl) dA.
(A) If () €LAO, =) then 1

1/a

of L(x, nf(r) dt = lim [ Lx, 0)f@) de

a
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exists in the metric of L*(0, <), and the linear operator defined in L*(0, ) by

T f)~ [ Lx, 0)f() dt
[0}

is bounded and selfadjoint.
(B). The operator T is unitarily equivalent to the singular integral operator S
in L*(— oo, =) defined by (1) with coefficients

A(x) = P()+ 12, K(x) = Q).
Proof. The Hilbert transformation in L2(—eo, o) is defined by

H: F(x)>(mi)~tP.V. jm (x—1)"1F(t) ds.

Let J denote multiplication by the function

1, 0<x<1

a(x) = {_
in L*(0, =). For any Mellin transform pairs f (x), F(x) and g(x), G(x) we have then

(HF, G)=2n(Jf, ).
See TiTCHMARSH [8, Chapt. V].
If f(x), F(x) and g(x), G(x) are Mellin transform pairs and F(x) is essentially
bounded, then

I, ]l =x < oo -

oo

he) = [ 174G Neydr, HE) = FEIGE)

O

is a Mellin transform pair. See e.g. [8, p. 90].
Let f(x), F(x) and g(x), G(x) be Mellin transform pairs. It is easy to see that

oo

B(f,g)= f[ft“p(xt‘l)f(t)dt]é(x)dx+
] 0 .
+2 [ [ aenfe) ;1:][ J aGxHz) dx] di.
1 0 ]

defines a bounded symmetric bilinear form on L?(0, «s). Therefore B(f, g)=
=(Tf, g)+ for some bounded selfadjoint operator 7. If f(x), g(x) vanish outside
a compact subinterval of (0, ), then

oo

T g)s = [ [ [ Lex, r)f(r)dt]g(x)dx,

0

the rearrangement of integrals being justified by absolute convergence. From this
we deduce (A).
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In the same notation we have
(T g)e = [ [ t71p (et =) g(x) dr dx +
0O o

42 f [ f q(m)f(z)dt][ f G(:A)E () a’x} @ —

1 g V]

- f [ f qgm)f(z)dt] f G(NEX) dx] i+

0 0 0.

+ [ [ aenroa)( faunewa) o= [ [itpe-nrogedas
0 0 ] 0o 0

% f [ f g(tl)f(t)dt] f cj(xl)gr(x)dx] dh—

o
- of o(%) [ Of %0 dt] [ Of FODER) dx] di =
= @0~ {(PF, G)+(QF, QG)+(HQF, QG = (2m)1(SF, G),
where S is the operator (1) with coefficients as in (B). The theorem follows.
The.Hilbert matrix. If p(x).=0, q(x) =14 e*xkz, then |

L(x,1) = (x+1)"te- &0z,

In this case the matrix of T with respect to the orthonormal basis in L?*(0, s
consisting of weighted Laguerre polynomials ¢;(x)=L;x)e ** (j=0,1,2,...)
is the Hilbert matrix {1/(j+k+1)}7 .o See RoseNLUM [4,7]. By our theorem
T is unitarily equivalent to the operator S defined by (1) with coefficients

K(x) = 274Y2+=P (4 4ix), A(x) = [K(x)|? = 1n/cosh nx.

From the theory of singular integral operators (Pincus [2, 3], RosENBLUM [6] we
see at once that the spectrum of § is purely absolutely continuous, it consists of
the interval [0, 7]}, and has uniform multiplicity 1 on the interval. In particular
this gives a new proof of Hilbert's inequality

2> X 5 /(j+k+1)| = n 2, |x;]2
=0 j=o

and the fact that n is the best constant (see HarRDY, LiTTLEWOOD, and POLYA
{1, Chapt. IX]). RoseNBLUM [5] diagonalizes the Hilbert matrix by a different method.
His method has the advantage that it can be adapted to the generalized Hilbert
matrix {1/(j+k+1 ~V)} 4=0 Where v is a real parameter which is not a positive
integer.

11*



350 4 J. Rovnyak: Hilbert matrix

Miscellaneous examples. (1) If p(x)=0, ¢(x)=2"*(1+x)~" then

L(x, 1) = (x—1)~tlog [(1 + /(1 +x~1)].
In the theorem

K(x) = 2" 12gjcoshx, A(x) = K(x)* = 3n2/cosh? nx.

So T has absolutely continuous spectrum with uniform multiplicity 1 on [0, n?).

@ If p(x) =0, g(x) =2-12¢=** then

L(x, 1) = (x*+t2)~ Y2 erfc ((x2 +12)!/?)
where
erfc x = f e vdt, x=0.

“We have »

: K(x) = 27321 (3 +4ix), A(X) =273 (}+3ix)].2

The operator T has absolutely continuous spectrum with multiplicity 1 on [0, c]
where
c = I'(1/4)*/4= 3.28626..

G If p(x) =0, g(x) =2~ 1 4+x%)"' then
L(x, 1) =[x arc cot x — arc cot t]/(x*> —¢t?),
K(x) = 4n/[cosh (4 nx)+isinh (3 nx)], A(x) = tn?/cosh (nx).

The bperator T has absolutely continuous spectrum with multiplicity 1 on [0, 3n2).
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