The Hilbert matrix as a singular integral operator*)

By JAMES ROVNYAK in Charlottesville (Virginia, U.S.A.)

In this note we show that the theory of the Hilbert matrix $\{1 /(j+k+1)\}_{, k=0}^{\infty}$ can be derived from the theory of selfadjoint singular integral operators, i.e. operators in $L^{2}(-\infty, \infty)$ of the form

$$
\begin{equation*}
S: F(x) \rightarrow A(x) F(x)+(\pi i)^{-1} \text { P. V. } \int_{-\infty}^{+\infty}(x-t)^{-1} \dot{\bar{K}}(x) K(t) F(t) d t \tag{1}
\end{equation*}
$$

where $A(x), K(x) \in L^{\infty}(-\infty, \infty)$ and $A(x)$ is real valued.
If $f(x) \in L^{2}(0, \infty)$ its Mellin transform is

$$
F(x)=\lim _{a>0} \int_{a}^{1 / a} t^{-1 / 2+i x} f(t) d t
$$

where the limit is taken in the metric of $L^{2}(-\infty, \infty)$. We have then

$$
2 \pi f(x)=\lim _{A \rightarrow \infty} \int_{-A}^{+A} x^{-1 / 2-i t} F(t) d t
$$

where the limit is taken in the metric of $L^{2}(0, \infty)$, and

$$
\|F\|^{2}=2 \pi\|f\|_{+}^{2} .
$$

The subscript " + " indicates that the underlying Hilbert space is $L^{2}(0, \infty)$ rather than $L^{2}(-\infty, \infty)$. We also say that $f(x), F(x)$ is a Mellin transform pair.

Theorem. Let $p(x), q(x) \in L^{2}(0, \infty)$ and let $P(x), Q(x)$ be the corresponding Mellin transforms in $L^{2}(-\infty, \infty)$. Assume $P(x), Q(x) \in L^{\infty}(-\infty ; \infty)$ and $P(x)$ is real valued (equivalently $\vec{p}(x)=x^{-1} p\left(x^{-1}\right)$). For $x>0, t>0$ set

$$
L(x, t)=t^{-1} p\left(x t^{-1}\right)+2 \int_{i}^{\infty} q(t \lambda) \bar{q}(x \lambda) d \lambda .
$$

(A) If $f(x) \in L^{2}(0, \infty)$ then

$$
\int_{0}^{\infty} L(x, t) f(t) d t=\lim _{a \nless 0} \int_{a}^{1 / a} L(x, t) f(t) d t
$$

[^0]exists in the metric of $L^{2}(0, \infty)$, and the linear operator defined in $L^{2}(0, \infty)$ by
$$
T: f(x) \rightarrow \int_{0}^{\infty} L(x, t) f(t) d t
$$
is bounded and selfadjoint.
(B) The operator T is unitarily equivalent to the singular integral operator S in $L^{2}(-\infty, \infty)$ defined by (1) with coefficients
$$
A(x)=P(x)+|Q(x)|^{2}, \quad K(x)=Q(x)
$$

Proof. The Hilbert transformation in $L^{2}(-\infty, \infty)$ is defined by

$$
H: F(x) \rightarrow(\pi i)^{-1} \text { P.V. } \int_{-\infty}^{+\infty}(x-t)^{-1} F(t) d t
$$

Let J denote multiplication by the function

$$
\sigma(x)=\left\{\begin{aligned}
1, & 0<x<1 \\
-1, & 1<x<\infty
\end{aligned}\right.
$$

in $L^{2}(0, \infty)$. For any Mellin transform pairs $f(x), F(x)$ and $g(x), G(x)$ we have then

$$
\langle H F, G\rangle=2 \pi\langle J f, g\rangle_{+} .
$$

See Titchmarsh [8, Chapt. V].
If $f(x), F(x)$ and $g(x), G(x)$ are Mellin transform pairs and $F(x)$ is essentially bounded, then

$$
h(x)=\int_{0}^{\infty} t^{-1} f\left(x t^{-1}\right) g(t) d t, \quad H(x)=F(x) G(x)
$$

is a Mellin transform pair. See e.g. [8, p. 90].
Let $f(x), F(x)$ and $g(x), G(x)$ be Mellin transform pairs. It is easy to see that

$$
\begin{aligned}
& B(f, g)=\int_{0}^{\infty}\left(\int_{0}^{\infty} t^{-1} p\left(x t^{-1}\right) f(t) d t\right) \bar{g}(x) d x+ \\
&+2 \int_{i}^{\infty}\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda
\end{aligned}
$$

defines a bounded symmetric bilinear form on $L^{2}(0, \infty)$. Therefore $B(f, g)=$ $=\langle T f, g\rangle_{+}$for some bounded selfadjoint operator T. If $f(x), g(x)$ vanish outside a compact subinterval of $(0, \infty)$, then

$$
\langle T f, g\rangle_{+}=\int_{0}^{\infty}\left(\int_{0}^{\infty} L(x, t) f(t) d t\right) \bar{g}(x) d x,
$$

the rearrangement of integrals being justified by absolute convergence. From this we deduce (A).

In the same notation we have

$$
\begin{aligned}
& \langle T f ; g\rangle_{+}=\int_{0}^{\infty} \int_{0}^{\infty} t^{-1} p\left(x t^{-1}\right) f(t) \bar{g}(x) d t d x+ \\
& +2 \int_{i}^{\infty}\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda- \\
& \quad-\int_{0}^{\infty}\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda+ \\
& +\int_{0}^{\infty}\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda=\int_{0}^{\infty} \int_{0}^{\infty} t^{-1} p\left(x t^{-1}\right) f(t) \bar{g}(x) d t d x+ \\
& \quad+\int_{0}^{\infty}\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda-- \\
& \quad-\int_{0}^{\infty} \sigma(\lambda)\left(\int_{0}^{\infty} q(t \lambda) f(t) d t\right)\left(\int_{0}^{\infty} \bar{q}(x \lambda) \bar{g}(x) d x\right) d \lambda= \\
& =(2 \pi)^{-1}\{\langle P F, G\rangle+\langle Q F, Q G\rangle+\langle H Q F, Q G\rangle\}=(2 \pi)^{-1}\langle S F, G\rangle
\end{aligned}
$$

where S is the operator (1) with coefficients as in (B). The theorem follows.
The Hilbert matrix. If $p(x)=0, q(x)=\frac{1}{2} e^{-x / 2}$, then

$$
L(x, t)=(x+t)^{-1} e^{-(x+t) / 2}
$$

In this case the matrix of T with respect to the orthonormal basis in $L^{2}(0, \infty)$ consisting of weighted Laguerre polynomials $\varphi_{j}(x)=L_{j}(x) e^{-x / 2} \quad(j=0,1,2, \ldots)$ is the Hilbert matrix $\{1 /(j+k+1)\}_{j, k=0}^{\infty}$. See Rosenblum [4, 7]. By our theorem T is unitarily equivalent to the operator S defined by (1) with coefficients

$$
K(x)=2^{-1 / 2+i x} \Gamma\left(\frac{1}{2}+i x\right), \quad A(x)=|K(x)|^{2}=\frac{1}{2} \pi / \cosh \pi x .
$$

From the theory of singular integral operators (Pincus [2, 3], Rosenblum [6] we see at once that the spectrum of S is purely absolutely continuous, it consists of the interval $[0, \pi]$, and has uniform multiplicity 1 on the interval. In particular this gives a new proof of Hilbert's inequality

$$
\left|\sum_{j, k=0}^{\infty} x_{j} \bar{x}_{k} /(j+k+1)\right| \leqq \pi \sum_{j=0}^{\infty}\left|x_{j}\right|^{2}
$$

and the fact that π is the best constant (see Hardy, Littlewood, and Pólya [1, Chapt. IX]). Rosenblum [5] diagonalizes the Hilbert matrix by a different method. His method has the advantage that it can be adapted to the generalized Hilbert matrix $\{1 /(j+k+1-v)\}_{j, k=0}^{\infty}$ where v is a real parameter which is not a positive integer.

Miscellaneous examples. (1) If $\dot{p}(x)=0, q(x)=2^{-\frac{1}{2}}(1+x)^{-1}$ then

$$
L(x, t)=(x-t)^{-1} \log \left[\left(1+t^{-1}\right) /\left(1+x^{-1}\right)\right]
$$

In the theorem

$$
K(x)=2^{-1 / 2} \pi / \cosh \pi x, \quad A(x)=K(x)^{2}=\frac{1}{2} \pi^{2} / \cosh ^{2} \pi x
$$

So T has absolutely continuous spectrum with uniform multiplicity 1 on $\left[0, \pi^{2}\right]$.
(2) If $p(x)=0, q(x)=2^{-1 / 2} e^{-x^{2}}$ then

$$
L(x, t)=\left(x^{2}+t^{2}\right)^{-1 / 2} \operatorname{erfc}\left(\left(x^{2}+t^{2}\right)^{1 / 2}\right)
$$

where

$$
\operatorname{erfc} x=\int_{x}^{\infty} e^{-t^{2}} d t, \quad x>0
$$

We have

$$
K(x)=2^{-3 / 2} \Gamma\left(\frac{1}{4}+\frac{1}{2} i x\right), \quad A(x)=\left.2^{-3}\left|\Gamma\left(\frac{1}{4}+\frac{1}{2} i x\right)\right|\right|^{2}
$$

The operator T has absolutely continuous spectrum with multiplicity 1 on $[0, c]$ where

$$
c=\Gamma(1 / 4)^{2} / 4=3.28626 \ldots
$$

(3) If $p(x)=0, q(x)=2^{-\frac{1}{2}}\left(1+x^{2}\right)^{-1}$ then

$$
\begin{gathered}
L(x, t)=[x \operatorname{arccot} x-t \operatorname{arccot} t] /\left(x^{2}-t^{2}\right) \\
K(x)=\frac{1}{2} \pi /\left[\cosh \left(\frac{1}{2} \pi x\right)+i \sinh \left(\frac{1}{2} \pi x\right)\right], \quad A(x)=\frac{1}{4} \pi^{2} / \cosh (\pi x)
\end{gathered}
$$

The operator T has absolutely continuous spectrum with multiplicity 1 on $\left[0, \frac{1}{2} \pi^{2}\right]$.

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, second edition (Cambridge, 1964).
[2] J. D. Pincus, Commutators, generalized eigenfunction expansions and singular integral operators, Trans. Amer. Math. Soc., 121 (1966), 358-377.
[3] —_A singular Riemann—Hilbert problem, Summer Institute on Spectral Theory and Statistical Mechanics, 57-92 (Brookhaven National Laboratory, 1965).
[4] M. Rosenblum, On the Hilbert matrix. I, Proc. Amer. Math. Soc., 9 (1958, 137-140.
[5] On the Hilbert matrix. II, Proc. Amer. Math. Soc., 9 (1958), 581-585.
[6] _- A spectral theory for selfadjoint singular integral operators, Amer. J. Math., 88 (1966), 314-328.
[7] Selfadjoint Toeplitz operators, Summer Institute on Spectral Theory and Statistical Mechanics, 135-157 (Brookhaven National Laboratory, 1965).
[8] E. C. Titchmarsh, Theory of Fourier Integrals, second edition (London, 1948).
university of virginia

[^0]: *) Research supported by NSF Grant GP 8981.

