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In this note we show that the theory of the Hilbert matrix {l/(j+k +1)^=0 
can be derived from the theory of selfadjoint singular integral operators, i.e. 
operators in L2( — of the form 

+ < * > 

(1) S: F(x)-+A(x)F(x) + (ni)-i?.V. f ( x -
— oo 

where A(x), K(x)£L°° ( —oo, oo) and A(x) is real valued. 
If / ( x ) € JL2(0, its Mellin transform is 

l/o 
F(x) = lim f t~in+ixf(t)dt 

a^xO J a 

where the limit is taken in the metric of L2( — » ) , We have then 
+ A 

2nf(x) = lim f x~ll2~"F(t) dt 
A" <*> J —A 

where the limit is taken in the metric of L2(0, and 
| |F | | 2 = 2Tr | | / | | 2 . 

. The subscript " + " indicates that the underlying Hilbert space is L2(0, rather 
than L2( — oo). We also say that f (x), F(x) is a Mellin transform pair. 

Theorem. Let p(x), q(x)£L2(0, ») and let P(x), Q(x) be the corresponding 
Mellin transforms in L2( — °°,<=°). Assume P(x), 2(x)£L°°(—=•=>, oo) and P(x) is 
real valued (equivalently p(x) = x~1p(x~1)). For x >0 , 0 set 

oo 
L(x,t) = t~1p(xt~1) + 2 f q(tX)q(xX)dL 

(A) 7//(X)6L2(0, OO) then 
«*> 1/fl 
f L(x, f ) / ( 0 dt = lim f L(x,t)f{t)dt 
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exists in the metric of L2(0, «), and the linear operator defined in L2(0, ») by 
oo 

T:f(x)~ f L(x, t)f(t) dt 
o 

is bounded and selfadjoint. 
(B) The operator T is unitarily equivalent to the singular integral operator S 

in L2( — co, oo) defined by (1) with coefficients 

A(x) = P(x) + \Q(x)\2, K(X) = Q(x). 

Proof . The Hilbert transformation in L2( — <=o, oo) is defined by 
+ CO 

H:F(x)^{7TÏ)_1P.V. f (x — t)~1F(t)dt. 
— oo 

Let J denote multiplication by the function 

.0 < x < 1 f 1, .0 
< x < oo 

r 2f in L (0, oo). For any Mellin transform pairs / (x) , F (x) and g(x), G(x) we have then 

{HF,G) = 2n(Jf,g)+. 
See TITCHMARSH [8, Chapt. V]. 

If / (x) , F(x) and g(x), G(x) are Mellin transform pairs and F(x) is essentially 
bounded,then 

oo 
h(x) = f t-ifixt-^g^dt, H(x) = F(x)G(x) 

0 

is a Mellin transform pair. See e.g. [8, p. 90]. 
Let /(x), F(x) and g(x), G(x) be Mellin transform pairs. It is easy to see that 

B(f,g>= /[/t-lp(xt-i)f(t)dt^g(x)dx + 
oo / oo . \ / oo 

+ 2 / ( / < ? ( d ) / ( 0 d t j [ f 4 (* ' • )£ (* ) dX 

defines a bounded symmetric bilinear form on L2{0, oo). Therefore B(f g) = 
= {Tf,g)+ for some bounded selfadjoint operator T. If f(x),g(x) vanish outside 
a compact subinterval of (0, oo), then 

<27, g>+ = f i f L(x, t)f(t) dt] g(x) dx, 
0 J 

the rearrangement of integrals being justified by absolute convergence. From this 
we deduce (A). 
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In the same notation we have 

(Tf,g)+ = / /t-1p(xt-i)f(t)g(x)dtdx + 
0 0 

O© / ©O \ / CO \ 

+ 2 J | f q{tX)f(t) dtj | / q(xX)g(x) dxJ dX-

oo / oo \ / oo \ 

- / / q(tX)f(t) dt\\f q(xX)g(x) dx\dX + 

M / Cû \ / CO \ M oo 

+ f J q(tX)f(t)dt\ f q(xX)g(x)dx\dX = f f t'1 p(xt~1)f(t)g(x)dt dx + 
0 '•O ' ' 0 0 

+ / / q{tX)f{t)dt\ f q(xX)g(x)dx\dX-
0 Vo ^ 0 ' 

- /<J{X) |J q(tl)f(t) dt] | fq(xX)g(x) dxj dX = 

= (2n)-i{(PF, G) + (QF, QG) + (HQF, QG>} = (27t)-1<5F, G>, 

where S is the operator (1) with coefficients as in (B). The theorem follows. 

The Hilbert matrix. If p(x) = 0, q(x) = i e~x/2, then 

L(x,t) = {x + t)-1e-<-x+'»2. 

In this case the matrix of T with respect to the orthonormal basis in L2(0, 
consisting of weighted Laguerre polynomials rp/x) = Lj(x)e~xl2 (7 = 0 ,1 ,2 , . . . ) 
is the Hilbert matrix { 1 / C / + & + L ) } ^ T = O - See ROSENBLUM [ 4 , 7 ] . By our theorem 
T is unitarily equivalent to the operator S defined by (1) with coefficients 

K(x) = 2~U2 + ixr(\+ix), A(x) = [K(x)\2 = in/coshnx. 

From the theory of singular integral operators (PINCUS [2, 3], ROSENBLUM [6] we 
see at once that the spectrum of S is purely absolutely continuous, it consists of 
the interval [0, n], and has uniform multiplicity 1 on the interval. In particular 
this gives a new proof of Hilbert's inequality 

2 XjXkl(j + k+ 1) 
j,k=0 

n 2 
j=0 

and the fact that n is the best constant (see HARDY, LITTLEWOOD, and POLYA 

[1, Chapt. IX]). ROSENBLUM [5] diagonalizes the Hilbert matrix by a different method. 
His method has the advantage that it can be adapted to the generalized Hilbert 
matrix {l/(j+k+i — v)}"(i=0 where v is a real parameter which is not a positive 
integer. 
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Miscellaneous examples. (1) If /?(x) = 0, q(x) = 2~i (1 + x ) _ 1 then 

L(x,t) = (x-O-MogfCl+z-^/O+x-1)]. 
In the theorem 

K(x) = 2'1/2 jr/cosh nx, A (x) = K(x)2 = |Tt2/cosh2 TLX. 

So T has absolutely continuous spectrum with uniform multiplicity 1 on [0,7i2]. 
(2) If p(x) = 0, q(x) = 2~ll2e~x2 then 

L(x, t ) = (x2 + i 2 ) - 1 ' 2 erfc ((x2 + l2)U2) 
where 

erfcx = J e~12 dt, x > 0. 
X 

We have 
K{x) - 2 - 3 ' 2 r ( i + i-/x), A{x) = 2 - 3 | r ( i + iix)|.2 

The operator T has absolutely continuous spectrum with multiplicity 1 on [0, c] 
where 

c = T(l/4)2/4= 3.28626 

(3) II' p(x) = 0, q(x) = 2"*(I +X2)"1 then 

L(x, t) = [x arc cot x — t arc cot i]/(x2 — t2), 

K(x) = i7i/[cosh (i nx) + / sinh ( i nx)], A(x) = ¿7r2/cosh (nx). 

The operator T has absolutely continuous spectrum with multiplicity 1 on [0, ^7r2]. 
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