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1. Introduction 

It has been well recognized that moment problems have close connection with 
spectral theory for selfadjoint or unitary operators. The trigonometric moment 
theory, for instance, is applied to establish the spectral theorem for unitary operators, 
while the spectral theory affords a unified treatment for various kinds of moment 
problems even for operators (see SZ.-NAGY [7], and KREIN and KRASNOSELSKII [5]), 
In this paper we shall further develop this approach to solve truncated moment 
problems for operators. Our basic problem is to find conditions for the existence 
of an increasing operator-valued function E(X) such that 

(power moment problem): Ak= f lk dE(l) (k = 0,1, ..., m) 
i 

or 
(trigonometric moment problem): Ak = JeikXdE(X) (k = 0, 1, ..., m), 

i 

where A0, •••, Am are given bounded linear operators on a Hilbert space and I 
is a finite or infinite interval. While the classical moment problems, in which each 
Ak is an operator of rank one, have been settled mostly with help of function theory 
and an extension theorem for positive linear functionals (see AHIEZER [1], and 
AHIEZER and KREIN [2]), the key to our development is provided with extension 
theorems for symmetric operators with non-dense domain, as shown by KREIN 

and KRASNOSELSKII [5] on proving the power moment problem with m = 2n and 
/ = [ - 1 , 1 ] -
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2. Preliminaries 

All operators are assumed to be linear. To a bounded operator Tfrom a Hilbert 
space to a Hilbert space S\2, there corresponds its adjoint T* as a bounded operator 
from K2 to Kr. The square root of T*T will be denoted by | r | . A positive operator 
means a non-negative selfadjoint operator. The inverse A ~1 of a bounded positive 
operator A is, by definition, the uniquely determined operator with ®(/4 -1) = $R(/l) 
and A~lA = 1 —P, where P is the orthogonal projection onto the kernel of A. 
A~112 stands for the inverse of A1'2. An operator S on a Hilbert space is symmetric 
if (Sf,g) = ( f , S g ) f o r 6 

A bounded positive operator A on a Hilbert space 5\ gives rise to a new semi-
inner product: ( / , g)A = (Af, g). The completion of 5\ with respect to this semi-
inner product will be denoted by A bounded positive operator C is called 
A-bounded (resp. A-closable), if the canonical identification of ft is a bounded (resp. 
closable) operator from ft^ to 5\c. Thus C is /4-bounded (resp. ^-closable) if and 
only if there exists a bounded (resp. closed) operator X with C=\XAll2\2. 

Lemma. Let A be a bounded positive operator. Then a vector h belongs to 
if and only i f , with the convention 0/0 = 0, 

S U P (Af A 

In this case the left hand side coincides with \\A~ll2h\\2. 

Proof . Suppose that h belongs to T>(^_1/2). Then 

\ ( f h ) \ 2
 = \ { A ^ f , A - ^ h ) \ 2 

( A f f ) M1/2/||2 

Since 9t(41/2) is dense in the orthogonal complement of the kernel of A, 

fí?>(A) (,4f>f) 
s u p = u-^hw2. 

Suppose conversely that the left hand side is finite. Then h is orthogonal to the kernel. 
of A. Let E(X) ( 0 s l < o o ) be the resolution of identity for A. Then it follows that 

A = lim (1 — 2s(e))/f. 

Since each (1 — E(e))h belongs to T)(A~1/2), the closedness of A~112 implies that h 
belongs to D(^_ 1 / 2) if and only if 

sup | | ^ - 1 / 2 ( l -£ (e ) ) / i | | < =o. 
«=-0 
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Now since 
\(g,(l-E(s))h)\2 , | ( ( l -g( £))g, /Q| 2 _ \ ( f , h)\2 

(.Ag, g) (A( 1 -E(s))g, (1 -E(s))g) feZ:> (.Afif) ' 
it follows from the preceding part of the proof that 

sup A U2(l-E(e))h 2 = sup sup ^ J " - . g sup — — - < 
£=-0 giK(A) (Ag, g) fits(A) (AJ,J) 

This completes the proof. 
m n 

Each bounded operator T from a direct sum © Si, to another © is repre-
j=i ¡ = i 

sented in the natural way by the corresponding nXm matrix (T^), where 
Tu is a bounded operator from S\j to 5\;. 

P r o p o s i t i o n 1. Abe a bounded positive operator on , and B a bounded 
•operator from S\2 to Sv,. There exists a bounded operator C on S\2, for which the 

A B~\ 
B* C 

is fulfilled, \A~lt2B\2 is the minimum of all such C. 

^ ^ is positive, if and only if 

matrix is positive, if and only if \B*\2 is A-bounded. When this condition 

Proof (cf. [3]). A matrix 

that is, 

B* C 

(Af f ) + (Bg,f) + (B*f g,) + (Cg, g) S 0 ( / £ £ , , g € ft2), 

|(Bg,f)\2 S (Aff)(Cg, g) (/6 , g 6 

By Lemma this last condition can be converted to the inequality 

' \A~1I2B\2 s C 

and the minimum property of |y4_1/2B|2is clear. On the other hand, \B*\2 is ^-bounded 
if and only if for some y^O 

W f f ^ y W J ) (/€*,), 
or, with C = y, 

\{Bg,f)\2^(Af,f)(Cg,g) (/£«!, 

This completes the proof. 
Coro l l a ry 1. If a matrix T- A B 

B* C is positive, then 

J * P J - \ B * ^ - 1 / 2 5 1 2 ] ' 

where J is the canonical map of & = ©ft2
 t0 and P is the orthogonal projection 

of S\T onto the closure of /(ivj. Thus is dense in StT if and only if C= 
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Proo f . Since PJf=Jf for / € f t l 5 it follows 

( J * P J f f ) = ( A f f ) and (J*PJf,g) = (B%g) ( / € f t 1 ; g € f t 2 ) . 

Finally it results 

(J*PJg,g) = (PJg,PJg)T = sup M l = ^ p M . 
/ € « . \JHJJ)T FZÑ I ( , 4 / J ) 

C o r o l l a r y 2. symmetric operator T on a Hilbert space ft admits a positive 
extension of norm Si if and only if . 

W T f f ^ i T f f ) - (f£T)(A)). 

Proo f . The inequality is obviously satisfied if J admits the required extension» 
If, conversely, the inequality is valid, it follows ||27ll S | | / | | , so that the domain 
T)(T) may be assumed closed. Let = 2>(T), R2 = Sif, A = QTQ and 
B* = (1 — Q)TQ, where Q is the orthogonal projection onto ftt. Since the ine-
quality in question is equivalent to 

1(27, h)I2S(Tf, f)(h, h) ( / € f t ) , 

|.5* |2 is /4-bounded, consequently by Corollary 1 the operator f = ^ - í ^ ^ j 

gives a positive extension of T. The assertion on norm follows from the relation 

(Th, h) = sup =s (h, h). 

R e m a r k 1. Corollary 2 is just a variant of the fundamental theorem of 
KREIN (see [5; § 6] or [6; n° 125]) that a symmetric operator of norm S i admits 
a selfadjoint extension of norm s i . Corollary 1 corresponds to Lemma 7. 1 in [5]. 

E(A) ( a s A s é ) is called a spectral function, if (1) each E(X) is a bounded positive 
operator, (2) E(X)sE(p) for I g / i , (3) E(X + 0) = E(X) and (3') E(a + 0) = 0 and/or 
E(b — 0) = E(b) in case a = — » and/or b = It is orthogonal, if each E(X) is 
an orthogonal projection. The basic connection between spectral functions and 
orthogonal spectral functions was established by NAIMARK (see [7]). We shall use 
his result in the following modified form: if E(X) is a spectral function in a Hilbert 
space ft, there exist a Hilbert space an orthogonal spectral function P(X) in 
A and a bounded operator J from ft to & such that E(X)=J*P(X)J. 

b 
Given a spectral function E(X) ( a g í s b ) , the weak integral f XkdE(X) determines 

a 
a closed symmetric operator with dense domain (fc=0,1, ...). When E(X) is an 



Truncated moment problems 323' 

orthogonal spectral function, the domain of the operator f XkdE{X) consists of 
a 

b 
vectors / , for which the strong integral J XkdE(X) f converges. 

a 

P r o p o s i t i o n 2. If S is a closable symmetric operator on a Hilbert space ft, 
there exists a spectral function E(X) (-»glgoo) such that, for all k,j, 

(skf sJg) = /x^kd(E(X)fg) (feT>(sk),g^(s% 
— oo 

P r o o f . The Krasnoselskix Theorem [4;§3] on closed symmetric operators 
guarantees that there exists a selfadjoint operator S on the direct sum of ft and 
its copy, which is an extension of S. Then the spectral function E(X), defined by 

E(X)f=QP{X)f (/€ Я), 

meets the requirement, where P(X) is the resolution of identity for $ and Q is the 
orthogonal projection onto ft. In fact, for fdT>(Sk) and g£T>(SJ), 

oo oo 

(Skf, &g) = (Skf, SJg) = J Xj+k d(P(X)f, g)= f X^k d(E(X)f, g). 
— oo — CO 

If V is an isometric operator with non-dense domain in a Hilbert space Я, 
it admits obviously a unitary extension V on the direct sum of ft and its copy. Then, 
as in the proof of Proposition 2, there exists a spectral function E(X) ( - i t S l S i ) 

n 
such that / emdE(X) is an extension of Vk for all k. 

—я 

P r o p o s i t i o n 3. An isometric operator V with non-dense domain admits the 
representation for some spectral function E{X) ( — n/2sX=in/2): 

it/2 
vkf= f emdE(X)f (f£b(Vk),k = 0,1, . . . ) , 

— я/2 
if and only if 

Re (Vf f ) SO ( / € 15(F)). 

Proof . If V admits such representation, it follows 
я/2 

Re ( V f f ) = / cos X d ( E ( X ) f f ) s 0. 
-я/2 
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Suppose, conversely, that the inequality is satisfied. Since (V+ l)h = 0 implies 
.// — 0 by assumption, the operator 

is symmetric. Calculation shows that, with (V+l)f — g, 

(Tg, g) = ( / , / ) + Re ( V f J ) + Im ( V f J ) 
and 

(Tg,Tg) = lm{Vf,f) + ( f , f ) , 
hence 

\\Tg\\2s(Tg,g). 

Then by Corollary 2 T admits a selfadjoint extension O s f s l . The operator 

1 - i f " 1 

T -

is a unitary extension of V with Re (V) SO. Since the spectrum of V is concentrated 
on the arc {ea: —n/lslsn/l}, the resolution of identity for V produces a spectral 
function of the kind we expected. 

R e m a r k 2. Proposition 3 can be modified to get a condition for a represent-
T 

ation of the form Je'kxclE().) for some 0 < T < 7 T . 

3. Hamburger truncated moment problem 

A finite sequence {A 0 , ..., Am} of bounded selfadjoint operators on a Hilbert 
space ft is called a Hamburger moment sequence, if there exists a spectral function 
E(X) such that 

Ak= JkkdE(X) (k = 0,1, . . . , m). 

n 
The direct sum of n 4-1 copies of will be denoted simply by © 51 and a 

o n 
general element in it by a row vector ( f 0 , ...,/„). © f t (n^m) is identified with 

o in 
the subspace of © f t , consisting of vectors of the form </0 , . . . , /„, 0, ..., 0). 
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For a sequence {A0, A1, ...} of bounded selfadjoint operators, the w-th Hankel 
n 

matrix H„ is, by definition, the operator on © ft, given by 
o 

H„ = 

Aq Ay A2 ••• A„ 

A2 A3 ... A„+i 

.A„ An+1 ••• A2n . 

The n-th Hankel matrices for {Ay, A2, ...} and {A2,A3, ...} will be denoted 
by K„ and L„ respectively, i.e. 

'AY A2 . • A„ + 1 '¿2 A3 . . A 

K„ = 
A2 A3 . . . • A„+2 and L„ = A3 A4 . . A 

AN+I AN+2- AN+2 A„+3- . A 

- 2 

*n+ 3 

The /2-th marginal matrix B„ for {A0, Ay, ...} is, by definition, the operator from 

ft to © ft given by 
o 

B„ *n+2 

L^2n+ lJ 

The «-th marginal matrices for {Ay, A2, .,.} and {A2, A4, ...} will be denoted by 
C„ and D„, respectively, i.e. 

C„ = 

•/1n+ 2 

A„ + 3 

A2n+2i 

and D„ 

An+3 

A„ + 4 

LA2n+ 3J 

The orem 1. {A0, ..., A2n+2} is a Hamburger moment sequence if and only if 
the Hankel matrix H„+ 1 is positive and there exists a closed operator X such that 

where 
A + \XCm\2, 

A = |H„-1/2B„|2 and C = ^ 2 n + ^ - | (H„_ 1 +L n _ 1 ) - 1 / 2 (B„_ 1 +D„_ 1 ) | 2 . 

Proof . Suppose that {A0, ..., A2n+2) is a Hamburger moment sequence 
with respect to a spectral function E(A). In view of the Naïmark theorem there 
exist an orthogonal spectral function P(A) in a Hilbert space A and a bounded 
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J from ft to A such that EQ) = J*P{X)J. Consider the selfadjoint operator 
CO 

A=. f XdP(X). 
— oo 

Since Jf belongs to the domain of An+1 for all / £ ft, it follows 

2 n+i 

2 (Aj+kfk>fj) = 
j,k=0 

B+l 

ft—0 
s o , 

hence the Hankel matrix H„+ 1 is positive. Since 

I K / O , ••• >/H+I)IIH„+1 = 

the shift operator S : 

n+i 

2 ¿ k ' J A k=0 

S</o, . . . , /„, 0> = <0,/0 , ...,/„> 
n + l 

is well-defined and closable in ( © ft)Hn+i because of the closedness of Â. S is 

obviously symmetric. Consider further the truncated shift operator: T = PSP, 
where P is the orthogonal projection onto the closure of the canonical image of 

n+l 
© ft in ( © ft)Hn+1- T is also symmetric and closable, because it is densely defined. 

It follows from Corollary 1 that 

P X / o , . . . , / „ , 0 > | & „ + 1 = | | P < 0 , / 0 , • • • > / n ) | l i f n + 1 = 

= l l < 0 , / o fn)\\2Hn+-((A2^2-A)fn,fn) = 

l l < / o W , - , / „ ( , V ) ) l l l t „ + I I T < / o w , . . . j r , 0 > | & n t l - 0 

. W t i N ) - r t M ) \ \ - 0 (N, M - co). 

l | S < / o w , . . . , f i N \ 0 > - s < / r > , . . . 0 > | & „ + 1 = 

= l | T < / o m , • • • , fn N \ 0) — T(/0
(Ai), ...,/„(M), 0)||^n+1 + 

Suppose that 

and 

Then 

+ 11 f n
m - n 

Since both S and T are closable, it follows that 

-A - 0 (N, M oo). 

( = l | S < / o W , . . . J,\N\ 0)IIH2„+I ~ I I T < / o W , . . . ,ñN\ 0)|IH2„+I - 0 ( N - + 

Let L'n be the n-th Hankel matrix for {A2, ..., A2n+1, A} and let Q be the orthogonal 
Jl II— 1 

projection of (©ft)H„+L'„ o n t o the closure of the canonical image of © ft. Then 

I K / o , - . / n ) l l L + u = l K / o . - , f n ) \ \ k + l l T < / o , . . . , / „ , 0 > | | | „ + 1 . 
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Now the above convergence implication can be written in the form 

and 

implies 

for,, by the definition of the projection Q, there are ...,fn
(^\ such that 

IIC/T, - , / i^ , / ( N ) >l lH„ + L A S 11(1 - Q ) < 0 , . . . , 0 , /<">>| |H n + u+l/AT. 

This means, however, that A2n+2 — A is C-closable, for it follows from Corollary 1 
that 

l l ( i - Q ) < o > • • • ; O > / ) I I H „ + U = 

= (G42 n + — ( | ( H „ _ ! + L„_ 1)_1/2(B„_ ! + D „ _ i ) | 2 / , / ) = ( C / , / ) . 

Suppose, conversely, that H„+ 1 is positive and A2n+2—A is C-closable. The 
above argument can be traced backwards to conclude that the shift operator S 

n+l 
is symmetric and closable in (®ft)H„+1- L e t E(^) be the spectral function in 

n+l 0 

( ® f t ) H n + i for S, guaranteed by Proposition 2. Then it follows, for j , k ê n + l , 

(Aj+J, g) - (S'( / , 0, ..., 0>, S i ( g , 0, ..., 0 » H „ + 1 = 

= />J+kd{E(X)(f, 0, ..., 0>, 0, . . . , 0»H„+ , , 
— oo 

hence the expected spectral function E(A) can be given by 

(E(X)f, g) = (E(X)(f 0, ..., 0), <g, 0, ..., 

This completes the proof. 

Coro l l a ry 3. If the Hankel matrix H„+1 is positive, there exists a selfadjoint 
operator A such that 0^A^A2„+2 and the sequence {A0, ..., A2n+i, A} is a 
Hamburger moment sequence. 

Pr oof. Since H„+ 1 is positive, by Proposition 1 

A = I H - ^ B J 2 

is bounded. Then, with ^ = 0 , the conditions of Theorem 1 are fulfilled. 

Coro l l a ry 4. If the Hankel matrix H„+ t is positive and has a bounded inverse, 
then the sequence {A0, ..., A2n+2, A2n+3} is a Hamburger moment Sequence. 

II fm-fiM)\\2A2n + 2-A - 0 (N, M — 

\\fm\\A2n.2-A - 0 (N -
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Proof . Since |B*+1|2 is obviously Hn+1-bounded, the Hankel matrix H n + 2 r 

with A2„+4 replaced by |H~+
X{2 B„+1 |2, is positive by Proposition 1. Now the assertion 

follows from Corollary 3. 

Coro l l a ry 5. {A0, ..., A2n+1} is a Hamburger moment sequence if the Hankel 
matrix H„ is positive, |C*_j|2 is Hn_i-bounded, and there exists a bounded operator 
X such that 

A2n+1 = B + (A2n-AY'2X, 
where 

A = ¡H-JpB^I2 and B = (H;_1(2Bn_ir(H^[2Cn_1). 

Proof . In view of Corollary 3, it suffices to show that the Hankel matrix 
H„+ 1 is positive for suitably chosen A2n+2. However, by Proposition 1 the positivity 
of H n + 1 is equivalent to the inequality: 

I H ^ P t B ^ ! , C„_j]|2 s 

or, with C = I H - j p C ^ j l 2 , 

l2n > 1 2n+ 1 

l 2n + 1 > A2„ + 2. 

A2„ 

A 2n+ 1 ' 

-A, A2n+1—B 
-B*, A2n + 2 — C 

3= 0. 

By Proposition 1 the last inequality means that |A 2 n + l — B*\2 is (A2„ — v4)-bounded, 
what is guaranteed by the existence of A'in the assertion of the corollary. 

4. Stieltjes truncated moment problem 

A finite sequence {A0, ..., Am} of bounded positive operators is called a 
Stieltjes moment sequence, if there exists a spectral function E(X) (0 S X S 
such that 

Ak = f AkdE(X) (k = 0,1, ..., m). 
o 

To a spectral function E(X) ( 0 S l S <=>=>), there corresponds a spectral function 
F(X) ( - » s i s » ) such that 

f k2k~dF(X)~ f XkdE(X) 
- c o 0 

and 

jX2k + 1dF(X) = 0 (k = 0,1, ...). 
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In fact, F(X) can be given, for instance, by 

m = { i £ ( c o ) - i £ : ( A 2 - 0 ) if 
i£(A2) + i£(oo) if ^ ë O . 

Conversely, to a spectral function F(X) ( - c o g l g » ) there corresponds a spectral 
function E(X) (OSA =2°°) such that 

Theorem 2. {A0, ..., A2„) is a Stieltjes moment sequence if and only if the 
Hankel matrices H„ and K„_ j are positive, and there exists a closed operator X 
such that 

A = IH-^B^I2 and C — A2n_1+A — \(K„_2 + L„_2)~1/2(C„_2+D„_2)\2. 

Proof . As remarked above, {A0, ..., A2„} is a Stieltjes moment sequence 
if and only if {A0, 0, Ay, 0, A2, 0, ..., A2n_i, 0, A2„} is a Hamburger moment 
sequence. The simultaneous row-column permutation: 

2k^k (k = 0, 1, ..., n - 1 ) and 2k- 1 n + k-1 (k= 1, ..., n) 

brings the 2n-th Hankel matrix for {A0,0,A1, ..., 0, A2„} to the form 

Under the same permutation the (2n~2)-th Hankel matrix for {At, 0, ..., 0, A2n} 
is transformed to 

f Xk dE(X) = f l2k dF(X) (k = 0,1, ...). 
o 

A 2» = A + \XC1/2\2 

where 

H„_ i 0 B„_ ! 

0 K „ _ ! 0 

B;_! o a2„ 

K „ - 2 o 

Similarly the (2n — 2)-th marginal matrices for {A0, 0, A1; ..., 0, A2n) and 
{Als 0, A2, . ., 0, A2n} are transformed respectively to 

2> • 

and 

\ 
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Now the conditions of Theorem 1 for {A0, 0 , A 1 , . . . , 0, Aln) to be a Hamburger 
moment sequence are converted to the ones in the assertion of the present theorem, 
for the obvious permutation brings 

'H.-1 0 B„ 
0 0 
BiU 0 ¿2 

to 
H„ 0 

L ' o K „ _ t 

and the following relations hold: 

and 
m*-! o 
l l l o K „ _ 

0 -1/2 B„ 
0 K„ -1. 0 

0 " -2 0 
2. 

+ .0 L n-2 

= I H - J P B ^ I 2 

- 1 / 2 

( [ c . . J + [ D . _ J F = 

This completes the proof. 
In the similar way the following theorem and the corollary can be derived 

from the results of the preceding section. 

The 
orem 2'. {Aq, ..., A2N+±} a Stieltjes moment sequence, if and only if 

the Hankel matrices H„ andi,„ are positive and there exists a closed operator X such that 
A2n+1 = A + \XC^\2, 

where 

A = I K - J p C ^ I 2 and C = ^ 2 n + ^ - [ ( H „ _ 1 + Kn_1)-1 /2(Bn_1 + Cn_1)|2. 

Coro l l a ry 6. If both the Hankel matrices H„ and K„_j (resp. KJ are positive, 
there exists a bounded selfadjoint operator A such that 0 = A^A2„ (resp. SA2n+iJ 
and the sequence {A0, ..., A2„-1, A) (resp. {A0, ..., A2n, A}) is a Stieltjes moment 
sequence. 

5. Hausdorff truncated moment problem 

A finite sequence {A0, ..., Am) of bounded selfadjoint operators in a Hilbert 
space ft is called a Hausdorff moment sequence, if there exists a spectral function 
E(X) (0 s X S1) such that 

i 
Ak = f XkdE(X) (k = 0,1, ...,m). 
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Theorem 3. {A0, ..., AM) is a Hausdorff moment sequence, if and only if 
the Hankel matrices Satisfy the following inequalities: 

H„srO and K,,-! SL„_( SO (if m = 2n), 
or 

H „ s K „ s O (ifm = 2 n + l). . 

Proof . Suppose that {A0, ..., AM} is a Hausdorff moment sequence. As in 
the proof of Theorem 1, there exist a selfadjoint operator O s i s 1 on a Hilbert 
space ft and a bounded operator J from ft to A such that 

(H„</0, ... ,/„>, </o, . . . , /„» = II ¿A"-Jfk\\ . 

and 
( i N \ N

 • \ 
( K N ( f 0 , . . . , f N ) , ( f 0 , . . . , f N ) ) = (A [ 2 A k - J f K } , 2 A k - J f k ) , 

v k = 0 ' k=0 ' 

where N = n —I or =n according as m = 2« or, = 2« + l. Thus the Hankel 
matrix H„ is positive. The inequality K„_, ^ L„ _, follows from the following 
relation, based on the property O s ^ i s l : 

, { a ( Z ¿ k - J f k ) , Z A k - J f k ) - \ a ( Z A k - J f k ) f = 
v \=0 ' k= 0 ' " vfc=0 • 

— ( L „ - x ( / o > ••• > / n - l ) ; ( / o > ••• = / , - l ) ) -

The inequality H„gK„, in case m = 2« + l, follows from the relation: 

\ Z A k - J f i ^ { A ( Z A k - J f k ) , Z A k - J f k ) . 
"k=0 " 0 k=0 

Suppose, conversely, that m = 2n, H„sO and K„-1^LnL1. Consider the 
n 

shift operator S in © ft: 
o 

Since 
ns</0i...,/,_!, Q>|&,= 

— ( L „ - l ( / o > ••• , / n - l ) > C / o . ••• » / « - l ) ) S ( K ^ C / o , . . . , / „ _ ! > , ( / o , . . . , / „ - 1 ) ) = 

= (S</0, . . . ,/„_ 1 ; 0 > , < / o , . . . , / „ _ ^ O » ^ , 
n 

the operator S can be considered as a symmetric operator in ( © ft)n„' an.d admits, 

by Corollary 2, a selfadjoint extension O s S ^ l on ( © ft)H . Let E(A) ( O s l s l ) 
o. 

be the resolution of identity for S, then just as in the proof of . Theorem 1, 

10 A 
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{A0, ..., Am) is a Hausdorff moment sequence with respect to the spectral function 
E(X), defined by 

(£(*)/, g)=(E(A)(/, 0, ..., 0), (g, 0, ..., 0>Hn. 

Suppose finally that m = 2n + l and H „ s K „ s O . Then the Hankel matrix 
H„ + 1 with A2„+2=A2„+1 is positive. In fact, 

(Hn+l(/o, ••• >fn+l)>(fo> ••• j / n + l ) ) S ( K „ ( / 0 , . . . ,f„), ( / 0 , • • • , / „ ) ) + 
n n 

+ 2 (A n+l + kfk>fn+l)~^~ (fn+ 1 j An+ 1 +kJk) "I" i.A2n+lfn+ 1 >fn+ l) — k=0 k=0 

B+l 
Consider the truncated shift operator T in ( © ^)h„+1

 : 

T</ 0 , ••••,/„> 0) = P ( 0 , / 0 , ... ,/„), 

where P is the. orthogonal projection onto the closure of the canonical image 

of © ft. Since 
o 

I I T / f f N\l|2 - — « 0 . / O . • • • >/N)> ( g o > • • • > Sn, 0))H„ + 112 

l|T</o, . . . , /„ , 0>llä„+1 = SUP TJ- „ nXH2 -
i K f o , 0 > | & n + I 

— "iin l ( K " < / o ' • • • ' / « ) ' (Zo> ••• >8n))\2 -g- (TT / f f \ / f fW — 
— SUP /TT / w VT — I » " 0 ' "•>/»/> V0 ' ••• '/n/J — 

»€« (*Wo , • • • > gn)> \go, • • • > gn>) 
= (T</o, . . . , / „ , 0), ( / 0 , . . . , /„, 0))H„+1, 

B + l 

© 
0 

the operator T is considered as a symmetric operator in ( © ft)Hn+1
 a n d admits, 

by Corollary 2, a selfadjoint extension O s t ^ L It follows that for j S n + 1 and 
k ^ n 

(Aj+kf, g) = (S*</, 0, . . . , 0), SJ'<£, 0 , . . . , 0))HII+1 = 

for 
T*(/, 0,..., 0) = S k ( f , 0,..., 0) (/eg») 

and 

Let E(A) (OSASI ) be the resolution of identity for f Then it follows that for 
j S 2 « + l 

( A j f , g) = ( T J ( f , 0,... ,0),(g,0, ..., 0»H n + 

= f M ^ ( E ( A ) ( / , 0 , . . . , 0 ) , ( g , 0 , . . . , 0 ) ) H n + 1 . 
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Now {A0, ..., A2n+1} is a Hausdorff moment sequence with respect to the spectral 
function E(X), defined by 

[E(X)f, g) = (E(A)(/, 0, ..., 0),.(g, 0, ..., Q))Hn+1. 

This completes the proof. 

R e m a r k 3. KREIN and KRASNOSELSKII [ 5 ; § 7] proved Theorem .3 only for 
the case m = 2n. 

6. Trigonometric truncated moment problem 

A finite sequence {A0, ..., A„} of bounded operators is called a trigonometric 
moment sequence, if there exists a spectral function E(X) ( — n S A S n) such that 

n 

•Ak= J eikX dE(l) (k = 0,1, ... , ri). 

It is a Krein.moment sequence, if E(l) can be taken as a function on [ — n/2, %/2], i.e. 
n/2 

Ak= f eikkdE(X) (k = 0,1, . . . . ,«). 

For a sequence {A0, A t , ...}, the Toeplitz matrix T„ and the shifted Toeplitz 
n 

matrix T„ + are the operators on © ft, given respectively by 
o 

T„ = 

A0 > At, A2, • J A„ 
AÏ A o, Au . • » An— ï 
A* si 2 > At, Ao¡Ai, . • > A, 2 

A* A* . A* 

and T„ + = 

Ai> A2, •••, An+1 

Aoj Ay, . • •, A„ 

..., A t 

T h e o r e m 4. {A0, ..., A„} is a trigonometric moment sequence, if and only if 
the Toeplitz matrix T„ is positive. It is a Krein moment sequence, if and only i f , in 
addition, the shifted Toeplitz matrix T„_1)+ has positive real part. 

Proo f . Suppose, that {A0,...,An} is a trigonometric moment sequence. 
As in the proof of Theorem 1, there exists a unitary operator U on a Hilbert space 
ft and a bounded operator J from ft to ft such that 

( T „ ( / o ) • • • , / „ ) > < / o , • • • j/h)) — 2 û k - j f k k=0 

10* 
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and 

(T„-,, + </„, ...,f„-i),(fo, -,/„-,» - [ u ( 2 U k - j f k ) , 2 V k - j d . 
k= 0: ' k~0 ' 

Thus the Toeplitz matrix T„ is positive. In case of a Krein moment sequence, T„_j + 

has positive real part, for U has positive real part. 
If, conversely, the Toeplitz matrix T„ is positive, the shift operator V: 

V < / o , . . . , / B - 1 , 0 > = < 0 i / o , : . . , / . _ 1 > 
n 

is isometric in ( © hence there exists a spectral function E(A) ( — TZ^A^TI) 
71 ' 

n f* 
In ( ® $l)Tn such that J eikXdE(X) is an extension of V* for all k. It follows, as in the 

9 — 7T proof of Theorem 1, 
71 

Ak= feik>dE(k) (/c = 0 ,1 , . . . ,«) , 
— 71 

where E(X) is the spectral function in defined by 

[E{))f, g) = (E (;.)</, 0, ..., 0), <g, 0 , . . . , o»Tn . 

If, in addition, the shifted Toeplitz matrix T„_j + has positive real part, jt follows 

Re (V</0 , . . . , /„_ l f 0>, </0 , . . . , /„_ x ,0))Tn = ' 
.= (Re(T„_1 > +X/0 , . < / 0 , . . . , / „_!» SO, 

hence by Proposition 3 E(A) can be taken as a function on . [ — n/2, n/2]. This 
completes the proof. 
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