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I. General preliminaries

In Sections 1 and 2 we introduce " the basic terminology used in this paper for
semigroups and groups, respectively. The content of- Section 2 will be referred
to only from Section 5 on (but not in Sections 3 and 4).

1. The set consisting of the elements x;, x,,...,x, will be denoted by
(x4, X3, ..., X;) (the context will always elucidate whether an ordered or an un-
ordered set is meant). \ I

Let X be a finite unordered set. We denote by F(X) the free semigroup with
identity elément generated by X (non-commutative for [X |>1). The elements of .
X are called generators. The elements of F(X) are called words too. If a subset G of
F({X) satisfies the implication

(PEG & x€X) = px€G

then we say that G is a right ideal. The length |p| of the word p=x, ... x; is the
number k of the generators whose product equals p. The words of length 1 are
identified with the generators themselves. The identity element e of F(X) is the
only word of length O of F(X); it is called the empty word, too.

Let an element p=x, ... x, of F(X) be considered, let i (=k=|p|) be a natural
number. Then the words I,(p) and r,(p) are defined by the formulae

L(p) = %1%y and  r(p) = Xy_iyq- X

Particularly, l(p)=ro(p)=e. (We shall use the above notation chiefly in case
i=1.) We obviously have

. li(pq) = pli(@), ri(pg) = ri(q)
if |g]=>0.
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The right compatibility of a binary relation ¢ on F(X) is defined by

(C) ' o(p, @) = o(pr, qr) ~ (p, g, r€ F(X)).

‘Obviously, (C,) is equivalent to

(<) . o(p, ) = o(px, qx)  (p, g€ F(X), x€X).

A reflexive, symmetric and right compatible relation is called a quasi-right-congruence.
‘A 'right congruence is then a transitive quasi-right-congruence.

For right congruences we introduce another technique of notation: the relation
is denoted by ¥ (instead of @), furthermore, we write

' p=gq (mod¥)
instead of o(p, ¢) and '

p#q (mod%)
instead of g(p, ¢).

2. Let X beafinite set (as in § 1). We denote by G(X) the free group generated
by X (non-commutative for [X]|=1). Evidently, F(X)E G(X). Define the subset
F°(X) of G(X) in the following manner: p(€G(X)) belongs to FO(X) if and only
if there exist two elements p, g of F(X) such that u=pg~!. If p€G(X) then, ob-
viously, either both or none of u, u™! are contained in F°(X). '

Let p, v€ F(X). We say that v is a right multiple of p (or p is a left divisor
-of v) if there exists #€ F(X) such that v=put¢ (notation: u| v). Dually, u is a right

1

divisor of v (or v is a left multiple of p) if there exists 7€ F(X) such that tu=v
{notation: u[ v). Further, we shall use the short notatlons u”v and /,t”v for

}L'V, e and y[ v, HFEV, respectlvely

In free commutatlve semigroups d1v1s1b111ty is a lattice order, in the non-
commutative case F°(X), though ordered underlrlght (resp. left) divisibility, is not
directed under these orders. It holds e.g.

Lemma 0. If pla, qla (p, g, a€ F(X)) then either plg or q|p.
i 1 i 1 .

Proof. p and g being beginning parts of the same wérd, one of them must
be the shorter one. ‘ ‘
We say that p and g are comparable (p, g€ F(X)), if p|q or q|p.
: 1 1

- We define the least common right multiple [u, v], and the greatest common
right divisor (u, v), for p, v€ F°(X) as usual: [u, v], is a common right multiple
of y and v such that any common right multiple of them is a right multiple of [y, v],;
and, similarly, (u, v), is a common right divisor such that any common right divisor
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is a right divisor of 1t Lemma 0 implies that, for p, g€ F(X), [p, q], exists if and
only if p and ¢ are comparable. On the other hand it is easy to see that

(P, q), = r(p) = r(q) where r; (p)#ri,1(q) for p,qeF(X).

Such an i exists since ro(p)=ro(g)=e.
For puc F°(X) we use the shorter notation

=[u, e, p~=@We)!

The fact that u¥ and p~ exist for every u follows from

Lemma 1. Let p,q€ F(X), u=pq~*. Then there exist uniquely determined
elements p’, q’, t such that ’

(W) p=pt

(i) g=¢q'1,

(iii) ri(p)ri(q’) or p'=eorqg’=e.
Maoreover, the subsequent equalities hold:

@ p=p* ¢ =p, pgt=pr)h
Proof. If p=g¢q then t=p=gq, p"=q =e obviously suffice the conditions.
Now let p==qg. Put t=(p, q),- Then p’ and ¢’ are uniquely determined by (i) and
(ii), and (iii) is fulfilled obviously. The uniqueness of ¢, p’, ¢° follows now from the
fact that the only right divisors of p (g) are the words ry(p), 1=i=|p| (r(q), 1 =i=lql).
Furthermore, u=pg~!=p’q"~! and therefore it suffices to prove p'=p*
“(¢’=p~ follows then by a similar argument). But p’=ep’=pq’, ie. elp’ u{p’.
On the other hand, if e|s (i.e. s€ F(X)), u|s then s=pu —p’q’ Yu. Now p’q’ ‘uE
) 3
€F(X), r(p)#ri(q’) imply ¢!
complete.
It is a matter of routine to check the following properties:

T=@hE o pt =), ptt =)

For arbitrary elements p, v of F°(X) we have:
Lemma 2. [u, v], exists if and only if u* and v+ are comparable. In this case
ur if vtut,
[, ], =y v* if wptivt,
1
a0 pt =Tt
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Lemma 2. (u, v), exists if and only if u= and v~ are comparable. In this case

()t if vile,

s v)e =1 07)? i v,

* v, @)t i pm=vm.
Proof of Lemma 2. Let |4, v|A Then v~ !A=v-(yv*)~1A*(A")" '€ F(X),
i 1
pm(uH)" A7) € F(X). These imply (v)~IA*EF(X), (ut)~'At€F(X),
ie. pu*|A*, v |A*. Thus p* and v* have a common right multiple and so, as
14 {

already remarked, they must be comparable. This proves the necessity of the con-

dition. .
Conversely, if u™ and v* are comparable then either pu*=v*, (u~, v7), =1,

p~=mt,v"=nt and p*(u=, v7) ' =pm=vn, or v*||u* and ul,u‘“, v]vE |t

4 1 1
or pt||v*t and v|vt, u|p* [v*. On the other hand, if p|Z,v|A then, as
1 4 1 1 i i
above, u*|A*, vt|A*. This proves the lemma if p*s¢v*, In the remaining case
i l

let At=p*l; then p U=p~ @D ATA ) =mil(A)"1eFX), vli=

=ntl(A7)"1 € F(X) and either /e, A~ =e or [=e, t=1t'A" (since r,(m)=r,(n)).

In both cases we have p*(u~, v7),|4 and this completes the proof of the lemma.

I

Lemma 2’ follows from the dual of Lemma 2 in virtue of the equality

3 _ V), = [ vk
Indeed, let (u, v),=7v, p=my, v=ny. Then p~'=y"'m~! y~'=y-1x~! and thus
y~!'=p~'m=v~'n is a common right multiple of p~! and v—'. On the other hand,

if A=p~tm'=v='n" (m’,n’€F(X)) then pu=mA~', v=n'A"! and so 17'|y,
e y=cA=! (c€ F(X)) and A=y"!c is a right multiple of p=! =(u, v)7 L.

II. Characterization of the right congruences inside £(X)

3. Let Q be a set consisting of some unordered ') pairs of words. (Also pairs
of type (p, p) are permitted.) We define the properties (A,), (A,) for Q in the follow-
ing manner:

A)) (e, e)eQ.

(A,) Whenever (p,q)€Q, t€¢ F(X) and tse, then (pt, qt)§ Q. .

1) Equivalently, we may consider £ consisting of ordered pairs provided that (p, g) € 2 implies
(4, p)eQ.
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Let us consider a quasi-right-congruence ¢ of F(X). We say that the unordered
pair (p, q) (where PEF(X), g€ F(X), |pl=J, |lg|=k) is a critical pair for g if

Q(P, q)=1 :

and either of the subsequent three assertions holds:
(i) at least one of p, ¢ is equal to e,
(i) ri(p)sri(9), ’
(i) e(ly(p), 1 y(9))=+.

Lemma 3. For any pair (r, s)(r, s€ F(X)), o(r, s) is 1 if and only if there exist
three elements p, q, t of F(X) such that r=pt, s=qt and (p, q) is a critical pair for ¢.

Proof. The sufficiency follows from the property (C,) of ¢ (applied succes-
sively). In order to verify mnecessity, let us consider the maximal i with r(r)=
=rfs). If o(l(r), I(s)) =+ then I(r), I(s), r(r) satisfy the condition (as p,gq, ¢
respectively), because (l(r), I(s)) fulfils either (i) or (ii). If o(I(r), I(s))=1 then
there exists a maximal /4 such that (A <i and) o

Q.(Zh(r)s Zh(s)) =1,

in this case L(r), [,(s), ry(r)(=r,(s)) are convenient as p, g, ¢, resp., since (1,(r), L(s))
fulfils (iii).

Lemma 4. The set Q of all the critical pairs for a quasi-right-congruence ¢
satisfies (A,), (A,).

Proof. g(e,e)=1 by réﬂexivity. This and (i) imply that (A,) is fulfilled on Q.
Suppose (p, g)€ Q2 and (e=)t€ F(X). o(p,q)=1 implies g(pt, gt)=1 by an’
iterated application of (C]). We are going to show that the pair (pt, qt) does not

fulfil any of (i), (ii), (iii). Since ¢<e, (i) cannot be satisfied. The same holds for (ii),
because

ri(pt)y=r(t)=r(qt).
Assume that (iii) holds for (pt, gt); we want to get a contradiction. On one hand,
_ b=o(li(n), (@) = e(p-1,(®), ¢ 1,(0);
on the other hand, o(p, g)=14 implies

e(p-Li(®),q-1,(2)) =
by (C).

- Lemma 5. Suppose that the set Q of unordered pairs of elements of F(X)
satisfies (A{) and (A,). Let a binary relation o be defined by the following rule:
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é(r, s)=t (where r, s€ F(X)) if and only if there exist a pair (p, q) (€ Q) and an
element (€ F(X )) such that r=pt and s=qt. Then ¢ is a quasi-right-congruence of
F(X), moreover, the set of critical pairs of ¢ coincides with Q.

Proof. (A,) implies o(s, s) =1, thus g is reflexive. Since 2 consists of unordered
pairs, ¢ is symmetrical. If o(r, s)=1, r=pt, s=qt and (p, g) € Q2 then rx=(pt)x=
=p(tx), sx =(qt)x=q(ix) for any x(€X), hence o(rx,sx)=1t, ie. ¢ is right
compatible. '

It remains to verify the last statement of the lemma. Let (p, g) be a critical
pair of g. Since ¢(p, q)=1, there exist three elements p’, q’, d of F(X). such that .
W, q)EQR, p=p'd, q=q’d. If d>2e, then neither (i) nor (ii) nor (iii) can be valid
for (p, q); this contradiction shows that d=e, thus (p, g)=(p’, q¢") € Q. Conversely,
let (p, q) be contained in 2. We have o(p, g)=1 (because of the possibility d=e).
There exist a critical pair (’, ¢”) and an element d” of F(X’ )such that p=p'd’, q=q'd".
As we have already seen, (p’, ¢)€Q. If d’ e, then Q does not fulfil (A,), hence
d’=e and (p,q)(=(p’, ¢’)) is a critical pair.

Lemmas 4, 5 combine to prove

Theorem 1. To any quasi-right-congruence ¢ of F(X) let us assign the set
Q of critical pairs of . This assignment is a one-to-one correspondence between all
the quasi-right-congruences ¢ and all the sets Q (of pairs of elements of F(X))
satisfying the properties (Ay), (A,).

4. The collection of right congruences of F(X)isaproper subset of the collection
of the quasi-right-congruences, since transitivity is required, too. Hence the collection
of those sets Q which correspond to right congruences (by virtue of Theorem 1)
is likewise narrower than the set of all the @ fulfilling (A,) and (A,).

The definition of the critical pair can be restated in case of a right congruence
in the following manner: an unordered pair (p, g) of elements of F(X) is a critical
pair for the right congruence ¥ if

p=q (mod %)

and one of the subsequent three assertions. holds:
(i) at least one of p, g equals to e,
(i) if pe, g=e then r(p)=ri(q),
(iii) if p=e, g#e then L;(p)#!,(g) (mod ¥).

Theorem 2. Let Q be a set of unordered pairs of elements of F(X) and assume
that Q fulfils (A,) and (A,). The- quasi-right-congruence ¢ corresponding to Q (in
sense of Lemma 4 and Theorem 1), is a right congruence if and only if the following
additional requirements (Aj), (Ay) are satisfied by Q:
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(A;) Whenever (p,,q,)€R, (p2,q,)ERQ and there exists an element s(%e)
of F(X) such that p,=p,s, then (4, q,5)€ Q. '

(A,) Whenever (p, q;)€Q and (p; ;.)€ (where p is common) then there
exist three elements p’, q’, t of F(X) such that (p’,q)ER, q,=p’t and q,=q’t
(t=e is permitted).

Proof. Necessity. Let us consider the set Q of critical pairs of a right congruence °
% of F(X). In order to prove (A;), assume (py, ¢,)€R, (P2, 42)EQ, p; =p,s, s #e.
Since p, =q, (mod ¥) implies p, =p,s=g,s (mod %) (by (C))and p; =g, (mod¥) .
holds, we have g, = g,5 (mod %) by symmetry and transitivity.

Suppose that none of (i), (ii) and (i) holds for (g,, g,s); we shall get a
contradiction. We have g¢;=e, ¢,5%e,

4 ri(g) =ry(qg25)=ri(s)
and
@) - Li(q)) = 11(g28) = 95-1,(s) (mod %)

(since s¢¢). We are going to show that (p,, g,) cannot fulfil any of (i), (i), (iii).
pi(=pys)#e, g, #e hold evidently. (4) implies r,(p)=r;(p2)=r (s)=ri(q)).-
Since

g:1,(s) = pali(s) = 11(1725) =1,(p) (mod¥)

holds, formula (4) implies
l (P1) =1,(q;) (mod¥).

Thus (p,, q,) satisfies none of (i), (ii), (iii), hence (p;, ,) is not a critical pair.
This contradicts the inclusion (p,, ¢,) € Q.
Now we want to verify (A,). The Congruen_ces

p=q, (mod%), p=gq, (mod%)
imply
" ¢i=q, (mod9%),

hence there exist three elements with the mentioned property (in consequence of
Lemma 3). ’
Sufficiency. Let ¢ be a quasi-right-congruence, denote the set of critical pairs
of ¢ by Q. Suppose that Q satisfies (A;) and (A,). We shall prove that g is transitive.
Let r,s, v be three elements of F(X) such that o(r, s) = o(s, v) =+. Lemma 3.
ensures the existence of six elements p,, q,, ¢, ps, q,, t; such that(p;, q,)€Q,
(P2, 92) €2, r=pit,,
3 - S=qyt; =pst;

and v=gq,t,. We distinguish three cases.
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Case 1: |g,|<|p,|- Then there exists a w(>4¢) such that p,=q,w and 1 =W,
The condition (A;) can be applied (with p(, q,P2,92, W a5 g3, P2, P1,4915 1
respectively); it assures (g,, p,w)€ 2. Thus

o(r, v)=0(pty, q2t2) = o(p Wiz, q2t2) =1.

Case 2: ]qli =|p,|. Then q, =p, and ¢, =¢,. We can apply (A,) (with p,, p,, g,
as q,, P, 4», resp.); it follows that p,=p’t, g, =q’t, (p’, ¢')€ Q. Hence

Q(ra U): Q(Plth q2t1)= Q(p’ttl’ q,ttl) =1,

Case 3: |g,|=|p,|. The same inference can be apphed as in Case 1 (the roles
of ¢q; and p, are interchanged).

III. Characterization of the right congruences of F(X) by kernel functions

5. The function f (with one variable) is called a right kernel function if it
satisfies the subsequent five requirements:

() The definition domain M of fis a (proper or non-proper) subset of F°(X).

(Il) For every u€F°(X), f(1) is a non-empty right ideal of F(X).

(III) The empty word e is contained in M and f(e) = F(X).

(IV) ueM implies u='e€ M and f(u=1)=f(W).

V) If u,veéM and p*f(WNv*f(¥) is not empty then v‘1 €M and
wHE@WN V) S l, Y], /0 p).

In what follows we shall use the notation p*f(u)Nvf(v) = L(yu, v).

This concept is a generalization of that of the kernel function mtroduced by
REDE! in [1].

For the moment it is not clear that (V) makes sense: the right side of the in-
clusion seems in general not to be defined. However, we are going to prove that
the right side exists if the left one is nonempty.

This follows from Lemma 2 and

Lemma 6. L(u, v)#=0 implies that u* and v+ are comparable.

Proof. Indeed, for a€L(u, v) we have a=p*tt=v*y with tef(w), ucf(v).
Thus p*|a and v*|a hold and, by Lemma 0, this implies the comparability.
i I

On the other hand, the requirement v='x €M in (V) is not so strong as one
could think at first sight. Namely, we have - '

Lemma 7. Let p, v be elements of FO(X). v='u belongs to F°(X) if and only
if u* and v* are comparable. » :
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" Proof. Let v=lu = v~} (v)"tut(u~) ! € FO(X). Since r; (v+) #r (v7), ry(ut)
#=ry(u™), we have either (vt =v=, (v )~ =p~(u*)~'v* and (u*)~ v+ € F(X)
or (v ig)t=y=(v*)~p*, (v-'g)~=p" and (v+)"1u+EF(X). In the. first case
we obtain u* | v*, in the second one v* | pt '

Conversely, let u* and v* be comparable We dlstmgulsh two cases.
Case 1: v*|p*. Then p*=v¥*m (m€F(X)) and
l .
G vla=v Nt E) T = v mp) e ).
Case 2: u* J v*. By Case 1 we have p~'v€F°(X) and, consequently, v~'u=

= (@) e FX).
From (5) follows:

Lemma 8. If v*|u*, then (v"'p)~=p-.
o S

Obviously, (V) can be stated in the equivalent form

[, v fOv~ ) if vTiueM

(V') If i, vEM then Ly, v) = u*f(u)ﬂv+f ( ) S {g else.

As in the commutative case, the significance of right'kernel functions is pointed
out by the following analogue of Rédei’s Fundamental Theorem:

Theorem 3. Let 4 be a right congruence of F(X ) and let us define a func-

tion f as follows

(i) The domain M of f consists of the elements u of F°(X) for which there
exists a pair (p,q) (p, g€ F(X)) such that p=pq~' and p=q (mod¥).

(11) Whenever 1 is an element of M, the set f(u) consists of those elements
t (€ F(X)) which satisfy p*t=p~t (mod®).

Thus we have defined a one-to-one correspondence between all the right congruences
and all the right kernel functions. The converse assignment can be expressed by the
. following rule: to any right kernel function f, we define a right congruence €, such that

(iii) p=q (mod %) if and only if pg~' € M and (p, 9),€/(pg™").

Remark. As it will turn out from the proof, the properties defining the right
kernel funetions can be assigned to the properties of right congruences by a natural
correspondence. Namely, (II) and right compatibility, (II) ‘and reflexivity, (IV)
and symmetry, (V) and transitivity correspond to each other (in pairs). In the proof,
only the last mentioned correspondence requires much labour.

6 A
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6. This section is devoted to prove Theorem 3. This amounts to prove the
following statements:

(A) Starting with an arbitrary right congruence €, the functlon f SatleleS the
- properties O—(V).
' (B) If the right-congruences €, %, are dlﬂerent then the right kernel functions
f1, fo (assigned to €., %,, respectively) are different, too.
(C) Starting with an arbitrary right kernel function f, € is a right congruence.
(D) f being a right kernel function, the function obtained from % + by the rules
(1), (i1) is equal to f.

Proof of (A). The requirefnent (D follows from (i). -

Let u€M. Then, by virtue of (i), there exist elements p, g€ F(X) with p=
mod %, pg~'=yu. In consequence of Lemma 1, p=p*t, q=p"t, ie. there exists
an element ¢ for which u*t=p~¢t mod ¢ and so f(u)=@. Furthermore, ¢€f(u)
means (by (ii)) p*t=p"t (mod ¥) which implies p*ts=p~ts (mod %) ie. ts€f(1)
for every s €f(X). Hence f(u) is a right ideal. This proves (II).

Since e=e (mod %) holds trivially, (i) assures e= ee‘IEM ‘i.e. the validity
of (III).

As we have already remarked, if u€M then putt=p~t (mod %) for some
te F(X). By symmetry of the relation %, p~t=p*t (mod ¥) which means
u~(u*t)~te M. Thus (IV) holds.

In order to prove (V), let u, vé M and suppose a€ L(u, v). T hen by Lemma 6,
pt and v* are comparable and hence, by Lemma 7, v='u€ F(X ) Let a= lL+l'_

=v¥u(tef(w), u €f(v)). Then

putt=p~i (mod¥), vtu=v-u (mod%),
and so o ‘
©) - pTt=vTu (mod%).

Now there -are three possibilities.
a) u*‘”v"’ Then we have v*=pu* y (r€F(X)), a=v*tu=p*yu and so

t=yu. Comblnlng this with (6) and (i), we obtain _ _
¢ wyu=viu (mod®),  vI(uTH)h=vTyTiE)leM.
On the other hand, - _ |

Y= v ()t )t = vy )t )t = vy ()
.and so ﬁ!‘luEM. 'Further, since put=v*, y=e and

) =r@=r@y =rne)=re),



Congruences of free semigroups 269

that is to say, (v_ ')t =v, (v"'w)~=p"y and u€f(v—*p) (by (7) and (ii)). But
now [u, v], = v* and we conclude a=v*uc[u, v}, f(v=1p) or L(y, v)S[p, v}, f(v~1).

b) put=v*. Let (u=,v7),=d, u~=md, v-=nd (m, n€ F(X)). Instead of (7)
we have now ¢=u and

®) pu=mdu=v-u=ndu (mod%), mnm-lecM.

On the other hand,
: 1

viip=vy ()Tt =mmt,
so that again v—'u€ M. Further, by 8), (v_ )" =n, (v~ )~ =m and ducf(v="p).
As [p, v, =v*td~! in our case, we can see that a=vtu=v+d-'duc[p, v}, f(v" 1)
which gives again L(u, v)S[u, v], f(v™ ).
¢) vt pt. This case is analogous to a).
l .

Thus (V) is completely proved.

Proof of (B). We prove the assertion indirectly. Suppose that the right kernel
functions f,, f> are identical to each other, let this single function be denoted by f,
its domain by M. Whenever

p=q (mod %,)

(r, 9 €f(pa™")

(by (i) and (i), cf. Lemma 1), hence p=q (mod ¥,). Since the roles of ¢, %,
can be interchanged, €, and %, coincide. -

then pg=' €M and

Proof of (C). Assume that f satisfies (I)—(V); we want to verify that €,
is reflexive, symmetrical, transitive, and right compatible. )
If p=gthenpq='=e and(p, ¢),=p. Since the inclusion p€f(e) is guaranteed
by (IlI), p=p (mod %,) holds for each p(€ F(X)).
The subsequent four assertions are equivalent:
p=gq (mod (6,),
parEM & (p,q9).€/(pg™Y),
qp~teM & (q,p).€fgp™h),
g=p (mod¥%,)
(the equivalence of the first two statements follows from (iii); the same holds for‘

the third and fourth ones; the equivalence of the second and third assertions is
implied by (IV) (cf. Lemma 1)), thus %, is a symmetrical relation.

6*
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In order to prove the transitivitylz) suppose that
p=gq (mod%,) and p=s (mod¥,).
(iil) imply p=pg=' €M, v=ps—' €M,
t=(p,q),€f(W) and u=(p, s),€f(v).

Thus, we have p=p*t=v+ucpu*f(x) Nv+f(v) and so v='u e Mand p€[u, v.f/(v—'x)
by (V). Suppose v =p*y (y€ F(X)) (this can be done without loosmg generality).
Then p=u*tyu and t=yu. It follows

p=p*yu=p~yu=q (mod %),
p=ptyu=vtu=v-u=y (mod % ).

We distinguish two cases.
a) y=e. Then [p, v],—v+ and ucf(v-1! ) because of p=vtu€[u, v],f(v“u)
On the other hand, (v™'w)*=@"p~'u ) H*=v",(v'w)~=p"y and using
(iii) we obtain , :
s=vu=p~yu=q (mod%,).

b) y=e. Then [u, vl,=v*d~*, where d=(u~, v7), and p=v*uc[u, v],f(v" 1)
implies ducf(v='y). It is easy to see, on the other hand, that (v~'@)* =v-d~!,
(v"'w)~ =p~d-! and (iii) provides again

S s=vu=vdldu= u‘d‘l-dtg =g (mod%,).

This completes the proof of transitivity.

In order to verify (C), suppose p=q(mod €,). Then p= pq‘leM and
t=(p, q),€f(w) by (iii). Let z be an arbitrary element of F(X). Then pz(gz)~!=
= pg~! € M. Moreover, in virtue of (II),

(pz, 92),=(p, )2 €f (W) =f(pz-z~"q~") =1 (p2(42)~").
Hence pz=gz (mod %).

Proof of (D). Let us start ‘with a right kernel function f. Let us denote
the function, assigned to %, by virtue of (i), (ii), by f ’; let the domains of f, f’
be denoted by M, M’, respectively.

First we shall show M =M’ Suppose u€M’. There exist two elements p, g
of F(X) such that gu=pg~' and p=g (mod %);

2) Strictly speaking, we do not prove the original transitivity property but a version of it
which is equivalent to transitivity by virtue of symmetry. :
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. hence u=pg='eM by (iii). Conversely, let u¢ M and #€f(n). Then

ptt=p~t (mod %;)
(by (iii)), hence (i) implies ‘
p=ptumo)-te M.

Our last aim is to prove f(r)=f"(1) for an arbitrary element of M ( M).
For each #(€ F(X)), t€f(u) is equivalent to
ptt=p~t(mod %,)
(by (iii)) and this congruence is equivalent to #€f(u) (by (i1))-
7. Now we want to generalize some results of REDEI concerning kernel func-
tions. For this aim we need some further notions an notations.

Following REDEI, we say that the sets Ay, ..., 4, form a set star if their meet
equals the meet of any k —1 of them:

Ci=1 i#j

©) _ nA =N4 (G=1,..,k.

The fact that A, o A, form a set star will be briefly described thus: (4;, ..., AY)*.
Otwionsly, (9) is equivalent to '

Ilﬂ
<
i

04

uﬁj

1 ..., ).

It is clear as well that for subsets of a left cancellative semigroup

(Agse.e Ak)*=>(o-A1, s A
holds for any o€ S.
Let A, B be subsets-of F(X). Denote by %(4) the maximal right ideal contained
‘in A (it exists if 4 contains a right ideal at all), and put

_ - 4% B=(4UB\ANB).
Now we can prove

Theorem 4. Having axioms (I)—(IV) accepted, axiom (V') is equivalent to
either of the following conditions:
‘a) the binary relation defined on F(X) by (p, 9).€f (pq~Y) is transitive;

b*) if u, vEM then either p*f(WNvif(v) =0 or v ucM and

(3G, V), [, VLSO )
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o o ) )
b)) if u, VEM then either p=f(w)Nv () =0 or pv='€M and
(W W, v=r ), (, v =)
¢t if u, vEM then either ANB =0 or v 'ucM and

ANBE [~ SAFONA L B)),
where

= [, V7 et (W), B = [w, V7 vt f();
c) if u, vEM then either CND=0 or uyv='€M and

CND S f(w=) S R(FCONC+ D)),
where

C= V" fw), D=, v)y~f().

Proof. (V') < a) has been already stated (end of Section 5) and, as a
matter of fact, we proved it in Section 6. _

b*)=(V) and c*)=(V) hold obviously.

Let us prove (V)=b"). We have to show only
(10) I LSOTIINYHG) S pt )

since we get herefrom the second inclusion by interchanging i and v (note that
Sw=*v)=f(v='u) by (IV)), and the third one coincides with (V). Now apply (V)
to v~y instead of u and v—! instead of v; then we have

G DA CRay DY N Gl BN ™8 V"llrf(ﬂ)
and, multiplying by v,
vOT )T ) OV & v e, v iAW)
Thus (10) will be proved if we can ascertain that v(v=')*=[v,u], and
v ip, vl =pt
If pt=v'e, t#e, then v ip=v-t(u")"? ‘
VT = vy v = vt =t =y,
Vv vl =wTe = v+t =put.
If vt=p%t, te, then v ipg=vy¢~I(p™)? and vyt = vt =y, 4.,
gy = vt Lyttt T, = vt = v = it
If pt =9+, (W ,v), =t vI =Vt u~ =i, then v ig=vy ! and
vt = = vt =), |
vy lu, v i, = vy L et T = wie = vt = pt

and hereby (10) is true in all three cases.



Congruences of free semigroups : 273

In order to see b™)eb”) it suffices to replace u and v by p~!

b*),and b~). Then, in view of (3), they turn into each other.
A similar-argument shows the equivalence of c*) and c 7).
To complete the proof it remains to show b*)=sc*). The first inclusion of _
c*) follows obviously from b*) (it is a simple transscription of (V). As for the
second one, note that it can be transscribed as

and v=! in

an - o t)N (AL B) = 0.

: Indeed, (11) means that f(v‘lu)gF"(X)\(A-;z-B). But f(v"‘y) being contained
in F(X) and, moreover, being a right ideal of it, the obtained inclusion gives already
SO u) SR(E(X)\(4 1 B)). On the other hand, (10) shows that

) SO NV HB) € fN v+f(V)

or, multiplying by [u, vi7!

SOtWNB g ANB.
Similarly, , .
' ‘ fOtWNA<C ANB.

The two latter formulas together give (11).
Thus, we have proved Theorem 4. The graph of . the equrvalency proof was

bt <= b
W7

Net <™

We remark that c* and c— are concerned with subsets of F °(X) and not
necessarily of F(X). : -

As an analogue to Theorem 5 of REDEI [1], we prove

Theorem 5. For elements u,, .. ,yk (k=2) of the domam M of a right
kernel function f, satisfying
. -1 ’ .
12) poop=e, Jlw. €F°@X)  Gl=1,..,k; i+smodk),
. - s=0 . ' .'
we have

13) (B S, 11 FUD)s s Bty S RO)F

Following REDEI, we call (13) the star property of right kernel functions.

Proof. First one can see that corrdition (12), if satisfied for p, ..., ., holds

for iz, ..., e, By, too. Further, the sets u3 f(15), -..» fz - e 1157 S0, - it £ (1)
can be obtained from those comprised in (13) by a left multiplication by urt. This
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is obvious for the first £k —1 of them; for the last set it follows from the fact that
fa ... Wty =€ and hence '
Hoo i = py = pylpf.

Thus a cyclic permutation of g, ..., g carries (13) over into an equivalent statement
and therefore it suffices to prove

k-1

(14) N Byt WD) S Baeee B g 1 F()-

In order to do this, we remark that
(15) utf(w ﬂhﬂv’ff(v)g(ﬂv)*f(ﬂv) for u, véM, u~ and v* comparable.
This is a consequence of (V) applied to 1, v and of the identity |

(w)* = plp=% ], |

already used in the proof of the foregoing theorem. (15) makes it possible to prove
by induction

(16)  pifu)Npgpd f) N Npgepy 2 F) S (g p) * - y).
Indeed, for j=2 (16) coincides with (15) applied to the case u=p,, v=p,. Now
if (16) holds for some j (1 <j<k) then, using (15) for u=p, ... p;, v=p;4,, we have
) Opapd f) O Ny ey e fli ) S
S (p-s) g Ny pyife 1 fgey) € (111---!11'+1)+f_(ﬂ1---ﬂj+1)-

Put j = k—1 in (16). Then the left hand sides of (14) and (16)~ are equal. But
By oo ey =Y (g oo e ) Y =pg =y oo -yt and so the right hand sides
of both inclusions coincide, too. This proves (14) and thereby Theorem 5.

Reper’s First Reciprocity Theorem reads in the non-commutative case as
follows:

Theorem 6. Let m,n be right ideals of F(X),p, vEF(X) and
{m if &€=ppt,

n if E=v, v,

E=FX) for t=e.

(16) ¢=

The existence of a right kernel function [ satisfying f(u)=m, f(¥v)=n is
equivalent to the condition '

an Wihy, papd oy oens gy i ) (k= 3)
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for any system u,, ...,y which satisfies

. I—1
s o= LYY py gy = e ZZ#HSEF(X) ‘

(@, l=1 Sk i+smodk)

If the function f mentioned in the theorem ex1sts, we shall say that the
pairs (u, m) and (v, n) are compatible.

Proof. If (u, m) and (v, n) are compatible then (17) follows from Theorem 5.

Now let (17) be fulfilled for any system satisfying (18). Let us define a right
kernel function f" as follows. For the domain of f we take M S H=F°(X)N{u, v),
wheére (i, v) denotes the subgroup of G(X) generated by 1 and v, and M consists.
of those elements « of H for which there exist gy, ... p, (;=u, p=1, v, v~ i=1,...,t)
such that

(19) ~ &= gt
t
(20) D =Dy wstt) = (| @7 gy iy~ .

Further, put f(e) = F(X), f@ = U D(uy,..., 1) for o= e, where (;, ..., )

B le=0
ranges over all systems satisfying (19). We are going to show that f is a right

kernel function.
Axioms (I) and (III) hold trivially.
In order to see (II), we have only to show that f(oc)C F(X). But
D€ @) af A N@) iy e i e € @) pE FQO) N @) Lo FX) =
= @) ' FX)N @) FX) € @) FX)N @) FX) & F(X)
which proves also f(x)E F(X).

Since

(@) gt 1) () o e0™) = (@) Lo~ = e,
we have i

@) e = @) T L e
Hence (in view of (16))
D(uit, .., uit) = n(a )T g U Y) = Dy, s 1)

and thus f(@™ ') = f(®).
Finally, let

ﬁ = ﬁl"'ﬂnEM’ a+f(a)nﬂ+f(ﬂ) #0 (,B; = U, H'l, v, v—l; i=1, "':n)'
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Then a~'fc H by Lemma 7 and

D(ﬂt—lyl--wﬂl_l? ﬁl, -",ﬁn) =

= [[Qt (@' B*) ut .. u:l‘iu?‘(url)‘] N

n(n (@ B) i ey 87 ) =

= [o, AI;* [a AN T (ur‘)‘] N[, pI* [Ql ﬂl.‘.ﬁ,‘_lﬂf*l?j] =

= [OC, ﬁ]:l(a*'D(ut_‘l» sy ”1—1) N ﬂ+D(ﬂ1 PR ﬁn))

Now, since a*f(«)N B*f(f) is a union of sets analogous to that in the last pa-
renthesis, at least one of these sets must be nonempty and therefore a =18 € M.
Further, ' ' .

o f@NB*S(B) = o fla" YNBf(B) = (a* U Dm0

. tout=a

NE U D@ b)= U @D s iiYNED(Bs s ) =

oy opy o=aT

By Bn=8

= U mBDG s m B s B) S [ AL S B).

Hy ...u;1=a' ,
By Bn=B
Thus (V) is proved, too. )

- We'have shown till now that f'is a right kernel function. It remains to check
whether f(p)=m, f(v)=n are true. Now, on one hand, it is easy to see that mE f(u)
since D(u;)=m for u, =p. On the other hand, put a=y in (19) and (20). Adjoin
one more element p,.;=p"! to the system g, ..., ;. Then, for the system
His ...y By 1 and the right kernel function f, the conditions of Theorem 5 are fulfilled
so that (13) holds with k = t+1. In particular, ’

t

O My Mo B & Py el ey = phm,

i=

or
.
_Ql(u*)‘lulmus_lu?ﬁi =Dy, ..., ) Em,
and hence f(W)&S m. _ -
The equality f(v)=m can be treated analogously. Thus, Theorem 6 is proved.

REDEr’s other results can hardly be carried over to our case since they are
mostly based on the fact that the ideals of the free commutative semigroups of
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finite rank are finitely ‘generated. However, it might be of some interest to have
some information about right kernel functions pertaining to two-sided congruences,
and this question gives rise to investigations having no correspondent in the com-
mutative case.

IV. Two-sided congruences

8. It is easy to find the analogues of the concepts and results in Chapter TI
for the two-sided case. Indeed, the only thing we have to do is to replace (A,)
and (A;) by the conditions

(A%) (p, )€ Q and (spt, 5qt) € Q2 imply s=t=e;

(AY) Whenever (p;, 4,)€, (pz, q,)€Q and s,p,t, =5,p,1, then there exist
elements g7, g5, u, v such that ¢, =uqjv, g, =ug,v and (¢}, 4;) € Q.

It would even suffice to require (A}) for both cases s, =1, =e and 83 —12=e
The proofs are essentially the same as in Chapter II.

As for kernel functions, we have '

Theorem 7. The right congruence €, defined by the right kernel function
[ is a two-sided one if and only if

(VD) for any p€ M, p € F(X) holds: f(pup™") € M and (pu™, pu=), f() S f(pup™).
A right kernel function f satisfying (VI) will be called an R- functlon

Proof. Let %, be a two-sided congruence, pEM,pEF(X), t€f(y). Then
ptr=p~t (mod €,) and, consequently, pu*t = pu~t (mod %,). Suppose
(pu*, pu~),=d, pu* =ad, pu~ =bd. Then, obviously, a=(pup~")*, b=(pup=")~
and adt=bdt (mod %,). This means that dt€f(pup~') and this proves (VI).

Conversely, let (VI) hold and let g=s(mod %,). Take an arbitrary p€ F(X)
and denote gs—!=pu. Then g=pu*t, s=p~t, tf(u) and by (VI)

1) ‘ (pu*, pu7) L €f(pup™).
But -
(22) (put, pu™)t=(pu*t, pu~t),=(pq, ps),.

Using the notation (pg, ps), =d, pq=ad, ps =bd one can see that a=(pgs—'p~1)+ =
=(pup~")*, b=(pup~")~ and, in view of (21) and (22) ade(pup=")*f(pup=1),
bd¢(pup~*)~f(pup™'), so that

pg=ad=bd=ps (mod Ep).

Thus, €, is a left congruence too, and the proof is complete,
It is worth while to point out some special cases of Theorem 7.

Corollary 1. Let f be an R-function. If p¢ M\ (F(X)UF(X)~') then
S S/ (pup™") for every p€ F(X).
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Indeed, if p¢ FA)UF(X)™" then (pu*, pu7),=(u*, p7) =e.
Corollary 2. Let f be an R-function. Then pf(qp) Sf(pq) for any p, g€ F(X).
Especially, pf(p)Sf(p) f0r PEMNF(X).

Put p=gqp in (VI).

The concepts dual to right kernel functions and R-functions will be called
left kernel functions and L-functions. Obviously, all results obtained in our paper
can be dualized. In consequence of Theorem 3 and its dual, there is a one-to-one
correspondence between R- and L-functions such that the corresponding pairs
pertain to the same congruence. If the R-function f and the L-function g define
the -same congruence, we shall say they are conjugate and we use the notation
g=f, f=g. Further, denote the domain of a function 4 by M,

Theorem 8. The conjugate f of the R-function f is determined by the equalities
(23) My ={u=s) " u(u~s)neM;, sef(u)},
@4 J@) = {t|(a )RR €My, (R, tB),€f((B)RCE-)TY)} for REM,
where i, = [, eli, A = (&, e)i* .
Indeed, if % is the congruence defined by f (and f) then pe M 1 S€ /(i) implies
) uts=pu"s (mod%)
or, by the dual of Theorem 3, _
(u=s) tpts=(u=s) tu(p"s)eMy.
Conversely, if 7€My, t€f(i) then
th, =tji_ (mod®).
Put p = (i )(tR)~" = (E)ACEA-)™Y, s = (tl,, 1E-),. We have peM;, sef(1)
and 22, = uts, ti_ = u~s. Hence
B=(R)7 () = (™ s) " tuts = w7 s) " udp s).
Finally, if Z€M; and u= (A_)Ya(tA_)" €My, 5= (th,, B ) ((DAED™Y)
for some ¢ then
thy =p*s=p-s=1tp_ (mod %),
so that ¢¢€ f([f). This completes the proof of Theorem 8.
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