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I. General preliminaries 

In Sections 1 and 2 we introduce the basic terminology used in this paper for 
semigroups and groups, respectively. The content of- Section 2 will be referred 
to only from Section 5 on (but not in Sections 3 and 4). 

1. The set consisting of the elements xlt x2,...,xk will be denoted by 
(xl,x2, xk) (the context will always elucidate whether an ordered or an un-
ordered set is meant). 

Let X be a finite unordered set. We denote by F(X) the free semigroup with 
identity element generated by A'(non-commutative for |Z|>1). The elements of 
X are called generators. The elements of F(X) are called words too. If a subset G of 
F{X) satisfies the implication 

(p£G & x£X) =>px£G 

then we say that G is a right ideal. The length |/>| of the word p — xL ... xk is the 
number k of the generators whose product equals p. The words of length 1 are 
identified with the generators themselves. The identity element e of F(X) is the 
only word of length 0 of F(X); it is called the empty word, too. 

Let an.element p—x1 ... xk of F(X) be considered, let i(^k= \p\) be a natural 
number. Then the words ¡¡(p) and rt(p) are defined by the formulae 

h(p) = Xi---Xk-i and r,(/0 = xk_i+1...xk. 

Particularly, lk(p) = r0(p) = e. (We shall use the above notation chiefly in case 
i = l . ) We obviously have 

h (Pq) = Ph (q), rt (pq) = r, (q) 
i f | < 7 | > 0 . 
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The right compatibility of a binary relation Q on F(X) is defined by 

<Cr) g(p, q) => n(pr, qr) (p, q, r<=F(X)). 

Obviously, (Cr) is equivalent to 

(Q QÍP, q) 8(px, qx) (p,q£F(X),x£X). 

A reflexive, symmetric and right compatible relation is called a quasi-right-congruence. 
A right congruence is then a transitive quasi-right-congruence. 

For right congruences we introduce another technique of notation: the relation 
is denoted by (instead of Q), furthermore, we write 

p = q (mod m) 
instead of g(p, q) and 

p ^ q (mod <g) 
instead of g(p, q). 

2. Let X be a finite set (as in § 1). We denote by G(X) the free group generated 
by X (non-commutative for |Z |>1) . Evidently, F(X)QG(X). Define the subset 
F°(X) of G(X) in the following manner: p(<=G(X)) belongs to F°(X) if and only 
if there exist two elements p, q of F(X) such that p=pq~1. If p£G(X) then, ob-
viously, either both or none of p, p"1 are contained in F°(X). 

Let p, v£F°(X). We say that v is a right multiple of p (or p is a left divisor 
of v) if there exists 16 F(X) such that v = pt (notation: p | v). Dually, p is a right 

i 
divisor of v (or v i s a left multiple of p) if there exists t £ F(X) such that tp = v 
{notation: p | v). Further, we shall use the short notations p ||v and p\\v for 

r I r 

p\v, p7±v, and p | v, p^v, respectively. 
I r 

In free commutative semigroups divisibility is a lattice order, in the non-
commutative case F°(X), though ordered under right (resp. left) divisibility, is not 
directed under these orders. It holds e.g. 

L e m m a 0. If p\a, q\a (p, q, a£F(X)) then either p\q or q\p. 
i i i i . 

Proo f , p and q being beginning parts of the same word, one of them must 
be the shorter one. 

We say that p and q are comparable (p, q £ F(X)), if p \ q or q | p. 
i i 

We define the least common right multiple [p, v]r and the greatest common 
right divisor (p, v)r for p. v£F°(X) as usual: [p, v], is a common right multiple 
of p and v such that any common right multiple of them is a right multiple of [p, v]r; 
and, similarly, (p, v)P is a common right divisor such that any common right divisor 
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is a right divisor of it. Lemma 0 implies that, for p, q£F(X), [p, q]r exists if and 
only if p and q are comparable. On the other haiid, it is easy to see that 

(P, q)r = ri(p) = ri(<l) where +,(/>) ^ ri+l(q) for p,q(=F(X). 

Such an i exists since r0(p) =r0(q) — e. 

For n£F°{X) we use the shorter notation 

= e]r, fi- = (n,e)~1. 

The fact that and exist for every p follows from 
L e m m a 1. Let p, q£F(X), p=pq~l. Then there exist uniquely determined 

elements p', q', t such that 
(i) p =p't, 
(ii) q = q't, 

(iii) /-,0') ^r^q') or p'—e or q' — e. 

Moreover, the subsequent equalities hold: 

(2) P' = fi + , = pq~l = i i + 0 0 - 1 -

Proof . If p = q then t—p = q, p' — q' = e obviously suffice the conditions. 
Now let p^q. Put t = {p, q)r. Then p' and q' are uniquely determined by (i) and 
(ii). and (iii) is fulfilled obviously. The uniqueness of t,p', q' follows now from the 
fact that the only right divisors of p (q) are the words rt(p), 1 S i = |p| (rt(q), l S i i 

Furthermore, p=pq_1 =p'q'~l and therefore it suffices to prove p' — p+ 

(q' = p~ follows then by a similar argument). But p' = ep' = pq', i.e. e\p', p\p'. 
i i 

On the other hand, if e\s (i.e. s£ F(X)), p\ s then s = pu=p'q'~1u. Now p'q'~1u£ 

£F{X),rl{p')Tiri{q') imply q'-^^FiX). So we have p'\s, and the proof is 
i 

complete. 

It is a matter of routine to check the following properties: 

fi- = (fi-1r, p+ = (p-1r, = 

For arbitrary elements p, v of F°(X) we have: 
Lemma 2. [p, v]r exists if and only if p+ and v+ are comparable. In this case 

[A'. v]r 

^ if 
V+ if n+'\\v+, I 
p + (p-,v-\-1 if [i+ = v+ 
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L e m m a 2'. (//, v)r exists if and only if fi~ and v are comparable. In this case 

(/*, v)r = 

00 1 if v || A*-, 
(v-)-1 if At" í[ v-, 
Gi+,v+)r0i-)-i if M - = v-. 

P r o o f of L e m m a 2. Let n \ X, v 11 Then v - 1 l = v - ( v + ) - 1 A + ( 2 - ) - 1 e i ' W , 

^ - ( / O - ' l + C A - r ^ i W These imply (v+ ) - JA+ üF(X), (ji+)~lX+ £F(X), 
i.e. / J + |A + , v+ |A+. Thus ¡x+ and v+ have a common right multiple and so, as 

i i 
already remarked, they must be comparable. This proves the necessity of the con-
dition. 

Conversely, if n+ and v+ are comparable then either n+ = v+, v~)r = t, 
H~ =mt, v~ =nt and v")" 1 = ¡an = yn, or v+ || /¿+ and n j / i+ , v j v+ || /¿+, 

or || v+ and v | v+ , / i | / t + | | v + . On the other hand, if fi\X,v\X then, as 
V i1 i V i i 

above, ¡i+ | X+, v+ | X+. This proves the lemma if ^ v+. In the remaining case 
let A+=ju+l; then = = mtliX-)-1 € F ( I ) , v~1X = 
= ntl(X~)~1 £F(X) and either l^e, X~—e or l = e, t — t'X~ (since r t(m) ^ r ¡(n)). 
In both cases we have v~)r | X and this completes the proof of the lemma. 

i 

Lemma 2' follows from the dual of Lemma 2 in virtue of the equality 

(3) 0 , v)r = OÍ"1, v"1]"1 . 
Indeed, let (ji, v)r = y, ¡i = my, v = ny. Then fx~1 = y~1m~1, v~l — y - 1 « - 1 and thus 
y-1 =¡i~1m= v_ 1n is a common right multiple of fi~1 and v _ 1 . On the other hand, 
if X=/j.-1m' = v-1n' ( im' ,n '£F(X ) ) then = v = n'X~1 and so k~x\y, r 
i.e. y = cjl_1 ( c € F ( X ) ) and X = y~*c is a right multiple of n~l = (j.i, v)^1. 

II. Characterization of the right congruences inside F(X) 

3. Let Q be a set consisting of some unordered pairs of words. (Also pairs 
of type (p,p) are permitted.) We define the properties (A!), (A2) for Q in the follow-
ing manner: 

( A J ( e , e ) 6 f l . 
(A2) Whenever (p,q)£Q, t£F(X) and t^e, then (pt,qt)$Q. 

*) Equivalently, we may consider Q consisting of ordered pairs provided that (p, q) e Q implies 
(<7 
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Let us consider a quasi-right-congruence g of F(X). We say that the unordered 
pair (p, q) (where p d F(X), q£F(X), \p\ =j, \q\ =k) is a critical pair for o if 

q{p, q) = t 

and either of the subsequent three assertions holds: 
(i) at least one of p, q is equal to e, 
(ii) r^p) r^q), 
(m) e(h(p),h(l)) = i-

L e m m a 3 . For any pair (r, s)(r, s£F(X)), g(r,s)iS t if and only if there exist 
three elements p, q, t of F(X) such that r=pt, s=qt and (p, q) is a critical pair for g. 

Proof . The sufficiency follows from the property (C'r) of g (applied succes-
sively). In order to verify necessity, let us consider the maximal i with r£(r) = 
= rfe). If g(h(r), /;(?)) = t then ¡i(r), ¡¡(s), rt(r) satisfy the condition (as p, q, t 
respectively), because (/;(/•), /¡(y)) fulfils either (i) or (ii). If Q(li(r),li(s)) = \ then 
there exists a maximal h such that (h < i and) 

e(h(r), lh(s)) = t; 

in this case lh(r), lh(s), rh(r)( = rh(s)) are convenient as p, q, t, resp., since (lh(r), lh(s)) 
fulfils (iii). 

Lemma 4. The Set Q of all the critical pairs for a quasi-right-congruence o 
satisfies (A,), (A2). 

P roof . g(e, e) = t by reflexivity. This and (i) imply that (A,) is fulfilled on Q. 
Suppose (p, q)£Q and F(X). g(p, q) = \ implies g(pt, qt) = t by an 

iterated application of (C^). We are going to show that the pair (pt, qt) does not 
fulfil any of (i), (ii), (iii). Since t ^ e , (i) cannot be satisfied. The same holds for (ii), 
because 

ri(pt) = rl(t)=rl{qt). 

Assume that (iii) holds for {pt, qt); we want to get a contradiction. On one hand, 

1 = e(h(pt),h(qt)) = Q(p-h(t),q-h(tj); 

on the other hand, g{p,q) — t implies 

g{p-ll{t),q-h{t)) = \ 
by (c;). 

Lemma 5. Suppose that the set Q of unordered pairs of elements of F(X) 
satisfies (A t) and (A2). Let a binary relation g be defined by the following rule: 
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g(r, s) — t (where r, S£F(X)) if and only if there exist a pair (p, <?)(€£2) and an 
element t(&F(X)) such that r=pt and S = qt. Then Q is a quasi-right-congruence of 
F(X), moreover, the set of critical pairs of Q coincides with Q. 

Proof . (A,) implies g(s, S) = t , thus Q is reflexive. Since Q consists of unordered 
pairs, q is symmetrical. If o(r, i) = t , r=pt, s=qt and (p,q)£Q then rx = (pt)x = 
=p(tx), sx — (qt)x = q(tx) for any x( £ X), hence g(rx, ix) = t , i.e. g is right 
compatible. 

It remains to verify the last statement of the lemma. Let (p, q) be a critical 
pair of g. Since g(p, q) = \, there exist three elements p', q', d of F(Z) .such that 
(p\ q')£Q, p=p'd, q = q'd. If d^e, then neither (i) nor (ii) nor (iii) can be valid 
for (p ,q ) ; this contradiction shows that d=e, thus (p, q) = (p', q')£Q. Conversely, 
let (j>, q) be contained in Q. We have g(p, q) = t (because of the possibility d=e). 
There exist a critical pair (p\ q') and an element d' of F(X) such that p = p'd', q = q'd'. 
As we have already seen, (p ' ,q ' )£Q. If d ' ^ e , then Q does not fulfil (A2), hence 
d' — e and (p, q)( = (p', q')) is a critical pair. 

Lemmas 4, 5 combine to prove 

T h e o r e m 1. To any quasi-right-congruence g of F(X) let us assign the set 
Q of critical pairs of Q. This assignment is a one-to-one correspondence between all 
the quasi-right-congruences Q and all the sets Q (of pairs of elements of F(X)J 
satisfying the properties (A,), (A2). 

4. The collection of right congruences of F{X) is a proper subset of the collection 
of the quasi-right-congruences, since transitivity is required, too. Hence the collection 
of those sets Q which correspond to right congruences (by virtue of Theorem 1) 
is likewise narrower than the set of all the Q fulfilling (Ax) and (A2). 

The definition of the critical pair can be restated in case of a right congruence 
in the following manner: an unordered pair (p, q) of elements of F(X) is a critical 
pair for the right congruence ^ if 

p = q (mod 

and one of the subsequent three assertions holds: 
(i) at least one of p, q equals to e, 
(ii) if p ^ e ^ ^ e then r ^ ^ r ^ q ) , 
(iii) if p ^ e ^ ^ e then l í{p)^l í{q) (mod 

T h e o r e m 2. Let Q be a set of unordered pairs of elements of F(X) and assume 
that (2 fulfils (AJ and (A2). The quasi-right-congruence g corresponding to Q (in 
sense of Lemma 4 and Theorem 1), is a right congruence if and only if the following 
additional requirements (A3), (A4) are satisfied by Q: 
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(A3) Whenever (/>,, q{) £ Q, {p2, q2)£Q and there exists an element s( ^ e) 
of F(X) such that p{ =p2s, then (qlf q2s)£Q. 

(A4) Whenever (p, q^) £ Q and (p, q2) € (where p is common) then there 
exist three elements p',q',t of F(X) such that (p\ q') £ Q, qx =p't and q2=q't 
(t = e is permitted). 

Proof . Necessity. Let us consider the set Q of critical pairs of a right congruence 
of F(X). In order to prove (A3), assume (p,, qt)£Q, (p2, q2) £ Q, pt =p2s, s^e. 

Since p2 = q2 (mod 9Z) implies pi =p2s = q2S (mod (by (Cr)) and px =qx (mod . 
holds, we have qt = q2s (mod by symmetry and transitivity. 

Suppose that none of (i), (ii) and (iii) holds for (qt, q2s); we shall get a 
contradiction. We have qyT^e, q 2 s ^ e , 

(4) r1(ql) = rl(q2s) = r](s) 
and 
(4') h(ai) = h(92s) = 92-his) (mod %>) 
(since S7±e). We are going to show that {p t, q t) cannot fulfil any of (i), (ii), (iii).. 
P i (=P2 s ) ^e , qY ?ie hold evidently. (4) implies r1(p1) — r1(p2s) = r1(s) = rl(q1). 
Since 

q2li(.s)=p2h 0 ) = h (P2 s) = l1(p1) (mod <g) 

holds, formula (4') implies 
l M = h(9i) (modiP). 

Thus (Pi, qx) satisfies none of (i), (ii), (iii), hence (pY, qt) is not a critical pair. 
This contradicts the inclusion (pY, q r) £ Q. 

Now we want to verify (A4). The congruences 

p = qx (mod P = q2 (mod W) 
imply 

qi=q2 (mod^), 

hence there exist three elements with the mentioned property (in consequence of 
Lemma 3). 

Sufficiency. Let Q be a quasi-right-congruence, denote the set of critical pairs 
of Q by Q. Suppose that Q satisfies (A3) and (A4). We shall prove that Q is transitive. 

Let r, s, v be three elements of F(X) such that g(r, s) — g(s, v) = t . Lemma 3-
ensures the existence of six elements pt, t1,p2, q2, t2 such that (p1, <7i) £ Q.. 
(p2,q2)£Q,r=p1t1, 

(3) S = 9 i t i = p 2 h 

and v = q2t2. We distinguish three cases. 
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Case 1: \qi\-<\p2\- Then there exists a vv(^e) such that p2=qlw and ti = wt2. 
The condition (A3) can be applied (with p{, qit p2, q2, w as q2,p2,pi, qit r, 
respectively); it assures (q2,piw)£Q. Thus 

Q(T, v) = q{pxtl, q2t2) = g i p ^ , q2t2) = \. 

Case 2: \qx| = \p21. Then qt = p2 and tl = t2. We can apply (A4) (wi thp v , p2, q2 

as qlyp,q2, resp.); it follows that pi=p't, q2 = q't, (p\ q')£Q. Hence 

Q(r,v) = Q(p1tl,q2t1) = Q(p'ttl,q'tt1) = i. 

Case 3: \qy\>\p2\- The same inference can be applied as in Case 1 (the roles 
of qx and p2 are interchanged). 

m . Characterization of the right congruences of F(X) by kernel functions 

5. The function / (with one variable) is called a right kernel function if it 
satisfies the subsequent five requirements: 

(I) The definition domain M o f / i s a (proper or non-proper) subset of F°(X). 
(II) For every fi£F°(X),f(p) is a non-empty right ideal of F(X). 
(III) The empty word e is contained in M and /(e) = F(X). 
(IV) n£M implies ¡i~l£M and / ( / i - 1 ) = / 0 i ) . 
(V) If p,v£M and n+f(n) Plv+/(v) is not empty then and 

ii+f(p)r\v+f(v)Q[n, v] r/(v~V). 

In what follows we shall use the notation ix+f(n) fl v+/(v) = L(ji, v). 
This concept is a generalization of that of the kernel function introduced by 

REDEI i n [1]. 

For the moment it is not clear that (V) makes sense: the right side of the in-
clusion seems in general not to be defined. However, we are going to prove that 
the right side exists if the left one is nonempty. 

This follows from Lemma 2 and 

Lemma 6. L(fi, v ) ^ 0 implies that and v+ are comparable. 

Proof . Indeed, for a£L(n,v) we have a = n+t = v+u with tdfip), u£f(v). 
Thus | a and v+ | a hold and, by Lemma 0, this implies the comparability, 

i / 
On the other hand, the requirement v~ 1p£M in (V) is not so strong as one 

could think at first sight. Namely, we have 

Lemma 7. Let p., v be elements of F°(X). belongs to F°{X) if and only 
if p+ and v+ are comparable. 



Congruences of free semigroups- 267 

Proof . Let v~V = v_1(v+)~ V+ ( /* _ ) _ 1 €F°(X). Sineer1(v+)^r1(v-),r1(>+) ? i 
'̂"ILCM-), w e h a v e either (v~lp)+ = v~, (v~1p)~ and ( / i + ) - 1 v + £F(X) 

or (v"V) + = v- (v + ) _ V + » (v~V)~=/*~ and (v+)~V + € F(X). In the first case 
we obtain / i + | v+ , in the second one v + | / i + . 

Conversely, let p + and v+ be comparable. We distinguish two cases. 
Case 1 : v+ | p+. Then p+ = v+m (m£F(X)) and 

(5) = v - ( v + ) - V + ( ¡ i - ) ' 1 = v -m(n- ) - 1 £F°(X) . 

Case 2: p+ J v+. By Case 1 we have p~lv£F°(X) and, consequently, v~ V = 

From (5) follows : 

Lemma 8. If v+\\p+, then (v~V)~ = p~. 

As in the commutative case, the significance of right kernel functions is pointed 
out by the following analogue of Redei's Fundamental Theorem: 

Theorem 3. Let H be a right congruence of F(X) and let us define a func-
tion f as follows: 

(i) The domain M of f consists of the elements p of F°(X) for which there 
exists a pair (p,q) (p, qZF(X)) such that n=pq~1 and p = q (mod H). 

(ii) Whenever p is an element of M, the set f ( p ) consists of those elements 
t (<E F{X)) which satisfy p+t = p~t (mod . 

Thus we have defined a one-to-one correspondence between all the right congruences 
and all the right kernel functions. The converse assignment can be expressed by the 
following rule: to any right kernel function / , we define a right congruence f such that 

(iii) p = q (mod if and only if pq~l £M and (p, q)r dfipq-1)-

R e m a r k . As it will turn out from the proof, the properties defining the right •• 
kernel fimetions can be assigned to the properties of right congruences by a natural 
correspondence. Namely, (II) and right compatibility, (III) and refiexivity, (IV) 
and symmetry, (V) and transitivity correspond to each other (in pairs). In the proof, 
only the last mentioned correspondence requires much labour. 

Obviously, (V) can be stated in the equivalent form 

[¿i,v],/(v-V) if v~lp£M 
0 else. 



'268 A. Ádám—G. Pollák 

6. This section is devoted to prove Theorem 3. This amounts to prove the 
following statements: 

(A) Starting with an arbitrary right congruence %, the function f satisfies the 
properties (I)—(V). 

(B) If the right congruences ^ , are different, then the right kernel functions 
/i> f i (assigned to respectively) are different, too. 

(C) Starting with an arbitrary right kernel function f , f is a right congruence. 
(D) f being a right kernel function, the function obtained from s by the rules 

(i), (ii) is equal to f . 

P r o o f of (A). The requirement (I) follows from (i). 
Let Then, by virtue of (i), there exist elements p, q £ F{X) with p = q 

mod pq~l=¡i. In consequence of Lemma 1, p = p.+t, q~n~t, i.e. there exists 
an element t for which (i+t = fi~t mod and so /(/i) ^ 0. Furthermore, t£f(p) 
means (by (ii)) (mod which implies fi+ts=fi~ts (mod i?) i.e. ts£f(fi) 
for every s£f(X). Hence f(jx) is a right ideal. This proves (II). 

Since e = e (mod if) holds trivially, (i) assures e = ee~1 i.e. the validity 
of (III). 

As we have already remarked, if p.£M then ¡.i+t=fi~t (mod %>) for some 
t £ F(X). By symmetry of the relation ¡i~t = /i+t (mod cé) which means 
/Í-(AÍ+)"1 6 M. Thus (IV) holds. 

In order to prove (V), let ¡x, v^M and suppose a£L(ji, v). Then, by Lemma 6, 
and v+ are comparable and hence, by Lemma 7, v~1pdF(X). Let a = p+t = 

= v+u(t £f(p), w€/(v)). Then 

n+t=n~i (mod'g'), v+u = v~u (mod (if), 
and so 
(6) n~t = v~u (mod^). 

Now there are three possibilities. 
a ) / i + | | v + . Then we have v+=¡i+y (y£F{X)), a=v+u — ix+yu and so 

t=yu. Combining this with (6) and (i), we obtain 

(7) ji~yu = v~u (modW), v " ( / i " j ) " 1 = r i y " 1 ( / i " ) " 1 f M . 

On the other hand, 

.and so Further, since fi+ ^ v+, y ^ e and 

r x = r i ( y ) = ri0*+J0 = >-i(v+) ^ i - i ( v - ) , 
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t h a t is t o say, (v~lp)+ = v~, ( v - V ) ~ = / 0 a n d i / £ / ( v ~ V ) (by (7) a n d (ii)). B u t 
n o w [p, v ] r = v + a n d we c o n c l u d e a- v+u£[p, v ] r / ( v - 1 j u ) or L(/i , v )Q[ ) i , v ] r / ( v _ 1 / i ) -

b) n+ = v+. Let (p~, v~\ = d, p~—md, v~=nd (m, n£ F(Xj). Instead of (7) 
we have now t = u and 

(8) p~u = mdu = v~u = ndu (mod"?), nm~1£M. 

Ori the other hand, 

so that again v~1p£M. Further, by (8), (v_1/i)+ = « , ( v ~ x p ) ~ ~ m and du£f(v~lp). 
As [p, v]r = v+d~l in our case, we can see that a = v+u — v+d~1du£[p, v]rf(v~1p) 
which gives again L(p, v)Q[p, v]r/(v~ 

c) v+ || p+. This case is analogous to a). 
/ 

Thus (V) is completely proved. 

Proof of (B). We prove the assertion indirectly. Suppose that the right kernel 
functions f Y , / 2 are identical to each other, let this single function be denoted by / , 
its domain by M. Whenever 

p = q (mod ) 
then pq~l d M and 

(p, qXfJipq-1) 

(by (i) and (ii), cf. Lemma l), hence p = q (mod Since the roles of 
can be interchanged, and %>2 coincide. 

Proof of (C). Assume that /satisfies (I)—(V); we want to verify that f 

is reflexive, symmetrical, transitive, and right compatible. 
If p — qthenpq~i=e and (p , q\ =p. Since the inclusion p£f(e) is guaranteed 

by (III), p=p (mod Wf) holds for each p(£F(Xj). 
The subsequent four assertions are equivalent: 

p = q (mod f), 

pq-^M & (p,q)ref(pq-1), 

q p ' ^ M & (q,p)r£f(qp-% 

q = p (mod f ) 

(the equivalence of the first two statements follows from (iii); the same holds for 
the third and fourth ones; the equivalence of the second and third assertions is 
implied by (IV) (cf. Lemma 1)), thus f is a symmetrical relation. 

6» 
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In order to prove the transitivity 2) suppose that 

p = q (mod'g'y) and p = s ( m o d ^ ) . 

(iii) imply p=pq~1 v—ps~i£M, 

t = (P, q\ €/(/*) and u = (p, s), €/(v). 

Thus, we have p = p+t = v+u£p,+f(p.) fl v+ / (v) and so v~ andpd[p, v]r/(v_1/i) 
by (V). Suppose v+=fi+y (y £ F(X)) (this can be done without loosing generality). 
Then p = p+yu and t—yu. It follows 

p = H+yu = ix~yu = q (mod^), 

p = p+yu=v+u = v~u = s (mod f ) . 

We distinguish two cases. 
a) y^e. Then [p, v]r = v+ and u£.f{y~1p) because of p = v+u(i[p, v]rf(v~lp). 

On the other hand, (v_1/t)+ — (v_ .J ; _1(Ju_)~1)+ = v~> ( v~ V)~ =V-~y and using 
(iii) we obtain 

s = v~u~p~yu — q (mod^y). 

b) y = e. Then [p, v]r = v+ i /_ 1 , where d—(p~, v~)r and p = v+u£[p, v] r /(v~V) 
implies du£f(y~lp). It is easy to see, on the other hand, that (v~ V ) + = v~d~\ 
(v~1p)~ = p~d~l and (iii) provides again 

s = v~it=v~d~1-du = p~d~1-du = q ( m o d i f y ) . 

This completes the proof of transitivity. 
In order to verify (Cr), suppose p = q (mod Then p=pq~l and 

t — by (iii). Let z be an arbitrary element of F(X). Then pz(qz)~l = 
=pq~x €M. Moreover, in virtue of (II), 

(pz, qz)r — (p, q)rz (if (p) ^f{pz-z~xq~v) =f(pz(qz) "1). 

Hence pz = qz (mod <6f). 

P r o o f of (D). Let us start with a right kernel function / . Let us denote 
the function, assigned to <6j by virtue of (i), (ii), by / ' ; let the domains of f f 
be denoted by M, M\ respectively. 

First we shall show M=M'. Suppose p d M'. There exist two elements p,q 
of F(X) such that p=pq~1 and p = q (mod 

2) Strictly speaking, we do not prove the original transitivity property but a version of it 
which is equivalent to transitivity by virtue of symmetry. 
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« 
hence p=pq~l £M by (iii). Conversely, let p£M and t£f{p). Then 

p+t=p~t (mod 
(by (iii)), hence (i) implies 

p = p+t(p-tyi£M'. 

Our last aim is to prove f(jp)=f'(jp) for an arbitrary element p of M( = M'). 
For each t(£F(X)), t£f(p) is equivalent to 

p+t=p~t (mod f ) 

(by (iii)) and this congruence is equivalent to t e f ' (n ) (by (ii)). 

7 . Now we want to generalize some results of REDEI concerning kernel func-
tions. For this aim we need some further notions an notations. 

Following REDEI, we say that the sets Alt ..., Ak form a set star if their meet 
equals the meet of any k — 1 of them: 

(9) f\A, = (]Al ( j = 1, ..., k). 
¡=1 

The fact that Alt ...,Ak form a set star will be briefly described thus: (At, ..., Ak)*. 
Obviously, (9) is equivalent to 

{ f ] g Ai U = h . : , k ) . 
¡=1 
i+J 

It is clear as well that for subsets of a left cancellative semigroup S 

(A1,...,Ak)*=*(crA1,...,aAk)* 
holds for any a £S. 

Let A, B be subsets of F{X). Denote by 3i(A) the maximal right ideal contained 
in A (it exists if A contains a right ideal at all), and put 

A + B = (^U5)\(^n-B). 
Now we can prove 

Theorem 4. Having axioms (I)—(IV) accepted, axiom (V') is equivalent to 
either of the following conditions: 

a) the binary relation defined on F(X) by (p, q)r£f{pq~1) is transitive-, 

b+ ) if p, v£M then either p+f(p)H v+f(v) = 0 or v~1p£M and 

v + / ( v ) , bi , v ] , / ( v - V ) ) * ; 
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o 

b~) if ft, v£ M then either f.i~J(fi) fl v~/(v) = 0 or / /v - 1 £M and 

( f i - m , v-f(v), (p, v)-1 f(jxv-'))*; 

c+ ) if fi, v£M then either A(~\B = 0 or v_1j<x£M and 

A n B g f(v-ln) g +5) ) , 
where 

A = [fi,v]r1fi+f(fi), B = [fi, v ] - 1 v + / ( v ) ; 

c~) if [i, v£M then either C f l £ > = 0 or fiv~1£M and 

COD Qf(fiv_1) g + 
where 

C = (fi, vUrf(fi), D = (fi, v)rv"/(v). 

Proof . (V7) «=>• a) has been already stated (end of Section 5) and, as a 
matter of fact, we proved it in Section 6. 

b+)=>(V) and c+)=>(V) hold obviously. 
Let us prove (V)=>b+). We have to show only 

d o ) ifi, v i / O ' - ' / o r i v+/(v) g f i + f ( n ) 

since we get herefrom the second inclusion by interchanging fi and v (note that 
f(jj.~1v) = / ( v _ V) by (IV)), and the third one coincides with (V). Now apply (V) 
to v~lfi instead of fi and v~1 instead of v; then we have 

( v - v r / c v - v o n v - z o ' - 1 ) g [ v " V , v - ^ i f i f i ) , 

and, multiplying by v, 
v ( v - V ) + / ( v " V ) n v + / ( v - ' ) g v [ v - V , v _ 1 ] r / ( / i ) . 

Thus (10) will be proved if we can ascertain that v(v~ 1fi)+ = [v, /i]r and 

If /x+ — v+t, 1 t h e n v~1p = v~t(fi~)~1 and 

v ( v _ 1 / t ) + = v+(v~)"1v~ t = 1 — fi+ = [v, jU]r, 

v[v_1 fi, v - 1 ] , . = v v - t = v + 1 = fl + . 

If y+=lx+t,t9ie, then v~1fi = v~t~1(fi~)~1 and v(v~ V ) + = v + = [v, ju]r, 

• v [ v ~ V , = v f v - i - 1 ^ - ) - 1 , v - f - ^ f i + y 1 ] , = vv~t-1 = v + i - 1 = fl + . 

If fi+ = v + , (f.r,v~)r = t, v~ = v't, fi~ = fi't, t h e n v-1 fi = v ' j u ' _ 1 a n d 

v ( v ~ V ) + = vv' = v + i _ 1 = [fl, v] r , 

v ' _ 1 ] r = » [ v ' ^ ' ^ ' i ^ ) - 1 ] , = vv't = V+ = f l + 

and hereby (10) is true in all three cases. 
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In order to see b+)<=>b~) it suffices to replace p and v by and in 
b+) and b"). Then, in view of (3), they turn into each other. 

A similar argument shows the equivalence of c+ ) and c~). 
To complete the proof it remains to show b+)=>c+). The first inclusion of 

c + ) follows obviously from b+ ) (it is a simple transscription of (V)). As for the 
second one, note that it can be transscribed as 

(11) / ( v " V ) n ( v 4 + 5 ) - 0 . 

Indeed, (11) means that / ( v " V) i F°(X)\(A + B). But / (v~V) being contained 
in F(X) and, moreover, being a right ideal of it, the obtained inclusion gives already 
f(v-1

fi)Q@(F(X)\(A + B)). On the other hand, (10) shows that 

fo, v] r /(v-V) n v+/(v) g n v+/(v) 

or, multiplying by [jU, v]r
_1, 

f(y-1n)i]B c AC\B. 
Similarly, 

f(v-1n)C\A g AC\B. 

The two latter formulas together give (11). 
Thus, we have proved Theorem 4. The graph of, the equivalency proof was 

w ; I 

We remark' that c + and c~ are concerned with subsets of F°(X) and not 
necessarily of F(X). 

As an analogue to Theorem 5 of REDEI [1], we prove 

Theorem 5. For elements filf ..., ¡-ik 2) of the domain M of a right 
kernel function f satisfying 

(12) ni...nk=e, IJ Hi+S£F°(X) (i,l =1, ...,k; i + smodk), 
5 = 0 

we have ' 
(13) ( f i t f u l ) , HiHif&i), Ah---^-i №?"/(№))*• 

Following REDEI, we call (13) the star property of right kernel functions. 

Proof . First one can see that condition (12), if satisfied for ..., nk, holds 
for n2, ...,fik, nlt too. Further, the sets n ^ f ( j i 2 ) , . . . , ji2 ••• i^+/(№t)> P-i• • -HkHtfiMi) 
can be obtained from those comprised in (13) by a left multiplication by f i j 1 . This 
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is obvious for the first k — \ of them; for the last set it follows from the fact that 
fi2 . • . MitMi= e and hence 

Pi-PkPt = Pi = Pi1Pi-

Thus a cyclic permutation of fi1} ..., fik carries (13) over into an equivalent statement 
and therefore it suffices to prove 

k- i 
(14) H Pi• • -Pi-1Ptf{Pi) PkfiPkY 

f=i 

In order to do this, we remark that 

(15) fi+f(n)C]fiv+f(v)Q(]iv)+f(jiv) for n, v(iM, and v+ comparable. 

This is a consequence of (V) applied to n - 1 , v and of the identity 

(juv)+ = p[n~l,v]r 

already used in the proof of the foregoing theorem. (15) makes it possible to prove 
by induction 

(16) p t f ( P i ) ^ P i P 2 f ( P 2 ) ^ . - - - C ] P i : - - P j - i P j f ( P J ) l ^ ( P i - - - P j ) + f ( P i - - - P j ) -

Indeed, for j=2 (16) coincides with (15) applied to the case n—nx, v — p2. Now 
if (16) holds for some j (1 -</•<k) then, using (15) for n = n1... Hj, v = iiJ+i, we have 

Pif(Pi)f\PiPif(p2)C\ ••• ^Pi---PjPUif(Pj+i) i 

i (Pi--Pj)+f(^i--Pj)^Pi--PjPUif(Pj-vi) i (jPi---Pj+i)+f(Pi---Pj+i)-

Put j = k — 1 in (16). Then the left hand sides of (14) and (16) are equal. But 
¡ly ... fik-1=nk

1, (jiy ... nk-t)+ =Pi -••Pk-iPk an£l so "S^ hand sides 
of both inclusions coincide, too. This proves (14) and thereby Theorem 5. 

REDEI'S First Reciprocity Theorem reads in the non-commutative case as 
follows: 

Theorem 6. Let m, n be right ideals of F(X), (i, v £ F°(X) and 

' J m if Z = ii,n~1, 
° 6 ) i = U if { = v,v-i, 

t = F{X) for £ = 

The existence of a right kernel function f satisfying / ( ¿ i ) = m , / ( v ) = n is 
equivalent to the condition 

(17) (Pifii,PiP2fi2,-,Pi-Pk-iPkfikT (¿S3) 
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for any system /(,, ..., pk which satisfies 
1-1 

(18) ^ = n,!*'1, v, V 1 ; p1...pk = e; ]J¡ii+s£F{X) 
s = 0 

(/, 1 = 1, ...',k; i + imodfc ) . 

If the function /mentioned in the theorem exists, we shall say that the 
pairs (ji, rrt) and (v, n) are compatible. 

Proof . If (p., m) and (v, n) are compatible then (17) follows from Theorem 5.. 
Now let (17) be fulfilled for any system satisfying (18). Let us define a right 

kernel function / as follows. For the domain of / we take F°(X) FT (JJL, V), 
where (p, v) denotes the subgroup of G(X) generated by p and v, and M consists 
of those elements a of H for which there exist p^, ... pt (pi = p, p-1, v, v - 1 ; i= l,...,i) 
such that 
(19) <x = p1...p„ 

(20) D = Diplt ...,pt) = h (<*+ ) -Vi-f t - iHi+ / l i * 0. 
¡ = I 

Further, put f(e) = F(X),/(a) = U D(P-i, •••, l*t) for a ^ <?, where (pt, ..., p,} 
It!...Ii, = a 

ranges over all systems satisfying (19). We are going to show that / is a right 
kernel function. 

Axioms (I) and (III) hold trivially. 
In order to see (II), we have only to show that / (a) g F(X). But 

D g ( a + r W = 

= ( a + ) - V i - F , ( Z ) n ( a - ) " V r F ( A ' ) g (a + ) - 1 / ' ( l ' )n(a-) - 1
J F(A') g F(X) 

which proves also f(a)QF(X). 
Since 

{(<x+y i lJ . 1 . . .p i- 1 i i?)(( i i r )~ 1Hi+ i - -W) = ( a + ) _ 1 a a - = e, 
we have 

( a + ) " 1 / i 1 . . . / i i _ 1 / i i
+ = ( a - ) - 1 nr1 • • •/ii+1i AT-

Hence (in view of (16)) 

I 

i=t 

and thus / ( a " 1 ) = / ( a ) . 
Finally, let 

p = p1...p„£M, a+mnp+m*® (Pi = »,H~1, v.v"1; /= 1,...,«). 



276 A. Adam—G. Pollak 

Then a ' 1 by Lemma 7 and 

= ( ( n ( ( a - ' P y y ' n r 1 . . . ^ i H t i p r 1 ) ' ] n 

n [ n ((«-1 P ) + ) ~ V 1 • • .lit-%• • -Pj-1fit&•)) -

= [«, P]71 (« n № 1 • • • urA V? far x)") fl [a, P]71 ( H Px • • • Pj- x PtPj] = 

= [a, / ^ ( a + ^ O i f S ..., ^ W ^ O ? ! , ..., /?„)). 

Now, since a+f(a)f]P+f(P) is a union of sets analogous to that in the last pa-
renthesis, at least one of these sets must be nonempty and therefore a -

Further, 

a +f(<x)r)p+m = a V C a - W V t f ) = («+ U , - , MF1)^ 

f]{P+ u D /?„)) = u ( a ^ C r t - S . . . . / i r ^ n / i + D G i ! , . . . , / » „ ) ) = 
/».-/>»=0 

Pi-Hn = l> 
U [a ,p]rD(nr1,:.,liT\P1,...,P„)^[<x,P]rf(0i-1P). 

/»i .../»„=/» 

Thus (V) is proved, too. 
We have shown till now that / is a right kernel function. It remains to check 

whether f(ji) = m, f(v) — n are true. Now, on one hand, it is easy to see that m g/Gu) 
since D(jil) = m for n1=/x. On the other hand, put a = in (19) and (20). Adjoin 
one more element / i t + 1 = p ~ 1 to the system ¡J.y, nt- Then, for the system 
jul5 ..., /(,+ 1 and the right kernel function/, the conditions of Theorem 5 are fulfilled 
so that (13) holds with k = t+1. In particular, 

t 
f | Pi-Pi-iP? fit g Hi-HtVt++ifit+i = 

¡=1 
or 

t 

¡=i < 

and hence f(ji) ^ m . 
The equality /(v) —it can be treated analogously. Thus, Theorem 6 is proved. 

REDEI'S other results can hardly be carried over to our case since they are 
mostly based on the fact that the ideals of the free commutative semigroups of 
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finite rank are finitely generated. However, it might be of some interest to have 
some information about right kernel functions pertaining to two-sided congruences, 
and this question gives rise to investigations having no correspondent in the com-
mutative case. 

IV. Two-sided congruences 

8. It is easy to find the analogues of the concepts and results in Chapter II 
for the two-sided case. Indeed, the only thing we have to do is to replace (A2) 
and (A3) by the conditions 

(A2) (p, q) € & and (spt, sqt)£Q imply s=t = e; 
(A3) Whenever (/>1, 9i)€i2, (p2, q2)£& and s1p1tl=s2p2t2 then there exist 

elements q[, q2, u,v such that qx-=uq\v, q2 = uq2v and (q[, q2)£Q. 
It would even suffice to require (A3) for both cases s2 — ti=e and s2 = t2 = e. 

The proofs are essentially the same as in Chapter II. 
As for kernel functions, we have 

T h e o r e m 7. The right congruence cdj defined by the right kernel function 
f is a two-sided one if and only if 

(VI) for any p£M,pe F(X) holds: f ( p p p € M and(pp+,pp~)rf(p) Qf(ppp~ v). 
A right kernel function / satisfying (VI) will be called an R-function. 

Proof . Let f be a two-sided congruence, p£M, p£F(X), t£f(p). Then 
p+t = p~t (mod H f ) and, consequently, pp+t = pp~t (mod Suppose 
(pp+, pp~)r = d, pp+ ==ad, pp~ =bd. Then, obviously, a = (ppp~1)+, b = (ppp~l)~ 
and. adt=bdt (mod (df). This means that dt£f(ppp~') and this proves (VI). 

Conversely, let (VI) hold and let q =s (mod Take an arbitrary p £ F(X) 
and denote qs~1—p. Then q = p+t, s = p~t, t£f(p) and by (VI) 

(21) (pp+,pp-)rt£f(ppp-1). 
But 
(22) (pp+, pp~)rt = (pp+t, pp-t\ = (pq, ps)r. 

Using the notation (pq, ps)r = d, pq = ad, ps = bd one can see that a = (pqs~1p~1) + = 
= (ppp~1)+, b = (ppp~1)~ and, in view of (21) and (22), ad£{ppp-l)+f(ppp-1), 
bd(:(ppp~1)~f(ppp~1), so that 

pq = ad=bd=ps (mod 

Thus, tff is a left congruence too, and the proof is complete. 
It is worth while to point out some special cases of Theorem 7. 

C o r o l l a r y 1. Let f be an R-function. If p$M\(F(X)U Ftf)-1) then 
m BfiPlV1) for every p € F(X). 
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Indeed, if p$F(X)\J F(X)~l then {pn+, pti~)r = {p+, n~\ = e. 

Coro l la ry 2. Let f be an R-function. Thenpf(qp)!=/(/><?) for any p, q£F(X). 
Especially, />/(/>) i/O) for p£Mf)F(X). 

Put fi = qp in (VI). 
The concepts dual to right kernel functions and i?-functions will be called 

left kernel functions and ¿-functions. Obviously, all results obtained in our paper 
can be dualized. In consequence of Theorem 3 and its dual, there is a one-to-one 
correspondence between R- and ¿-functions such that the corresponding pairs 
pertain to the same congruence. If the .R-function / and the ¿-function g define 
the same congruence, we shall say they are conjugate and we use the notation 
g = / , f=g. Further, denote the domain of a function h by Mh. 

Theorem 8. The conjugate f of the R-function f is determined by the equalities 

(23) MT = {(n~s)-1^-s)\n£Mf, s£f(ji)}, 

(24) m = {t\(tUJ)m-YliMf,(tii+, tfi-WQitii-Mtii-r1)} for HMJy 

where /¿+ = [p., e]h /t_ = (p., e)f 

Indeed, if % is the congruence defined b y / ( a n d / ) then n£Mf, s£f(p) implies 

H+s = ¡i~ s (mod 
or, by the dual of Theorem 3, 

(p-sy-ii+s = s)~ln(n~ s)£MT. 

Conversely, if ji€Mj, t£j(fi) then 

tji+ = tp._ (mod^). 

Put n = (iju+)(i/i_)_1 = s = (*/!+, W e h a v e V ^ M f 

and tfi+ = p+s, tjl_ = p.~s. Hence 

U = ( i / * - ) - 1 ^ ) = O i " J = ( j i - s y ^ i n ' s ) . 

Finally, if fieMf and n = {tp._)p.{tp._)-1£Mf, s = (tjj+ , ¿/¿_)r £/(№)£ №)_1) 
for some t then 

t]i+ = n+ s = s = tp._ (mod 

so that t £j[Ji). This completes the proof of Theorem 8. 
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