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1. The class of all groups can be given as the class of all structures with an
associative binary operation (multiplication) and constant 1 satisfying the sentence
& =(x)(3y)(xy =yx=1). On every such group & define an additional unary oper-
ation (invertation), and denote by ® the resulted structure. It is clear that the cor-
. respondence & —G& as well as its inverse preserves substructures, homomorphism,
and free structures. ‘

Let ¥ be a set of sentences in a first order language L(z). One can raise the
following question: Under what conditions can additional operations f€F—F
be defined on every Z-structure W=(4; F, R) such that the correspondence
A=(A4; F,R)~U=(A4; F, R) and its inverse have the three preserving properties
above? As it was shown by G. GRATZER in [1], such additional operations can be
defined if and only if X has the Inverse Preserving Property, F(w) exists and
is strong. (The definitions are listed below.)

It is well known that {®|® € #*} is a universal class. In this paper we show
that, under the conditions given by Gritzer, every class {A|A€2*} is universal.
This answers the Problem 86 of GRATZER raised in his book [1].

2. For the sake of completeness we recall some definitions from Chapter 8 of [1].
Let #€ZX be of the following form:

(%) - (Xno— 1) BV0) (Kig) - (¥, - 1) (FY1) - BV (X)) - K= 1)
!p(an ety xno—x:ym an"--- B xn;-l’yl, vors Yo xnk’ IR ] xn—l)r

where 0=ny,=n,---=n,=n; 0=ny, means that no universal Quantiﬁer precedes
3yy, g =n, means that there is no universal quantifier between 3y, and Iy,
Y contains no quantifiers. Set e(®) = k+ 1. The concepts of ¢-I inverse and &-I
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sequence are defined for all 0=/=e(P) by induction on /. Let A be a I-structure,
ag, Ay, ... and by, by, ... €A.

(i) b, is a @-0 inverse of 4, L in A if

cany "0

(ag) - G- D@D oo A () - (n 1)
l//(ao, >ano—la bO’xnoa 9vxn1—19'y1a ayk9xnk7 ,xn—l)

holds in ?U; in this case, ag, ..., @, 1, by is a @-0 sequence;

(i) b, is a &-I inverse of Aoy vovy Ay g in W if .there exists a ¢- (l —1) sequence _
Aoy -ees Aug_15 bos o5 Au,_ —1, by such that

(xn)"'(xm+1—1)(3yl+1)"'(Hyk)(xnk)"'(xn—l)
‘/’(am no—19 bOs "."an.[-l—l, bl—l; an,_‘: (AR an,—lr bla
xn,"--"xmﬂ—l’yHl’ -",yk’xnk’ ---’xn—l)

holds in . Then, aq, ..., a1, b0, oo Gny_ =1, 011, a,,',_l, o @y_y, by is
@-/ sequence.

P-inverse means @-/ inverse for some / <e(cD) and Z-inverse means ®-inverse
for some d€X.

. Let A be a X-structure and let B be a subtructure of 9[ Then B is a Z-sub-
structure of W if whenever ay, ..., a,€B,bc A ‘and b is a Z-inverse of ag, ..., 4,
in A, then b€ B. : . _

Let n be a positive integer. The set -P(2) of n-ary X-polynomial symbols is
defined by rules (i)—(iv) below. :

() x,€P(2),i=0,...,n—1; <

(i) if Po, ..., Py, _IEP(E) then f(Po, cooy Py 2 1) € P(Z) for y<00(‘c),

(i) if ¢cZ, l<e(<15) n, universal quantifiers precede 3y, and Po, v Py €
€P,(Z), then &Py, ..., P, _{)EP(Z); .

(iv) P,(2) is the smallest set satisfying (i)—(iii).

Let P€ P,(2), let A be a X-structure, and let ay, ..., a,_; € 4. Then Pylaq, ..., a,_y)
(or simply P(ay, --., a,—,)) is a subset of 4 defined as follows:

(i) if P=x, then P(ay, ..., a,—,)={a;};

(i) if P=f(Py,..., P, 1), then P(ay, ..., a,-)={ala=fbo, .., b,,-) for
some b€ Pfdg, - Gy-y), i=0, ..o, —1}; ’

(iii) if P=oW(Py, ..., P, _;), then P(a,, _..., a,-)={ala is @ -/ inverse of
some by, ..., b, with b,€ P(ay, ..., a,_), i=0 m—1}.
P, is called a Z-polynomial over .
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Let 9 and B be 2-structures and let ¢ be a mapping of 4 into B. Then ¢ is
called a X-homomorphism if ¢ is a homomorphism, and if for any positive integer n,
PcP,(2) and ao, ey @y €A Wwe have

P(ag, ..., ay_1)9 = P(ao®, ..., a,_10).

Let B be a Z-substructure of the Z-stucture 2. Then B is said to be a slender
Z-substructure if for any positive integer n, P€P,(Z) and ay, ..., a,_; €B we have -
that Py(ay, ..., @,—1) = Pylag, ..., y—1).

Let « be an ordinal. Z(«) is the free 2 structure with o generators, if the follow-
ing conditions are satisfied:

(i) Fi(o) is a Z-structure, .

(i) F(a) is Z-generated by the elements xo, ..., x,, ... (y <a);

(iii) if A is a Z-structure and ay, ..., a,, ...€ A4 for y<a, then the mapping
Q:x, , <o can be extended to a X-homomorphism & of %(x) into 2.

A set X of sentences is said to have the Inverse Preserving Property (IP) if
every X-substructure is slender.

Moreover, a free I-structure is called strong if the mapping 7] given in the
definition of the free Z-stucture is always unique.

We note that if the free Z-structure F(w) exists and is strong, then all free
X-structures exist and all are strong (see Theorem 54.2 in [1]).

In addition to these definitions we introduce some notations.

3. Let K denote the equational class generated by the free Structure F (o)
of Theorem 54.3 in [1] and let Xy be the set of all equations which hold in K
We introduce the notation Z, for the set.of all sentences

(xo,) (x(),.)"' (xm—ll) (xm—ln)r(pb(xola T xO,.)’ ,pm—l(xm~11_’ v xm—l,.))

which hold in & »(w), where r€ R and p,, ..., p,,_, are polynomial symbols over F.
As in Theorem 54.3 of [1] for every X-polynomial symbol P(¢P, (Z)) we deﬁne
k, n-ary operations f7, ..., Sy as follows:
Take F(n) with the Z-generators x, ..., x,_; define f"(xo, .., x,_1), i<kp
such that
P(XO’ ! xn—l) = {fip(XOa sy xn—l)li = kP}a

let A be an arbitrary Z-structure, g, ..., a,_; €4 and ¢ a Z-homomorphism of
F,n) into A with xgp=ay, ..., X,- 10 =a,_;. Let '
fE(@g, s ay-1) = fF(xg, oy Xn_ D@ (i=0,..,kp—1).

Let P€P,(2). 'Then there exists a for'mula‘ re(xo, s X,-1,¥) in L(z) such that
if 9 is a Z-structure and aqy, ..., a,_1, D€ A, then b€ P(ay, ..., a,-,) if and only if
r(ag, ..., a,_, b) (see-[1], Lemma 49.6). '
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Now we define for every P¢P(X) a sentence &, in the following manner:

b, =_= (xO)"'l(xn—l).(y)(rP(xO, ey Xn1,08 (X0, -, xn—l)) A
o Arp(xo, ooy X g5 Sl 1 (05 cees Xy 1)) A (rp(xo, vy Xy g5 Y)

—’(y =f(;(x03 --;’xn—l)v“'\/y =.fl£=—1(x09 s-xn—l)))]'

Let 2o ={®,| Pis a X-polynomial symbol}.
Moreover, denote by X, the set of all universal sentences from X.
Now we are ready to prove the following '

Theorem. If Z has the Inverse Preserving Property and F{w) exists and is
strong then K= {W|ACZ*} is a universal class.

Proof. The class K is closed with respect to substructures (see [1], Theorem
54.3). We shall prove that X is a universal class by showing that

K=(ZgUZ UZ,UZy¥

i.e. K is an axiomatic class see [1], Corollary to Theorem 43.3 for thls characteriza-
tion of universal classes.

First we show that W€ (ZgUZ,UZ,UZ)* if ez

Z(a) is a free structure in K of Theorem 54.3 of [1] so A is a homomorphic
image of Z(«) for some «, i.e. Zg and X hold in .

Let P€P,(Z) be a Z-polynomial symbol and take' &(n) with the generators
Xgs +ers Xp—1. L€t YEP(Xg, ..., X,,) be arbitrary. By the definition of the operations
Sfxos ..., x,—1) (i<kp) and the formulas rp(xg, ..., X,=1, ¥) it can easily be seen
that rp(Xos --., Xpe1, /7 (X0 -5 X,—1)) holds and there exists a j(=<kp) such that
y=f}°(xo, ...y Xy—1). Now take arbitrary ay;...,a,-;€A4. Then the mapping
Xo@=ag, ..., Xp—19=a,_; can be extended to a homomorphism @ of F,(n) into
A such that § is a Z-homomorphism of F(n) into 2. So, by the definition of the
Z-homomorphism and operations ff (i<kp), 7p(dos ... @1, /¥ (@0, ..., au-y))
also holds. It can be shown in the same way that if ry(ao, ..., a,—, b) holds, i.e.
b € P(ay, ..., a,-1), then there exists a j(<kp) such that b=f](aq, ..., @,—,). But
P and qq,..., a,_,, b€ A are arbitrary, so 20 holds in 2.

A ey is obviously valid.

Conversely, let B=(B; F, R)c(ZxUZ,UZ,UZ,)* We have to show that
B¢ {W|A€2*}). Denote by B the (F, R)-reduct of B.

B ey implies that for every bg, ..., b,—; €B and PEP,Z), rp(bg, ..., by,
ST (Boseisbu—y)) (i<kp) holds, ie. |P (b, ..., b,—4)|= 1 which means that every
@ ¢Z having at least one existential quantifier holds in B. Since B€ X} thus every
universal sentence @€ % also holds in B. Therefore, B is a X-structure.
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Take an arbitrary generating system (b, ..., b,; ..., ), o, Of $B. Because Fy(«)
is free in K and B¢ X}, every mapping ¢: x, b, (y<a) can be extended to an
algebra-homomorphism @ of Fy(«) onto B. (A mapping y: U=(4; F, R)~U'=
=(A’; F,R) is said to be an algebra-homomorphism if f(ao, ..., @G- )Y =
=f(aoy, ..., a,_ W) for every fEF and ag, ..., a,_;€A.) '

Furthermore, if

r(po(xol, vy Xo,)s ...,pm_i(xm_ll, e ‘xm—1,,))

holds in F(«), then

(xo,) -+ (xo,.)--~(xm—11)--~(xm-1,,) V(Po(xo;s cees Xo)s «ees Pn—1(Xm—1,5 -5 xm—1,,))€ZR’ ,

because every mapping of the generating system of Z(oc) into F3(w) can be extended
to a homomorphism of F (@) into Jz(w) But B¢ X%, so ¢ is a homomorphism of
F(«) onto B.

It remains to prove that @ is a Z-homomorphism of %y(«) onto B. For this,
by the definition of Z-homomorphism, it is enough to show that :

P(Xyys oo X%y, )@ = P(x,, 3, .. s Xy D) (=P(bygs - by, )

for every P€P,X) and o, ..., ¥o-y <. Take y€P(x,,..,x, ). Then there
exists an ff (i<kp) such that y=fi"(xvo, v Xy Do S0 yF=£F(x,,@, -0 X, B)-
But BeZt thus rp(x, B . X, _ 75 [T P, s X,,_,P) holds, ie. »@e
EP(x, @5 -5 X, D). Conversely, take bHEP(x, P, ..., X, _, @), ie. TIp(X,,0, ...
s Xy B b) holds. Because B¢ Z¥, thus there exists an fF (j<kp) such that
[, @5 ..y x,,_ @)=b. It is clear f](x,,...,x, )p=b and ff(x,, ... %, )€
EP (X5 - xyn_l). These prove that P(x, ..., X, _ )0 =P(X,;@, ..., X "_l(p) o

It is clear, by Theorem 54.3 of [1], that taking the correspondence B —~%B given
in Theorem 54.3 of [1], we have B =B. This ends the proof of the Theorem.

Reference

" 1] G. GRAtzER, Universal Algebra (Princeton, N. J., 1968).

THE UNIVERSITY OF MANITOBA,
WINNIPEG, CANADA ‘
THE UNIVERSITY OF SZEGED,
SZEGED, HUNGARY .
: ( Received February 1, 1969)



