On certain classes of Σ -structures

By F. GÉCSEG in Winnipeg (Canada)*)

To Prof. L. Rédei on his 70th birthday

1. The class of all groups can be given as the class of all structures with an associative binary operation (multiplication) and constant 1 satisfying the sentence $\Phi \equiv (x)(\exists y)(xy = yx = 1)$. On every such group $\overline{\mathfrak{G}}$ define an additional unary operation (invertation), and denote by $\overline{\mathfrak{G}}$ the resulted structure. It is clear that the correspondence $\mathfrak{G} \rightarrow \overline{\mathfrak{G}}$ as well as its inverse preserves substructures, homomorphism, and free structures.

Let Σ be a set of sentences in a first order language $L(\tau)$. One can raise the following question: Under what conditions can additional operations $f \in \overline{F} - F$ be defined on every Σ -structure $\mathfrak{A} = \langle A; F, R \rangle$ such that the correspondence $\mathfrak{A} = \langle A; F, R \rangle \rightarrow \mathfrak{A} = \langle A; \overline{F}, R \rangle$ and its inverse have the three preserving properties above? As it was shown by G. GRÄTZER in [1], such additional operations can be defined if and only if Σ has the Inverse Preserving Property, $\mathscr{F}_{\Sigma}(\omega)$ exists and is strong. (The definitions are listed below.)

It is well known that $\{\overline{\mathfrak{G}} | \mathfrak{G} \in \Phi^*\}$ is a universal class. In this paper we show that, under the conditions given by Grätzer, every class $\{\overline{\mathfrak{A}} | \mathfrak{A} \in \Sigma^*\}$ is universal. This answers the Problem 86 of GRÄTZER raised in his book [1].

2. For the sake of completeness we recall some definitions from Chapter 8 of [1]. Let $\Phi \in \Sigma$ be of the following form:

$$\begin{aligned} (x_0) \dots (x_{n_0-1}) (\exists y_0) (x_{n_0}) \dots (x_{n_{1}-1}) (\exists y_1) \dots (\exists y_k) (x_{n_k}) \dots (x_{n-1}) \\ \psi (x_0, \dots, x_{n_0-1}, y_0, x_{n_0}, \dots, x_{n_{1}-1}, y_1, \dots, y_k, x_{n_k}, \dots, x_{n-1}), \end{aligned}$$

where $0 \le n_0 \le n_1 \cdots \le n_k \le n$; $0 = n_0$ means that no universal quantifier precedes $\exists y_0, n_0 = n_1$ means that there is no universal quantifier between $\exists y_0$ and $\exists y_k$, ψ contains no quantifiers. Set $e(\Phi) = k + 1$. The concepts of Φ -*l* inverse and Φ -*l*

^{*)} Postdoctorate Fellow of the National Research Council. (On leave from the University of Szeged.)

F. Gécseg

sequence are defined for all $0 \le l \le e(\Phi)$ by induction on *l*. Let \mathfrak{A} be a Σ -structure, a_0, a_1, \ldots and $b_0, b_1, \ldots \in A$.

(i) b_0 is a Φ -0 inverse of $a_0, ..., a_{n_0-1}$ in \mathfrak{A} if

$$(x_{n_0}) \dots (x_{n_{1}-1}) (\exists y_1) \dots (\exists y_k) (x_{n_k}) \dots (x_{n-1})$$

$$\psi(a_0, \dots, a_{n_0-1}, b_0, x_{n_0}, \dots, x_{n_{1}-1}, y_1, \dots, y_k, x_{n_k}, \dots, x_{n-1})$$

holds in \mathfrak{A} ; in this case, $a_0, \ldots, a_{n_0-1}, b_0$ is a Φ -0 sequence;

(ii) b_l is a Φ -l inverse of $a_0, ..., a_{n_l-1}$ in \mathfrak{A} if there exists a Φ -(l-1) sequence $a_0, ..., a_{n_0-1}, b_0, ..., a_{n_{l-1}-1}, b_{l-1}$ such that

$$(x_{n_l}) \dots (x_{n_{l+1}-1}) (\exists y_{l+1}) \dots (\exists y_k) (x_{n_k}) \dots (x_{n-1})$$

$$\psi(a_0, \dots, a_{n_0-1}, b_0, \dots, a_{n_{l-1}-1}, b_{l-1}, a_{n_{l-1}}, \dots, a_{n_{l-1}}, b_l,$$

$$x_{n_l}, \dots, x_{n_{l+1}-1}, y_{l+1}, \dots, y_k, x_{n_k}, \dots, x_{n-1})$$

holds in \mathfrak{A} . Then, $a_0, ..., a_{n_0-1}, b_0, ..., a_{n_{l-1}-1}, b_{l-1}, a_{n_{l-1}}, ..., a_{n_l-1}, b_l$ is a Φ -l sequence.

 Φ -inverse means Φ -*l* inverse for some $l < e(\Phi)$ and Σ -inverse means Φ -inverse for some $\Phi \in \Sigma$.

Let \mathfrak{A} be a Σ -structure and let \mathfrak{B} be a subtructure of \mathfrak{A} . Then \mathfrak{B} is a Σ -substructure of \mathfrak{A} if whenever $a_0, ..., a_t \in B, b \in A$ and b is a Σ -inverse of $a_0, ..., a_t$ in \mathfrak{A} , then $b \in B$.

Let *n* be a positive integer. The set $P_n(\Sigma)$ of *n*-ary Σ -polynomial symbols is defined by rules (i)—(iv) below.

(i) $x_i \in P_n(\Sigma), i=0, ..., n-1;$

(ii) if $P_0, ..., P_{n_v-1} \in P_n(\Sigma)$ then $f_{\gamma}(P_0, ..., P_{n_v-1}) \in P_n(\Sigma)$ for $\gamma < 0_0(\tau)$;

(iii) if $\Phi \in \Sigma$, $l < e(\Phi)$, n_l universal quantifiers precede $\exists y_l$ and $P_0, ..., P_{n_l-1} \in P_n(\Sigma)$, then $\Phi^{(l)}(P_0, ..., P_{n_l-1}) \in P_n(\Sigma)$;

(iv) $P_n(\Sigma)$ is the smallest set satisfying (i)—(iii).

Let $P \in P_n(\Sigma)$, let \mathfrak{A} be a Σ -structure, and let $a_0, \ldots, a_{n-1} \in A$. Then $P_{\mathfrak{A}}(a_0, \ldots, a_{n-1})$ (or simply $P(a_0, \ldots, a_{n-1})$) is a subset of A defined as follows:

(i) if $P = x_i$, then $P(a_0, ..., a_{n-1}) = \{a_i\}$;

(ii) if $P = f_{\gamma}(P_0, ..., P_{n_{\gamma}-1})$, then $P(a_0, ..., a_{n-1}) = \{a | a = f_{\gamma}(b_0, ..., b_{n_{\gamma}-1}) \text{ for some } b_i \in P_i(a_0, ..., a_{n-1}), i = 0, ..., n_{\gamma} - 1\};$

(iii) if $P = \Phi^{(l)}(P_0, ..., P_{n_l-1})$, then $P(a_0, ..., a_{n-1}) = \{a | a \text{ is } a \Phi - l \text{ inverse of some } b_0, ..., b_{n_l-1} \text{ with } b_i \in P_i(a_0, ..., a_{n-1}), i = 0, ..., n_l - 1\}.$

 $P_{\mathfrak{A}}$ is called a Σ -polynomial over \mathfrak{A} .

Let \mathfrak{A} and \mathfrak{B} be Σ -structures and let φ be a mapping of A into B. Then φ is called a Σ -homomorphism if φ is a homomorphism, and if for any positive integer n, $P \in P_n(\Sigma)$ and $a_0, ..., a_{n-1} \in A$ we have

$$P(a_0, ..., a_{n-1})\varphi = P(a_0\varphi, ..., a_{n-1}\varphi).$$

Let \mathfrak{B} be a Σ -substructure of the Σ -stucture \mathfrak{A} . Then \mathfrak{B} is said to be a *slender* Σ -substructure if for any positive integer $n, P \in P_n(\Sigma)$ and $a_0, \ldots, a_{n-1} \in B$ we have that $P_{\mathfrak{A}}(a_0, \ldots, a_{n-1}) = P_{\mathfrak{B}}(a_0, \ldots, a_{n-1})$.

Let α be an ordinal. $\mathscr{F}_{\Sigma}(\alpha)$ is the *free* Σ -structure with α generators, if the following conditions are satisfied:

(i) $\mathscr{F}_{r}(\alpha)$ is a Σ -structure,

(ii) $\mathscr{F}_{\Sigma}(\alpha)$ is Σ -generated by the elements $x_0, \ldots, x_{\gamma}, \ldots, (\gamma < \alpha)$;

(iii) if \mathfrak{A} is a Σ -structure and $a_0, ..., a_{\gamma}, ... \in A$ for $\gamma < \alpha$, then the mapping $\varphi: x_{\gamma} \to a_{\gamma}, \gamma < \alpha$ can be extended to a Σ -homomorphism $\overline{\varphi}$ of $\mathscr{F}_{\Sigma}(\alpha)$ into \mathfrak{A} .

A set Σ of sentences is said to have the *Inverse Preserving Property* (IP) if every Σ -substructure is slender.

Moreover, a free Σ -structure is called *strong* if the mapping $\overline{\varphi}$ given in the definition of the free Σ -structure is always unique.

We note that if the free Σ -structure $\mathscr{F}_{\Sigma}(\omega)$ exists and is strong, then all free Σ -structures exist and all are strong (see Theorem 54.2 in [1]).

In addition to these definitions we introduce some notations.

3. Let \overline{K} denote the equational class generated by the free structure $\overline{\mathscr{F}}_{\Sigma}(\omega)$ of Theorem 54.3 in [1] and let $\Sigma_{\overline{K}}$ be the set of all equations which hold in \overline{K} .

We introduce the notation Σ_R for the set of all sentences

$$(x_{0_1})\dots(x_{0_n})\dots(x_{m-1_1})\dots(x_{m-1_n})r(p_0(x_{0_1},\dots,x_{0_n}),\dots,p_{m-1}(x_{m-1_1},\dots,x_{m-1_n}))$$

which hold in $\overline{\mathscr{F}}_{\mathfrak{L}}(\omega)$, where $r \in \mathbb{R}$ and $p_0, ..., p_{m-1}$ are polynomial symbols over \overline{F} .

As in Theorem 54.3 of [1] for every Σ -polynomial symbol $P(\in P_n(\Sigma))$ we define k_p *n*-ary operations $f_0^p, \ldots, f_{k_p-1}^p$ as follows:

Take $\mathscr{F}_{\Sigma}(n)$ with the Σ -generators $x_0, ..., x_{n-1}$; define $f_i^P(x_0, ..., x_{n-1})$, $i < k_P$ such that

$$P(x_0, \ldots, x_{n-1}) = \{f_i^P(x_0, \ldots, x_{n-1}) | i < k_P\};\$$

let \mathfrak{A} be an arbitrary Σ -structure, $a_0, ..., a_{n-1} \in A$ and φ a Σ -homomorphism of $\mathscr{F}_{\Sigma}(n)$ into \mathfrak{A} with $x_0 \varphi = a_0, ..., x_{n-1} \varphi = a_{n-1}$. Let '

$$f_i^P(a_0,\ldots,a_{n-1}) = f_i^P(x_0,\ldots,x_{n-1})\varphi$$
 $(i=0,\ldots,k_P-1).$

Let $P \in P_n(\Sigma)$. Then there exists a formula $r_p(x_0, ..., x_{n-1}, y)$ in $L(\tau)$ such that if \mathfrak{A} is a Σ -structure and $a_0, ..., a_{n-1}, b \in A$, then $b \in P(a_0, ..., a_{n-1})$ if and only if $r_P(a_0, ..., a_{n-1}, b)$ (see [1], Lemma 49.6). F. Gécseg

Now we define for every $P \in P_n(\Sigma)$ a sentence Φ_P in the following manner:

$$\begin{split} \Phi_P &\equiv (x_0) \dots (x_{n-1}) (y) \Big(r_P(x_0, \dots, x_{n-1}, f_0^P(x_0, \dots, x_{n-1})) \land \dots \\ & \dots \land r_P(x_0, \dots, x_{n-1}, f_{k_P-1}^P(x_0, \dots, x_{n-1})) \land \Big(r_P(x_0, \dots, x_{n-1}, y) \nrightarrow \\ & \to \Big(y = f_0^P(x_0, \dots, x_{n-1}) \lor \dots \lor y = f_{k_P-1}^P(x_0, \dots, x_{n-1}) \Big) \Big) \Big]. \end{split}$$

Let $\Sigma_0 = \{ \Phi_P | P \text{ is a } \Sigma \text{-polynomial symbol} \}.$

Moreover, denote by Σ_v the set of all universal sentences from Σ . Now we are ready to prove the following

Theorem. If Σ has the Inverse Preserving Property and $\mathscr{F}_{\Sigma}(\omega)$ exists and is strong then $K = \{\mathfrak{A} | \mathfrak{A} \in \widetilde{\Sigma}^*\}$ is a universal class.

Proof. The class K is closed with respect to substructures (see [1], Theorem 54.3). We shall prove that K is a universal class by showing that

$$K = (\Sigma_{\mathcal{K}} \cup \Sigma_{\mathcal{R}} \cup \Sigma_0 \cup \Sigma_U)^*,$$

i.e. K is an axiomatic class; see [1], Corollary to Theorem 43.3 for this characterization of universal classes.

First we show that $\mathfrak{A} \in (\Sigma_R \cup \Sigma_0 \cup \Sigma_0)^*$ if $\mathfrak{A} \in \Sigma^*$.

 $\overline{\mathscr{F}}_{\Sigma}(\alpha)$ is a free structure in K of Theorem 54.3 of [1] so $\overline{\mathfrak{A}}$ is a homomorphic image of $\overline{\mathscr{F}}_{\Sigma}(\alpha)$ for some α , i.e. Σ_{K} and Σ_{R} hold in $\overline{\mathfrak{A}}$.

Let $P \in P_n(\Sigma)$ be a Σ -polynomial symbol and take $\mathscr{F}_{\Sigma}(n)$ with the generators x_0, \ldots, x_{n-1} . Let $y \in P(x_0, \ldots, x_{n-1})$ be arbitrary. By the definition of the operations $f_i^P(x_0, \ldots, x_{n-1})$ $(i < k_P)$ and the formulas $r_P(x_0, \ldots, x_{n-1}, y)$ it can easily be seen that $r_P(x_0, \ldots, x_{n-1}, f_i^P(x_0, \ldots, x_{n-1}))$ holds and there exists a $j(<k_P)$ such that $y = f_j^P(x_0, \ldots, x_{n-1})$. Now take arbitrary $a_0, \ldots, a_{n-1} \in A$. Then the mapping $x_0\varphi = a_0, \ldots, x_{n-1}\varphi = a_{n-1}$ can be extended to a homomorphism $\overline{\varphi}$ of $\overline{\mathscr{F}}_{\Sigma}(n)$ into \mathfrak{A} such that $\overline{\varphi}$ is a Σ -homomorphism of $\overline{\mathscr{F}}_{\Sigma}(n)$ into \mathfrak{A} . So, by the definition of the Σ -homomorphism and operations $f_i^P(i < k_P), r_P(a_0, \ldots, a_{n-1}, f_i^P(a_0, \ldots, a_{n-1}))$ also holds. It can be shown in the same way that if $r_P(a_0, \ldots, a_{n-1}, b)$ holds, i.e. $b \in P(a_0, \ldots, a_{n-1})$, then there exists a $j(<k_P)$ such that $b = f_j^P(a_0, \ldots, a_{n-1})$. But P and $a_0, \ldots, a_{n-1}, b \in A$ are arbitrary, so Σ_0 holds in \mathfrak{A} .

 $\overline{\mathfrak{A}} \in \Sigma_{\mu}^{*}$ is obviously valid.

Conversely, let $\mathfrak{B} = (B; \overline{F}, R) \in (\Sigma_R \cup \Sigma_0 \cup \Sigma_0)^*$. We have to show that $\mathfrak{B} \in \{\mathfrak{A} \mid \mathfrak{A} \in \Sigma^*\}$. Denote by \mathfrak{B} the (F, R)-reduct of \mathfrak{B} .

 $\hat{\mathfrak{B}} \in \Sigma_U^v$ implies that for every $b_0, \ldots, b_{n-1} \in B$ and $P \in P_n(\Sigma)$, $r_P(b_0, \ldots, b_{n-1}, f_i^P(b_0, \ldots, b_{n-1}))$ $(i < k_P)$ holds, i.e. $|P(b_0, \ldots, b_{n-1})| \ge 1$ which means that every $\Phi \in \Sigma$ having at least one existential quantifier holds in \mathfrak{B} . Since $\hat{\mathfrak{B}} \in \Sigma_U^*$ thus every universal sentence $\Phi \in \Sigma$ also holds in \mathfrak{B} . Therefore, \mathfrak{B} is a Σ -structure.

Take an arbitrary generating system $\langle b_0, ..., b_{\gamma}, ..., \rangle_{\gamma < \alpha}$ of \mathfrak{B} . Because $\overline{\mathscr{F}_{\Sigma}}(\alpha)$ is free in \overline{K} and $\mathfrak{B} \in \Sigma_{\overline{K}}^*$, every mapping $\varphi: x_{\gamma} \rightarrow b_{\gamma} (\gamma < \alpha)$ can be extended to an algebra-homomorphism $\overline{\varphi}$ of $\overline{\mathscr{F}_{\Sigma}}(\alpha)$ onto \mathfrak{B} . (A mapping $\psi: \mathfrak{A} = (A; F, R) \rightarrow \mathfrak{A}' = (A'; F, R)$ is said to be an algebra-homomorphism if $f(a_0, ..., a_{n-1})\psi = = f(a_0\psi, ..., a_{n-1}\psi)$ for every $f \in F$ and $a_0, ..., a_{n-1} \in A$.)

Furthermore, if

$$r(p_0(x_{0_1}, ..., x_{0_n}), ..., p_{m-1}(x_{m-1_1}, ..., x_{m-1_n}))$$

holds in $\overline{\mathscr{F}}_{r}(\alpha)$, then

$$(x_{0_1})\ldots(x_{0_n})\ldots(x_{m-1_1})\ldots(x_{m-1_n})r(p_0(x_{0_1},\ldots,x_{0_n}),\ldots,p_{m-1}(x_{m-1_1},\ldots,x_{m-1_n}))\in\Sigma_R,$$

because every mapping of the generating system of $\overline{\mathscr{F}}_{\Sigma}(\alpha)$ into $\overline{\mathscr{F}}_{\Sigma}(\omega)$ can be extended to a homomorphism of $\overline{\mathscr{F}}_{\Sigma}(\alpha)$ into $\overline{\mathscr{F}}_{\Sigma}(\omega)$. But $\hat{\mathfrak{B}} \in \Sigma_{R}^{*}$, so φ is a homomorphism of $\overline{\mathscr{F}}_{\Sigma}(\alpha)$ onto $\hat{\mathfrak{B}}$.

It remains to prove that $\overline{\varphi}$ is a Σ -homomorphism of $\mathscr{F}_{\Sigma}(\alpha)$ onto \mathfrak{B} . For this, by the definition of Σ -homomorphism, it is enough to show that

$$P(x_{\gamma_0},\ldots,x_{\gamma_{n-1}})\overline{\varphi}=P(x_{\gamma_0}\overline{\varphi},\ldots,x_{\gamma_{n-1}}\overline{\varphi})\big(=P(b_{\gamma_0},\ldots,b_{\gamma_{n-1}})\big)$$

for every $P \in P_n(\Sigma)$ and $\gamma_0, \ldots, \gamma_{n-1} < \alpha$. Take $y \in P(x_{\gamma_0}, \ldots, x_{\gamma_{n-1}})$. Then there exists an $f_i^P(i < k_P)$ such that $y = f_i^P(x_{\gamma_0}, \ldots, x_{\gamma_{n-1}})$. So $y\overline{\varphi} = f_i^P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi})$. But $\mathfrak{B} \in \Sigma_0^*$, thus $r_P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi}, f_i^P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi}))$ holds, i.e. $y\overline{\varphi} \in P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi})$. Conversely, take $b \in P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi})$, i.e. $r_P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi}, b)$ holds. Because $\mathfrak{B} \in \Sigma_0^*$, thus there exists an $f_j^P(j < k_P)$ such that $f_j^P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi}) = b$. It is clear $f_j^P(x_{\gamma_0}, \ldots, x_{\gamma_{n-1}})\overline{\varphi} = b$ and $f_j^P(x_{\gamma_0}, \ldots, x_{\gamma_{n-1}}) \in P(x_{\gamma_0}\overline{\varphi}, \ldots, x_{\gamma_{n-1}}\overline{\varphi})$.

It is clear, by Theorem 54.3 of [1], that taking the correspondence $\mathfrak{B} \rightarrow \mathfrak{B}$ given in Theorem 54.3 of [1], we have $\mathfrak{B} = \mathfrak{B}$. This ends the proof of the Theorem.

Reference

[1] G. GRÄTZER, Universal Algebra (Princeton, N. J., 1968).

THE UNIVERSITY OF MANITOBA, WINNIPEG, CANADA THE UNIVERSITY OF SZEGED, SZEGED, HUNGARY

```
(Received February 1, 1969)
```