Some remarks on expectations

By RICHARD H. HERMAN in Los Angeles (California, U. S. A.)

In [3] the notion of a \mathscr{G} -finite (see below) von Neumann algebra \mathfrak{A} is developed and gives rise to an expectation which is a generalization of the concept of the center trace [2, 111, § 5]. In § 2 we discuss ultraweakly closed ideals invariant under a group of automorphisms in a \mathscr{G} -finite algebra and certain normal state which serve to replace characters [2, p. 275]. We then remove a restriction from one of STØRMER's result [5] on expectations and examine the effect of this expectation on characterizing certain ideals.

1. In this paragraph we discuss consequences of the expectation $A \rightarrow A^{\text{g}}$ as given in [3].

Definition. If \mathfrak{A} is a von Neumann algebra and $\{\alpha_g | g \in \mathscr{G}\}\$ is a group of automorphisms acting on \mathfrak{A} , then \mathfrak{A} is said to be \mathscr{G} -finite if whenever $A \in \mathfrak{A}^+$, $A \neq 0$, there exists an invariant, normal state ϱ such that $\varrho(A) \neq 0$.

In [3] it is shown that if \mathfrak{A} is \mathscr{G} -finite and $\mathscr{K}(T, \mathscr{G})$ equals the strong closure of $co \{\alpha_g(T)|g \in \mathscr{G}\}$ then $\mathscr{K}(T, \mathscr{G}) \cap \mathfrak{A}^{\mathscr{G}}$ contains a unique point, where $\mathfrak{A}^{\mathscr{G}}$ is the von Neumann algebra of elements fixed by all α_g . This is then used to define the faithful normal map $T \to T^{\mathscr{G}}$ [3, p. 240].

Proposition 1. Let \mathfrak{A} be a \mathscr{G} -finite and suppose \mathfrak{m} is an ultraweakly closed ideal in \mathfrak{A} invariant under the $\{\alpha_g\}$. Then $\mathfrak{m} \cap \mathfrak{A}^{\mathscr{G}} = \{T^{\mathscr{G}} | T \in \mathfrak{m}\}$. If $\mathfrak{A}^{\mathscr{G}} \supseteq \mathfrak{Z}$, every two-sided ultraweakly closed ideal is invariant.

Proof. Let m be u.w. closed and suppose m is a left ideal. $m = \mathfrak{A}E$ [2, p. 45] with E a unique projection in \mathfrak{A} . Since $\alpha_g(\mathfrak{m}) = \mathfrak{m}$ we have $\alpha_g(E) = E$ by uniqueness. Let $T \in \mathfrak{m} \cap \mathfrak{A}^{\mathfrak{G}}$ then $T = T^{\mathfrak{G}}$ [3, p. 241]. Conversely suppose $T \in \mathfrak{m}$ then T = SE so $T^{\mathfrak{G}} = (SE)^{\mathfrak{G}} = S^{\mathfrak{G}}E \in \mathfrak{m}$. Moreover $(T^{\mathfrak{G}})^{\mathfrak{G}} = T^{\mathfrak{G}}$ so $T^{\mathfrak{G}} \in \mathfrak{m} \cap \mathfrak{A}^{\mathfrak{G}}$ [3, p. 240]. The last statement follows from the previous remarks and the fact that any such ideal looks like $\mathfrak{A}z$ with $z \in \mathfrak{Z}$ [2, p. 45].

Remark 1. If we suppose $\mathfrak{A}^{g} \supseteq \mathfrak{Z}$ then if $\mathfrak{m} = \mathfrak{A} z$ is an ultraweakly closed twosided ideal in \mathfrak{A} then clearly $\mathfrak{A}^{g} z$ (= $\mathfrak{m} \cap \mathfrak{A}^{g}$) is one in \mathfrak{A}^{g} . If \mathfrak{n} is an ultraweakly closed

R. H. Herman

two-sided ideal in $\mathfrak{A}^{\mathfrak{G}}$ there is (if at all) at most one ultraweakly closed two-sided ideal in \mathfrak{A} giving rise to n in this manner. This is the case for if $\mathfrak{A}^{\mathfrak{G}}z_1 = \mathfrak{A}^{\mathfrak{G}}z_2$ then since $I \in \mathfrak{A}^{\mathfrak{G}}$, $z_1 \leq z_2$ and $z_2 \geq z_1$, so $z_1 = z_2$. If we make the additional hypothesis that \mathfrak{Z} is the center of $\mathfrak{A}^{\mathfrak{G}}$, then the correspondence becomes complete and clearly preserves maximality.

The appropriate replacement for characters seems to be \mathscr{G} -clustering states, where

Definition. Let ρ be an invariant state. ρ is said to be G-clustering [5, p. 18] if $\rho(AB^{g}) = \rho(A)\rho(B)$.

Proposition 2. Let \mathfrak{A} be \mathscr{G} -finite and suppose ϱ is a normal \mathscr{G} -clustering state. Then the support [2, p. 61] of ϱ is a minimal projection in $\mathfrak{A}^{\mathscr{G}}$, lying in the center of $\mathfrak{A}^{\mathscr{G}}$. Conversely to every minimal projection lying in the center of $\mathfrak{A}^{\mathscr{G}}$ there corresponds a unique normal \mathscr{G} -clustering state on \mathfrak{A} .

Proof. Since ρ is invariant we have that E_{ρ} , the support of ρ , belongs to $\mathfrak{A}^{\mathscr{G}}$ (this is noted in [3]). The map $A \to A^{\mathscr{G}}$ takes \mathfrak{A} onto $\mathfrak{A}^{\mathscr{G}}$ thus ρ restricted to $\mathfrak{A}^{\mathscr{G}}$ is a normal multiplicative state (for all normal invariant states ψ we have $\psi(A^{\mathscr{G}}) = \psi(A)$ [3, p. 240]). It is now clear that E_{ρ} is also the support of ρ restricted to $\mathfrak{A}^{\mathscr{G}}$ and thus by a result of PLYMEN [4] is minimal in $\mathfrak{A}^{\mathscr{G}}$ and lies in the center of $\mathfrak{A}^{\mathscr{G}}$.

Conversely suppose E belongs to the center of \mathfrak{A}^{g} and is minimal in \mathfrak{A}^{g} . Then [4] there exists a unique, normal, multiplicative state $\bar{\varrho}$ on \mathfrak{A}^{g} whose support is E. We then define $\varrho(A) = \bar{\varrho}(A^{g})$. ϱ is normal by the normality of $A \to A^{g}$. Further $\varrho(\alpha_{g}(A)) = \bar{\varrho}([\alpha_{g}(A)]^{g}) = \bar{\varrho}(A^{g}) = \varrho(A)$ [3, p. 240], thus ϱ is invariant. For $A, B \in \mathfrak{A}$ we have $\varrho(AB^{g}) = \bar{\varrho}((AB^{g})^{g}) = \bar{\varrho}(A^{g}B^{g}) = \bar{\varrho}(A^{g})\bar{\varrho}(B^{g}) = \varrho(A)\varrho(B)$ i.e. ϱ is \mathscr{G} -clustering on \mathfrak{A} . The uniqueness follows from the fact that the state $\bar{\varrho}$ is uniquely determined by E and the fact that a normal invariant state is uniquely determined by its values on $\mathfrak{A}^{[g]}$ [3, p. 242].

Under appropriate conditions we obtain the analogue of [Proposition 5. 2, p. 277].

Proposition 3. Suppose \mathfrak{A} is G-finite and \mathfrak{Z} is the center of \mathfrak{A}^{g} . Then there exists a one-to-one correspondence between maximal two-sided ultraweakly closed ideals in \mathfrak{A} and normal G-clustering states on \mathfrak{A} .

Proof. By Remark 1 it suffices to exhibit a correspondence with ideals in $\mathfrak{A}^{\mathfrak{G}}$.

We consider the kernel of $\varrho|\mathfrak{A}^{\mathscr{G}}$. By the \mathscr{G} -clustering and a result of PLYMEN, this equals $\mathfrak{A}^{\mathscr{G}}(I-E_{\varrho})$ which is a two sided ultraweakly closed ideal in $\mathfrak{A}^{\mathscr{G}}$. Suppose there exists m with $\mathfrak{A}^{\mathscr{G}} \supset \mathfrak{m} \supset \mathfrak{A}^{\mathscr{G}}(I-E_{\varrho})$, m two sided u.w. closed ideal in $\mathfrak{A}^{\mathscr{G}}$. Since 3 is the center of $\mathfrak{A}^{\mathscr{G}}$, $\mathfrak{m} = \mathfrak{A}^{\mathscr{G}} z$ with $z \in \mathfrak{Z}$. Thus $I > z > I - E_{\varrho}$ and $O < I - z < E_{\varrho}$ which contradicts the minimality of E_{ϱ} . Thus $\mathfrak{A}^{\mathscr{G}}(I-E_{\varrho})$ is maximal.

Some remarks on expectations

2. We now discuss a result of STØRMER [5] and obtain a more explicit ideal correspondence.

Definition. Let \mathfrak{A} be a von Neumann algebra and \mathfrak{B} a von Neumann subalgebra of \mathfrak{A} . Then a positive linear map Φ of \mathfrak{A} onto \mathfrak{B} is called an expectation if $\Phi(I) = I$ and $\Phi(BA) = B\Phi(A)$ for $B \in \mathfrak{B}$ and $A \in \mathfrak{A}$.

In [5] STØRMER constructs an expectation onto a subalgebra of 3 under the condition that the algebra is acted upon by a large group of automorphisms given by unitaries.

Definition. Let \mathscr{U} be a group of unitaries giving rise to automorphisms of \mathfrak{A} , a C^* -algebra. Then \mathscr{U} is said to be a large group of automorphisms if $co(UAU^{-1}: U \in \mathscr{U}) \cap \mathfrak{A}' \neq \emptyset$ for $A \in \mathfrak{A}$ (the closure is in the strong topology).

We show that one can obtain a normal invariant expectation onto the same subalgebra of 3 without this assumption. We do not however obtain the full strength of STØRMER's results.

Theorem 1. Let \mathfrak{A} be a von Neumann algebra acted upon by a group of automorphisms $\{\alpha_g\}$. Set $\mathfrak{B} = \mathfrak{A}^{\mathscr{G}} \cap \mathfrak{Z}$ and suppose there exists a normal state, ϱ , invariant under the $\{\alpha_g\}$ which is faithful on \mathfrak{B} . Then there exists an expectation, Φ taking \mathfrak{A} onto \mathfrak{B} such that

(i) $\varrho(B\varphi(X)) = \varrho(BX) \ B \in \mathfrak{B}$ and $X \in \mathfrak{A}$,

(ii) $\Phi(\alpha_g(A)) = \Phi(A)$,

(iii) Φ is normal,

(iv) if m is an ultraweakly closed two-sided invariant ideal and $X \in \mathfrak{m}$, then $\Phi(X) \in \mathfrak{m}$.

Proof. The existence of an expectation with property (i) is a special case of a result of DE KORVIN [1]. One first realizes \mathfrak{B} as a Hilbert algebra with inner product $(A, B) = \varrho(B^*A)$. Then one defines $\sigma(B) = \varrho(BX)$ for $X \in \mathfrak{A}^+$, $B \in \mathfrak{B}$. Riesz' lemma and a standard Hilbert algebra argument yield the desired result.

From (i)

$$\varrho \ B\Phi(\alpha_g(X)) = \varrho(B\alpha_g(X)) = \varrho(\alpha_g(BX)) = \varrho(BX) = \varrho(B\Phi(X)) \qquad B \in \mathfrak{B}.$$

Thus $\phi(\alpha_a(X)) = \phi(X)$ since ϱ is faithful on \mathfrak{B} .

Normality follows as in [5, p. 10] since the map Φ is positive.

Now let m be an ultraweakly closed two-sided ideal in \mathfrak{A} . Then $\mathfrak{m} = \mathfrak{A} z$. If m is invariant then $\alpha_g(\mathfrak{m}) = \mathfrak{m}$. By the uniqueness of $z, \alpha_g(z) = z$ for all g and $z \in \mathfrak{B}$. We must show that if $X \in \mathfrak{m}$ then $\Phi(X) \in \mathfrak{m}$ or equivalently $z\Phi(X) = \Phi(X)$. But for $X \in \mathfrak{m}$

$$\varrho(Bz\Phi(X)) = \varrho(BzX) = \varrho(BX) = \varrho(B\Phi(X)).$$

An appropriate choice of B gives $z\Phi(X) = \Phi(X)$.

The expectation Φ' that STØRMER constructs has the nice property that it preserves normal invariant states in that if ψ is any such $\psi \circ \Phi' = \psi$. While this is not necessarily true for the above expectation, nevertheless we have

Corollary. Let \mathfrak{A} be as in the theorem. If ψ is an invariant, multiplicative, normal state on \mathfrak{A} then $\psi \circ \Phi = \psi$.

Proof. Since ψ is invariant so is ker ψ (the kernel of ψ), which PLYMEN has shown [4] is an ultraweakly closed two-sided ideal. By (iv) of the theorem $\Phi(\ker \psi) \subseteq$ $\subseteq \ker \psi$ so ker $\psi \circ \Phi \supseteq \ker \psi$. Thus $\psi \circ \Phi = \lambda \psi$. However $\Phi(I) = I$ so $\lambda = 1$ and $\psi \circ \Phi = \psi$.

In this case we can, following [2, p. 273], obtain a characterization of the ideal \mathfrak{m} corresponding to an ideal \mathfrak{n} in \mathfrak{B} .

Proposition 4. Let \mathfrak{A} and \mathfrak{B} be as in Theorem 1. Let \mathfrak{n} be a two-sided ultraweakly closed ideal in \mathfrak{B} . Let $\mathfrak{m} = \{T \in \mathfrak{A} | \Phi(T_1 T T_2) \in \mathfrak{n} \text{ for } T_1, T_2 \in \mathfrak{A}\}$. Then \mathfrak{m} is the largest two-sided ideal of \mathfrak{A} that $\mathfrak{m} \cap \mathfrak{B} \subseteq \mathfrak{n}$, \mathfrak{m} is invariant and ultraweakly closed. $\mathfrak{m} \cap \mathfrak{B} = \mathfrak{n}$.

Proof. Linearity and ultraweak continuity [2, p. 56] of Φ imply that m is a two-sided ultraweakly closed ideal. Suppose now that $T \in \mathfrak{m} \cap \mathfrak{B}$. Then $\Phi(T) = T \in \mathfrak{n}$ so $\mathfrak{m} \cap \mathfrak{B} \subseteq \mathfrak{n}$. If $T \in \mathfrak{n}$ then for $T_1, T_2 \in \mathfrak{A}$ we have $\Phi(T_1 T T_2) = \Phi(T T_1 T_2) = T \Phi(T_1 T_2) = T \Phi(T_1 T_2) \in \mathfrak{n}$, i.e. $T \in \mathfrak{m} \cap \mathfrak{B}$. — m is invariant for if $T \in \mathfrak{m}$ then by (ii) of Theorem 1

$$\Phi(T_1 \alpha_q(T) T_2) = \Phi(\alpha_q(T_1' T T_2')) = \Phi(T_1' T T_2') \in \mathfrak{n}.$$

Suppose m' is another ultraweakly closed two-sided invariant ideal in \mathfrak{A} with $\mathfrak{m}' \cap \mathfrak{B} \subseteq \mathfrak{n}$. By (iv) of Theorem 1 we have $\mathfrak{m}' \cap \mathfrak{B} = \{ \Phi(T) | T \in \mathfrak{m}' \}$, i.e. $T \in \mathfrak{m}'$ gives $\Phi(T) \in \mathfrak{n}$. Since \mathfrak{m}' is an ideal $\Phi(T_1T_2) \in \mathfrak{n}$, i.e. $\mathfrak{m}' \subseteq \mathfrak{m}$.

References

- [1] A. DE KORVIN, Expectations in von Neumann algebras (Thesis, U.C.L.A., 1966).
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).
- [3] I. Kovács and J. Szűcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233-246.
- [4] R. J. PLYMEN, Dispersion-free normal states, Il Nuovo Cimento (Series X), 54 (1968), 862-870.
- [5] E. STØRMER, Large groups of automorphisms of C*-algebras, Commun. Math. Phys., 5 (1967), 1-22.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

(Received December 12, 1968)