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1. A function f(n) of a positive integer is said to be restrictedly additive
(or, simply, additive) if (n,, n,) =1 implies f(n,n,) =f(n,)+f(n,). If this equation
is satisfied for any pair of integers n,,.n,, then we say that f(n) is completely (or
totally) additive.

P. ErDGs [1] has proved the following two assertions.

(A) Iff(n)is res'trictedly additive and monotonic then it is a constant multiple
of log n.

(B) If f(n) is restrictedly additive and Jn+1)—f(n) —-0 (n - o) then it is
a constant multiple of log n. :

New proofs of these assertlons have been given by several authors (for the
references see for example [2]). Usmg the ideas of BESICOVITCH to the proof of (B)
(see his paper [2]) the author proved in [3] the following assertion (C), which contains
(A) and (B) as special cases and which was previously stated without proof by P.
ERrDGs in [5]. This assertion was proved by A. MATE [4], too.

(C) If f(n) is restrictedly additive and _
liminf (f(n+1)—f(n) = 0

n-»oo
then it is a constant multiple of log n.

Later the author proved in [6] the followmg generahzatlon of (C).

(D) If f(n) is restrictedly additive and lim inf A*f(ny=0 for some integer
k=1 wizre Af(n) denotes the kth difference of f(n), then f(n) is a constant multiple -
of log . 4 4

The following asserﬁon, which was proved in [7], is a generalization of (A).

(B) If f(n) and g(n) are restrictedly additive functions and the function h(n)=
© =max ( f(n), g(n)) is increasing, then the following assertions hold:
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1) h(n)=clogn+r(n) and r(n)~0 as n--co. Furthermore r(n)=0, when all
prime divisors of n are greater than a certain constant.
2) If f(n)=g(n) for almost every n, then

f(m)y=clogn and g(n)=clogn-+en),

where e(p*) =0 for sufficiently large prime numbers p. :

Let S={p,, ps, ...} be the set of irregular primes p; such that e(p{)=0 for
some o;. If S contains at least two elements then ¢(pf)=0 for every p,€ S and for
B sufficiently large. ' : ,

3) If the set of w’s satisfying the condition f(n)=g(n) has positive lower density,
smaller than one, then h(ny=clogn (n=1,2,...). Furthermore [f(p*)=g(p*)=
=clogp* (x=1,2,...), with the exception of at most one prime.

2. In this paper we deal with similar questions.

Let p, py, ...y G, qi» ... denote -prime numbers.

We say that the subset P of prime numbers is the support of the additive function
I(n), if I(p®)=0 for a=1, 2, ..., when p¢ P, and /(p*) %20 for at least one &, when
PEP. We say that I(n) is a function of finite support if P contains finitely many ele-
ments only. ’

Let K be a fixed natural number. Let f(n) and g(n) be restrictedly additive
functions satisfying the condition

Q.1 -gn+K)—f(n) >0 (n <o),
We prove the following
Theorem 1. Under the assumption (2. 1) we have
2.2) ' A f(n) = clogn+1,(n),
- @23 g(n) = clogn+1(n),
where 1,(n), I,(n) are functions of finite support. Their support can contain only the
prime divisors of K. »
Furthermore, if 2K, then
{ L@Y=5hEH  B=1,a-1)
L2 =LY, LEHY=L2**) (G=12-),
and if p*|K and p=3, then '
{ Il(pp)zlz(Pﬂ) B = 1,---,0(._—1);
L) =LY = L) =LE*) ~ (=1,2").
From (2. 4) and (2. 5) it follows immediately, that l(n+ K) = I,(n) for n=1. Con-
versely, if f(n) and g(n) satisfy the conditions stated in (2. 2)—(2.5), then (2. 1) holds. .

Q.4
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Proof. Let H(n) = f(n)—g(n). First we deduce from (2.1) that Hm)=0
for all n coprime to K. We distinguish the cases of K being even or odd. f

a) Let 2%|K, a=1. From (2.1) it follows that g(2n+2K) —f(2n) ~H(2)
as n tends to infinity over odd #’s. By (2. 1),

g2n+2K) = f2n+K)+o(1), f2n) = g(2n+K)+o(1),
and thus — HQ2n+K) —H(2) as n—o, 21n, ic.
' _ H(4k+K+é)—»—H(2) (k= <o).
Accerding to the cases: K-42=0 (mod 4), and K+2= 2. (mod 4) we have
. 6), | H@R~—H@) (=),
@. 6), © HQ@k+1)— — 2H(2) (k -> o).

Let m be an arbltrary odd integer and » an infinite sequence of odd mtegers
coprlme to K. From (2 6), we have

— H(2) = lim H@@mn) = H(m)+ lim H@n) = H(m)— H().

Similarly, from (2. 6),
—2H(Q2) = lim H(mn) = H(m)+ 11m H(n) H(m)—2H(2).

Hence H(m)=0. ! : .
b) Let now K be odd. We distinguish the subcases: 1) K=1 (mod4) and
2) K=—1(mod4). In the case 1) let n=1(mod4), and in the case 2) let

n = =1 (mod 4). Using similar arguments as in a) we have

H@n+ )~ —g(8) +80)+/0) =

ie. HB8k+1)—C as k —oo for at least one / among 1, 3, 5, 7. I-_Ience‘it follows
that H(m) =0 for every m in the residue class =1 (mod 8). Indeed, if m=1 (mod 8),
then choosing an infinite sequence n;, =I(mod 8), such that (n;, K)=1, then
nm =/ (mod 8) and
C= hm H(mnj) = H(m)+ 11m H(n) = H(m)+C

Using the addltmty of H(n) we obtain that C=0.

Let now ni,,m, be coprime integers, m;m,=1 (mod 8). Then H(ml) =
= — H(m,). Hence it follows that H(m) is constant in every reduced residue class
mod 8. But this is possible only if H(m)=0 for every odd m.
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Now we prove that H(2*)=0 for «a=1,2,.... Let n Be an integer such
. that (n(n+K), 3) = 1. Then using (2. 1) and that H(3)=0 we have

~o(1) = gn+K)—f(n) =gBn+3K)—f(3n) =[gBn+3K)—f(3n+2K)]+
+1fBn+2K) —fBn+K)+[fBn+K)—f3n)] = o(1)—H@Bn +2K)—H(3n + K)

ie. - .
HQ@n+K)+H(3n+2K) 0.

Since (n(n+K), 3) = 1 and 2%3n + K hold for infinitely many n, we have H(2%) =0.
Consequently, H(n) =0 for every n coprime to K.
We need the following

Lemma 1. If
2.7 . -f(l.l-I-K) —f(n) -0

as n—oo over the n’s coprime to K, then f(n) =c log n holds whenever (n, K)=1.

Proof. Firstly we deduce that f(n) is totally additive in the set (n, K)=1,
i.e. that

(2.8) Slnm) = f(n) +/(m),
whenever (nm, K)=1. ‘
For this purpose let p be a prime or a prime power, p{K, and let v be a large
integer. Let ¢=>0 and / be so large, that
2.9). [/ +K)—f(m)|<e if nz=p.
Then _ .
f(p") = f(p*+Kp)+0,ep = f(p) +f(p* " +K) +0,8p =
=f(P)+f(p*~ ' +Kp)+0r8p =--- = (V= I+ Df (P!~ + K) +v0,_1ep
(loll = ]’ Tt |0v—l| = ])
Hence it follows immediately that ' .
S S S
ML TIWh e o T ogp
Applying this relation for p=g* and for p=gqg we have
‘ I v v .
/@) _ i S _ 0 F@) 1@
logg* . logg" ...loggq® logg

hence f(g*) = 1f(q) follows. Consequently (2. 8) holds.
Let now p be a prime. We take N large, (N, K)=1, and write it in the form

N= aopv_l_alpv—l_*_..._l_av’ O§a1<1) (G=0,--,v), a,=1.
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Using the inequality (2. 9) we have
. f(kN) = f(Kaop®+ -+ + Ka,) = f(Kaop® + -+ + Ka,_1p) + 0, ea, =
= f(P)+f(Kaop"™" + -+ + Ka,_,) + 0r8p = - =

= 0= 1+ Df() +/Kaop ™ + -+ Ka_+0, 0 (104 =1, 10, =1).

Writing
M = max | f(m)|
m=Kpl

we have : ) '
JWN) = (v=I1+1)f(p) —f(K) + 0M + bevp ([0[ = 1).

Observing that p* = N < p'*! we get

1
zlvl.{,l log N logp ’
Hence
. fWN) _ f(p)
nlzl.?l logN ~logp’
N, K)=1 )

Let now N, M be arbitrary integers such that (¥, K) = (M, K) = 1. Since

J(N) = lim fNY — lim O]
logN  1ow logN" koo log M* ~ log M’

f(N)/log N is constant if (N, K)=1. This finishes the proof of Lemma 1.
By this we proved that under the condition (2. 1) the functions f(n) and g(n)
- have the form (2. 2), (2. 3).

Since clog(n+K)—clogn—0, we have l,(n+K)—1 (n) ~0 (n—+0). Hence
we deduce the relations (2. 4), (2. 5).

Let 2% K, p=a —1. Since there exist infinitely many # satisfying the conditions -
n=2m, (m,K)=1, (n+K, K) =28, we have L(n+K) = 1,(2%), L,(n) = 1,(2%).
Consequently /,(2%) = 1,(2%). Choosing n such that 2**/||n (j=1) and (n, 27°K) = 1,
we have 2%n+K and (n+K,27%K) = 1. Hence 1,(2%) = I,(2**J) follows. Let
2¢+i|n, (n,27%K) = 1. Then 24n+K and (n+K,27°K) = 1. Conéequently
Li(n)=1,2*%), L(n+K) = 1,(2%). Hence we obtain that [,(2%) = ,(2**) (j=1).
This completes the proof of (2. 4).

The proof of (2. 5) is similar and can be omitted. :

From (2. 4) and (2. 5) it follows immediately, that ,(n + K) =1,(n) forn=1, 2, ...
Consequently the relations (2. 2)—(2. 5) are sufficient to guarantee the fulfilment
of (2. 1).
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Remarks. 1) It would be interesting to prove the more general assertion:
If fi(n) (i=0, ..., k) are additive functions satisfying the condition .

X .

2 hat)=0 (e,
then _ o -
f;(n) = Ci lOg n +lz(n) (l =0: sey k),

where I(n) have finite support. I am unable to prove this for k =2. :
2) It seems probable that the following generalization of the conjecture of

P. ErRDGs holds: If f(n) and g(n) are additive functions Such that g(n+1)— f(n) is

bounded, then g(n) = clog n+uv(n), f(n) = clogn+u(n), and u(n), v(n) are bounded.

3. Now we investigate the class of additive functions satisfying
G. 1) f@n+1)—f(n)~C  (Cisa constant),

Theorem'?.. If f(n) is a completely additive Junction satisfying (3. 1), then
fmy=clogn, c=Cllog2.

Proof. Without loss 'of generality we may suppose C=0. Then we need to
show that f(#)=0 identically.
Let N be a large integer, which we represent in the dyadical form:

3.2 N=214224 e 2% (v, > v, > >vk)

" Let a(N) denote the length of this representatlon, ie. a(N)=k.
Using (3. 1) with C=0 and the total additivity of f(n) we have

(3.3) f@n+ D) —fC2n)~ —f(2) (n—o0).
Hence we get :
SONY = @R +f Qv oo 4 o1 1) =

= WS Q)~fQ) Qe £ 2517 0(1).
Repeating this procéss we obtain that '
3.9 JIN) = v fQ)~kfQ)+o()k  (N>).

v, log2
log N

Since 2"' =N < 2"+l we have —1. Consequently, from (3. 4),

SWN) _ [ a( )

@.9) logN ~ log2 ~/@)log2-

+o(1)

Now we prove that f(2)=0. For this let N, = 2+23+...+22’“. Then
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3N, = 2+2%24-...4+22%2, Hence we obtain that «(3N))=2u(N), a(N,):
= (1+o(0) o,

. By (3.5) we have

Q) = f(3Nz)—f(Nz)——f(2)10g2[d(3Nz) a(N)]+o(log Np) =

— —f(2)l0g2-a(N)+o(log N) = —@(l +o(1)) log N.

Hence it follows immediately that f(2) =0.
'_ Thus from (3. 5),

o Jw)
o6 gy =0

Using (3. 6) and the total additivity of f(n) we have .

JW) SNy _
TogN ;!Tl log N* .~ Q’

and hence S(N)=0. This completes the proof of Theorem 2.

Remarks.

1) T am unable to prove Theorem 2 for restrlctedly additive functlons
).

2) Similarly, T cannot decide whether from g(2n+1)— f n)—~C it follows
or not that f(n) and g(n) are constant multiples of log .

3) It would be interesting to give all the solutions of the relation

S(An+B)—f(an+b)~C - (n—>oo)

in additive functions f(n), for arbitrary i-ntegeré A, B, a, b.

References

[1] P. ErRDGs, On the distribution of additive functions, Ann. ofMath., 47 (1946), 1—20.

[2] A. S. BesicovitcH, On additive functions of a positive integer, Studies in mathematical analysis
and related topzcs Essays in honor of G. Pdlya (Stanford, 1962), 38—41.

[3] I. KATAL A remark on additive arithmetical functlons Annales Univ. Sci. Budapest, Sect. Math.,
10 (1967), 81—83.

[4] A. MATE, A new proof of a theorem of P. Erd8s, Proc. Amer. Math. Soc., 8 (1967), 139—142.

[5] P. Erpds, On the distribution function of additive arithmetical functions, Rend. Sem. Math.

Fis., Milano, 27 (1958), 3—17.
[6] I. KATA1, Characterization of an additive function by its local behaviour (not yet publishec_i).

[7] 1. KATtaAL, A remark on number-theoretical functions, Acta Arithm. (in print).

( Received July 16, 1968)




