On local properties of pseudo-differential operators

By VIOREL BARBU in I[asi (Roumanié)

Pseudo-differential operators have been developed by KOHN—NIRENBERG [1]
and L. HOGRMANDER [3). VOLEVIC [4] considers a wider class of symbols which  gener=
alizes the differential operators of constant strength Our aim is to complete the results
of [4] by studying the Gevrey regularity of pseudo-differential operators.

1. Notations

Weset D; = —i 3/(9x-,"8:=3/6j for 1=j=n, and for each n-tuple %(al, AN

weset D*=Di' ... D, 0" =07 ... Orpx*=x7 ... xgn, E =7t .. &y and o] =D ay.
1

By .S we denote the space C= of complex valued functions @(x) such  that
sup |xf Dp(x)] < o for all multi-indices « and . For real s we introduce the norm

0} Yul, = ((2::) 1R+ 121y dg)',

where 4 is the Fourier transform of . Let H* the space obtained by the completron
of S in this norm. We set

If K is any compact set of R", we shall use the notations

lu, KIl = (f [u@)|2 dx}'"?,  llu, K|l = ess sup [u(x)|.
K K

A function u(x) € C> defined on an open subset QC R" is said to'be hyboanalytic
of class ¢ (1 =g < <o) if for any compact set K< £ there exists a constant M such
that for any multi-index « the inequality

(1.2) _ |1 D%u, K|, = M+ (glal)

holds, where I' is Euler's function. The Gevrey class G%(2) is the space of all
functions of class ¢ on Q. If ¢ >1,'G§(Q) will denote the space Ce(DNG(Q).
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2. Pseudo-differential opcrators. Pseudo-local properties

We consider pseudo-differential operators of the form

@ Au(x) = @m)=" [eDa(x, i@ de  weS)

or

Q1 (Mw @)= (2n)-" f&E—nnatydn+a@a®)  @eS),

with the symbol a(x, &) = a(é) +a’(x, &), where a’(x, &), as a function of x, vanishes
at . Here @'(n, &) denotes the Fourier transform of a’(x, £) with respect to x.

Concerning the symbol a(x, &) € C=(R" X R") we assume that there are positive
constants m, M, C independent of a such that

@ C o lra@l = CR g,
an f]Dﬁa“a’(x, )| dx = MA+B1+1 1 (g |B)(1 + [g]ym=1alre,

Theorem 1. Let a(x, &) be a C= symbol satisfying 1, 11 and let A be the associated
pseudo-differential operator. Suppose that u€ H*>(\G® Then AucG(Q).

Proof. We choose ¢EC3°(Q_) equal to 1 in a set &' C Q. We mvay suppose
that u€ H°. We put
o a,5(x, &) = D*"Pa(x, &)

and denote by 4, 4 the operators of the form (2. 1) with associated symbols a, 4(x, £).
We have

2.2 oD Au =2 [z]Aaﬁ((PDBu)+ 2 [g][A;p;(p](D”u)

1Bl =lal 1B1=lal
where [4,4; @] is the commutator of 4, with‘<p.

The essential p‘oint in the proof is the estimation of |[4,s; @1D’ull, where | |
denotes the L? norm. For a8 and u, v¢ S we have

2.3) | ([Aup; 1 (DPu, v)) =
= (ZR)'"fff (DPu)" (&) ¢ (x — E)(@op(c — 1, ©) — dog(x — 1, E))D () dE dy d.

Using a finite series expansion for the difference in the integral, and substltutmg
this expressmn in (2. 3), we find

2.4 ([Aeps @)D ), v) =
= lZN(l/v!)ff(D”uDW)‘ (@ (D*~*9"a)" (x—n, n) dn dv +
Y=

+ @) [[f (DP)" ()9 (=& Ry(r~1, (n) dE d i,



Pseudo-differential operators - ' : 265

where Ry ‘denotes the remainder: (1/N )V (& —1)(@"a")" (t —n, 0). From II it follows
by partial integration that for any multi-indices «, y we have

(2.5) |D*¥& (x—n,1)| = M'“‘*'““I‘(g[a|+N )(1+[t—n|) Ni(] 4 |g|ym-rtre

for every non-negative N,. From (2. 4) it follows

@.6) (Augs 010w, v)| = MV==P+N+1 T (gla— ) -
S ()| DPuD? g, .v.,gnvn+ J K@ 1+ (E)7~19DPa(E)| 5(n)| d& dny

0=|y|=N
with
K@ =@n™ 3 anY:
f(lH&I)“" "((1~A)”¢) (¢~1)- (é—f)’((l—A)"D“ P9q’)” (T—n)
(A+1E=72)P(1+|t—nf?)7

where p, g are non-negative numbers. Using the inequality

T+1E
2(1+E—n)) ~
we get _ _
(2.7 ' RG] =
= (N) M~ #1+1T (g lac— BI)(1 + (€)= =Nt m (14 (1))~ [ @llnc1 4 1/0) 4 p

for p, g suﬁicient]y large. If we choose N so that

= 1416] = (1+ )1 + 1€~ 1))

_ o(iBl—o+m+n+1)<N=o(fl—c+m+n+1)+1
we obtain -

@8 K&l = (I/N!)M'“"”“F(eIa—ﬁl)(l +EN)Tm ()

To prove Theorem 1 we first suppose that ¢ >1. Thus we may choose ¢ €G§ so
that 1 <d<2g/(g+1). Applying Schur’s lemma (see HORMANDER [3]) from (2.6)
and (2. 8) we get - )

@.9) W Aug> @1DPu) =

= MII T (el B) 3 13 IDPuDT Gl it M T (ol

with N defined above and for u,v€ S. Similarly it follows
(2.10) I Aap(@DP )| = M="1*1T (] — B]) i@ D" ul,-
Let now u€ H° (1 C=(Q2). Combining (2..2), (2. 9) and (2. 10) we get

QR.11)  |eD*Au) = |tiTZ'l lM‘““"'“r(elrx ﬂl) 2 1y | DPuD? @l y176 +

+-'_M'_“‘+IT(@la!)lh/Ha#
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Let  be a G§-function with’its support in Q and equal to 1 on the support of ¢.
Clearly D'@DP(uy) = D'@DPu. Using the inequality (see HORMANDER [2])

llD”uD’wl\m—lvl/e = CID? @)m-171/ | D @i = 131701

and the fact that u € G¥(Q) from (2. 11) we deduce

2.12) loD* dull = M\ *1 [ (g|af).
Hence .
@.13) 1D* du, @\, = MIH+1T(o|a]).

Since Q" is an arbitrary open subset of €, this completes the proof. Now we
suppose ¢ =1. We choose a sequence {g,}€Cg(Q) such that ¢, =1 on Q" and

(@.14) ID*0()] = CH+ 1k for |o| = k.

Taking ¢ =@,y in (2. 6), from (2. 14) it follows

(2.15)  |I{Aap> @2n] DPul) §'Mla—ﬂlﬂr(la—ﬂl)‘lﬂzﬂl/v!IID”uDNmeIm_.,.+
+ M= (Jo) )0

where |fl—oc+m+n+1<N =|f|—c+m+n+2. As above we obtain

(2.16) oy D*Au| = 11‘4"""“1"(]01—ﬂl)l 12~ 1DPuD? @y lm-n +
=

18l =la

+ ML (Jaf)
Let Yon € C5(Q) equal to 1 in the support of ¢,y such that

[D*Y n(x)) = Cl#+ 12N for  |a| = 2N.

Then it follows
Q.17 loD* Au|| =

élﬁlzlv IMIa—ﬂ'HF('“_BI)l IZ’N('I/V!) “Dﬂ(ulleN)um—lﬂ "Dy‘Plehm—lvH"-

. =|a = .

: + M=t (ja) i, .
This implies that
(2.18) . |D* Au, )., = MI4+1|gt -
Hence the proof of Theorem 1 is completed.

Remark. Let KeD'(R"X R") be a distribution defined by

(2.19)  K(F) = @n)~" [e=Pa(x, OF(x, O dxdé for FeCg(R"XRY),
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where. F(x,¢) = f e~ 8 F(x, y)dy. Obviously the distribution K is the kernel
of a-pseudo-differential operator A, ie.. ’

(Au, v) :K(u® v) (u,vel).

It is easnly seen that under assumptxons L I [ the kernel K is g-hypoanalytlc in the
domain {(x, y)€R" X R"; x#y}. -

3. Hypoelliptic pseudo-differential operators .

Let a(x, &) be the symbol considered above. Assume there are non-negative
constants M, N, independent of «a, B such that
aw la@—alm) = M(1+[¢~ nl)”‘(l +1Ehme,
V) [1D*a (x, & — D*a’(x, m)| dx = MY+ T (olad)(1+ [E— )V (1 + Inl)"=°
with a real ¢=2, and
M) el a9l = C(1+E)
for |¢| sufficiently large.
Theorem 2. Let a(x, &) be a C= symbol which satisfles the assumptiwis I—V,
and let Q be an open subset of R". Thenu € H™> and Au € G¥(Q)imply u € G¥(2)(0 =2).

Suppose that la(x, &)|, |a(©®)|=C + &)™ for |£|=R.. In the following x(&)
will denote a C*= non-negative function which is equal to 1 for [{| = R +1 and vanishes
for |¢] < R. Consider the symbol e(x, &)= x(é)/a(k, &) and denote by E and G the
pseudo-differential operators with the associated symbols e(x, f) and x(¢). Setting
T=EA—G and T, = I-G we decompose u as

G u = EAu—Tu+ T1u.

Lemma 1. For any real s there exists a non-negative constant C, such that

3.2 . Euly = Clul—m for u€sS,
33 \Tul, = Clul-s for u€sS,
and '

~

G.4) 4w Ouly = Clltllysmez for 'ues' where @€ C5 (R").

Proof. To prove (3. 2) we remark that the symbol e(x, &) satlsﬁes conditions
(D), (I1) with m replaced by —m. The estlmates (3. 3) and (3. 4) follow in a similar
way as (2. 9).
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Proof of Theorem 1. Under our conditions the operator A is hypo-elliptic
(see VOLEVIC [4]); hence we may assume that u¢ C=(2)N H'. Since the statement
of the theorem is local it is sufficient to prove that every point in Q has an open
neighborhod w in which w€Ge. In the following we denote by w, the set of all
points of w at a distance >¢ from Cw. Let ¢, Y € C5(w) be fixed functions such
that supp ¢ Cw,,, suppy cw,, and @ =1 in w,, @=1 in w,. For u;=wy we
get from (2. 2) and (3. 1): : :

3.5) oD*uy = EeD* Au, — Z [g] EAd,s(@DPu)—T(pD*u,) +
181 <lal

+|ﬂél [gl E[Aqg, 91 DPuy + T, (9D u,).

We remark that _ :

(3.6) eD* Au, = @D*Au—oD*A(1 —P)u.

Since (1 —¢)u = 0 on w,, it follows from Theorem 1 that A(l —Iu e G(w,,).
This implies that

3.7 loD* Au, || = M+1T(o]a]).

From (2. 10), (3. 2), (3. 3), and (3. 4) we obtain that

(3.9) 1EA,p (@D u)| = M™=9+3 (oo~ ) 9 DPul,
(3.9) AT @D )] = CID*=2@h)] oll,, and
(3.10) |EWAu, 91D, = M¥=543 D (gloc— B)1DPu, | -,

Applying Leibniz’s formula we may write

1Bl <a]—1 o

@1y \T(eDu)|l = C - 2 IID”u;waHl|D“”’l//||[ﬂ],

G-12) Bl g1DPusl = MEH T ola—pl) 3 ID47us 01D [ﬁ]

Denote by a(&) the function y (&) —1. It is easy to see that a(£) € CF(R"). Obviously
T, (eD%u))(x) = @m) ™" [ e (@) (pD*u) " (&) d.
Applying Parseval’s formula we obtain

e e wenipn s 3 oo
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Combining (3. 5), (3. 8), (3. 11), (3. 12), and (3. 13) we get

619 LUV M=~ (gloc— ) PP ] +

| <lal
. > [ﬁ)nD"u;wau(uua-ﬂwn+_nDa-ﬂq>_n)_+_
Bl<lal—1 L&} - : _
erI % lM'“ AT (oo~ ﬂl) Z [ ]HD" ZH N IIDWplI

We ‘choose two sequences 0 €CF (04— m), npkeco (w(k 2,5) such that wk(x) =1
in O 1,5 o(x) = 1 in wy,, and ' A

1D*@ull. = C*1klde=lal, | Dyl = CH*+ 1kl emlel

for la|=k. If in (3. 13) we take ¢ =g, and Y =y, from (3. 14) it follows

(3.15) 1D*u; el = Z M==P+ 1T (ola—B) I DP s oy - 1yell +

<lal

+Cc ['B]”D’}”?w(m-z)e!lIa]'“-ﬂlg—|a_,3|+

18i<lal—1 L&

+ 2 MPEPr(gla— ﬁl)llDﬁu W (ja] - 2)5“ Z l?l melg=lrl [ =11,
T i

Let & be a non-negative constant, sufficiently small. If we take ¢ such that [x[e=4,
then from (3. 15) we obtain

I D%u; 0.l = IﬂIZI lM'“‘”'“F(Q|a—ﬁ|)HDﬂu; O] - 1yell +
<la

+ 2 MEIT (el = B)ID!u; @ -2yl
<lea|-—
By recurrence with respect to || we get
HDau; w]a]s“ = M|¢|+1[‘(Qla|)_
Hence ’ ‘
1D u; sl = M™1*1 T (glal).

Since § is arbitrary this implies that u € G%w), and the proof of Theorem 2 is complete.
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