On local properties of pseudo-differential operators

By VIOREL BARBU in Iaşi (Roumania)

Pseudo-differential operators have been developed by Kohn-Nirenberg [1] and L. Hörmander [3]. Volevič [4] considers a wider class of symbols which gener• alizes the differential operators of constant strength. Our aim is to complete the results of [4] by studying the Gevrey regularity of pseudo-differential operators.

1. Notations

We set $D_{j}=-i \partial / \partial x_{j}, \partial_{j}=\partial / \xi_{j}$ for $1 \leqq j \leqq n$, and for each n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we set $D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}, \partial^{\alpha}=\partial_{1}^{\alpha_{1}} \ldots \partial_{n}^{\alpha_{n}}, x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \zeta^{\alpha}=\xi_{1}^{\alpha_{1}} \ldots \xi_{n}^{\alpha_{n}}$, and $|\alpha|=\sum_{1}^{n} \alpha_{j}$. By S we denote the space C^{∞} of complex valued functions $\varphi(x)$ such that $\sup _{x \in R^{n}}\left|x^{\beta} D^{\alpha} \varphi(x)\right|<\infty$ for all multi-indices α and β. For real s we introduce the norm $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\|u\|_{s}=\left((2 \pi)^{-n} \int|\hat{u}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where \hat{u} is the Fourier transform of u. Let H^{s} the space obtained by the completion of S in this norm. We set

$$
H^{-\infty}=\bigcup_{s=-\infty}^{\infty} H^{s}
$$

If K is any compact set of R^{n}, we shall use the notations

$$
\|u, K\|=\left(\int_{K}|u(x)|^{2} d x\right)^{1 / 2}, \quad\|u, K\|_{\infty}=\underset{K}{\operatorname{ess} \sup }|u(x)| .
$$

A function $u(x) \in C^{\infty}$ defined on an open subset $\Omega \subset R^{n}$ is said to be hypoanalytic of class $\varrho(1 \leqq \varrho<\infty)$ if for any compact set $K \subset \Omega$ there exists a constant M such that for any multi-index α the inequality

$$
\begin{equation*}
\left\|D^{\alpha} u, K\right\|_{\infty} \leqq M^{|\alpha|+1} \Gamma(\varrho|\alpha|) \tag{1.2}
\end{equation*}
$$

holds, where Γ is Euler's function. The Gevrey class $G^{e}(\Omega)$ is the space of all functions of class ϱ on Ω. If $\varrho>1, G_{0}^{\varrho}(\Omega)$ will denote the space $C_{0}^{\infty}(\Omega) \cap G^{e}(\Omega)$.

2. Pseudo-differential operators. Pseudo-local properties

We consider pseudo-differential operators of the form

$$
\begin{equation*}
A u(x)=(2 \pi)^{-n} \int e^{i(x, \xi)} a(x, \xi) \hat{u}(\xi) d \xi \quad(u \in S) \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
(A u)^{\wedge}(\xi)=(2 \pi)^{-n} \int \hat{a}^{\prime}(\xi-\eta, \eta) \hat{u}(\eta) d \eta+a(\xi) \hat{u}(\xi) \quad(u \in S), \tag{2.1}
\end{equation*}
$$

with the symbol $a(x, \xi)=a(\xi)+a^{\prime}(x, \xi)$, where $a^{\prime}(x, \xi)$, as a function of x, vanishes at ∞. Here $\hat{a}^{\prime}(\eta, \xi)$ denotes the Fourier transform of $a^{\prime}(x, \xi)$ with respect to x.

Concerning the symbol $a(x, \xi) \in C^{\infty}\left(R^{n} \times R^{n}\right)$ we assume that there are positive constants m, M, C independent of α such that

$$
\begin{gather*}
\quad\left|\partial^{\alpha} a(\xi)\right| \leqq C^{|\alpha|}(1+|\xi|)^{m-|x| / e}, \tag{I}\\
\int\left|D^{\beta} \partial^{\alpha} a^{\prime}(x, \xi)\right| d x \leqq M^{|x|+|\beta|+1} \Gamma(\varrho|\beta|)(1+|\xi|)^{m-|\alpha| / e} . \tag{II}
\end{gather*}
$$

Theorem 1. Let $a(x, \xi)$ be a C^{∞} symbol satisfying I, II and let A be the associated pseudo-differential operator. Suppose that $u \in H^{\infty} \cap G^{e}$. Then $A u \in G^{e}(\Omega)$.

Proof. We choose $\varphi \in C_{0}^{\infty}(\Omega)$ equal to 1 in a set $\bar{\Omega}^{\prime} \subset \Omega$. We may suppose that $u \in H^{\sigma}$. We put

$$
a_{z, \beta}(x, \xi)=D^{\alpha-\beta} a(x, \xi)
$$

and denote by $A_{\alpha, \beta}$ the operators of the form (2.1) with associated symbols $a_{\alpha, \beta}(x, \xi)$. We have

$$
\begin{equation*}
\varphi D^{\dot{\alpha}} A u=\sum_{|\beta| \leq|\alpha|}\binom{\beta}{\alpha} A_{\alpha \beta}\left(\varphi D^{\beta} u\right)+\sum_{|\beta| \leq|\alpha|}\binom{\beta}{\alpha}\left[A_{\alpha \beta} ; \varphi\right]\left(D^{\beta} u\right) \tag{2.2}
\end{equation*}
$$

where $\left[A_{a \beta} ; \varphi\right]$ is the commutator of $A_{\alpha \beta}$ with φ.
The essential point in the proof is the estimation of $\left\|\left[A_{\alpha \beta} ; \varphi\right] D^{\beta} u\right\|$, where $\|\|$ denotes the L^{2} norm. For $\alpha \neq \beta$ and $u, v \in S$ we have

$$
\begin{gather*}
\left(\left[A_{\alpha \beta} ; \varphi\right]\left(D^{\beta} u, v\right)\right)= \tag{2.3}\\
=(2 \pi)^{-n} \iiint\left(D^{\beta} u\right)^{\wedge}(\xi) \hat{\varphi}(\tau-\xi)\left(\hat{a}_{\alpha \beta}^{\prime}(\tau-\dot{\eta}, \tau)-\hat{a}_{\alpha \beta}^{\prime}(\tau-\eta, \xi)\right) \hat{v}(\eta) d \xi d \eta d \tau .
\end{gather*}
$$

Using a finite series expansion for the difference in the integral, and substituting this expression in (2.3), we find

$$
\begin{gather*}
\left(\left[A_{\alpha \beta} ; \varphi\right]\left(D^{\beta} u\right), v\right)= \tag{2.4}\\
=\sum_{|\eta| \leq N}(1 / \gamma!) \iint\left(D^{\beta} u D^{\gamma} \varphi\right)^{\wedge}(\tau) \hat{v}(\eta)\left(D^{\alpha-\beta} \partial^{\gamma} a^{\prime}\right)^{\wedge}(\tau-\eta, \eta) d \eta d \tau+ \\
+(2 \pi)^{-n} \iiint\left(D^{\beta} u\right)^{\wedge}(\xi) \hat{\varphi}(\tau-\xi) R_{N}(\tau-\eta, \xi) \hat{v}(\eta) d \xi d \eta d \tau,
\end{gather*}
$$

where \boldsymbol{R}_{N} denotes the remainder: $(1 / N!)^{N}(\xi-\tau)\left(\partial^{N} a^{\prime}\right)^{\wedge}(\tau-\eta, \theta)$. From II it follows by partial integration that for any multi-indices α, γ we have

$$
\begin{equation*}
\left|D^{\alpha} \partial^{\gamma} \hat{a}^{\prime}(\tau-\eta, \tau)\right| \leqq M^{|\alpha|+|\gamma|+1} \Gamma\left(\varrho|\alpha|+N_{1}\right)(1+|\tau-\eta|)^{-N_{1}}(1+|\tau|)^{m-|\gamma| / e} \tag{2.5}
\end{equation*}
$$

for every non-negative N_{1}. From (2.4) it follows

$$
\begin{equation*}
\left|\left(\left[A_{\alpha \beta} ; \varphi\right] D^{\beta} u, v\right)\right| \leqq M^{|\alpha-\beta|+N+1} \Gamma(\varrho|\alpha-\beta|) \tag{2.6}
\end{equation*}
$$

$$
\cdot \sum_{0 \leqq|\gamma| \leqq N}(1 / \gamma!)\left\|D^{\beta} u D^{\gamma} \varphi\right\|_{m-|\gamma| / e}\|v\|+\int K(\xi, \eta)(1+|\xi|)^{\sigma-|\beta|}\left|D^{\beta} \hat{u}(\xi)\right||\hat{v}(\eta)| d \xi d \eta
$$ with

$$
\begin{gathered}
K(\xi, \eta)=(2 \pi)^{-n} \sum_{|\gamma|=N}(1 / \gamma!) \\
\cdot \int \frac{(1+|\xi|)^{|\beta|-\sigma}\left((1-\Delta)^{p} \varphi\right)^{\wedge}(\xi-\tau) \cdot(\xi-\tau)^{\gamma}\left((1-\Delta)^{q} D^{\alpha-\beta} \partial^{\gamma} a^{\prime}\right)^{\wedge}(\tau-\eta)}{\left(1+|\xi-\tau|^{2}\right)^{p}\left(1+|\tau-\eta|^{2}\right)^{q}} d \tau
\end{gathered}
$$

where p, q are non-negative numbers. Using the inequality

$$
\frac{1+|\xi|}{2(1+|\xi-\eta|)} \leqq 1+|\theta| \leqq(1+|\xi|)(1+|\xi-\tau|)
$$

we get

$$
\begin{equation*}
|K(\xi, \eta)| \leqq \tag{2.7}
\end{equation*}
$$

$$
\leqq(1 / N!) M^{|\alpha-\beta|+1} \Gamma(\underline{\varrho}|\alpha-\beta|)(1+|\xi|)^{|\beta|-\sigma-N / e+m}(1+|\eta|)^{-\mu-1}\|\varphi\|_{N(1+1 / e)+p}
$$

for p, q sufficiently large. If we choose N so that

$$
\varrho(|\beta|-\sigma+m+n+1)<N \leqq \varrho(|\beta|-\sigma+m+n+1)+1
$$

we obtain

$$
\begin{equation*}
|K(\xi, \eta)| \leqq(1 / N!) M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)(1+|\xi|)^{-n-1}(1+|\eta|)^{-n-1} \tag{2.8}
\end{equation*}
$$

To prove Theorem 1 we first suppose that $\varrho>1$. Thus we may choose $\varphi \in G_{0}^{d}$ so that $1<d<2 \varrho /(\varrho+1)$. Applying Schur's lemma (see Hörmander [3]) from (2.6) and (2.8) we get

$$
\begin{gather*}
\left\|\left[A_{\alpha \beta}, \varphi\right] D^{\beta} u\right\| \leqq \tag{2.9}\\
\leqq M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|) \sum_{|\gamma| \leqq N} 1 / \gamma!\left\|D^{\beta} u D^{\gamma} \varphi\right\|_{m-|\gamma| / e}+M^{|\alpha|+1} \Gamma(\varrho|\alpha|)\|u\|_{\sigma} .
\end{gather*}
$$

with N defined above and for $u, v \in S$. Similarly it follows

$$
\begin{equation*}
\left\|A_{\alpha \beta}\left(\varphi D^{\beta} u\right)\right\| \leqq M_{1}^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|\varphi D^{\beta} u\right\|_{m} \tag{2.10}
\end{equation*}
$$

Let now $u \in H^{\sigma} \cap C^{\infty}(\Omega)$. Combining (2.2); (2.9) and (2.10) we get

$$
\begin{gather*}
\left\|\varphi D^{\alpha} A u\right\| \leqq \sum_{|\beta| \leqq|\alpha|} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|) \sum_{|\gamma| \leqq N} 1 / \gamma!\left\|D^{\beta} u D^{\gamma} \varphi\right\|_{m-|\gamma| / \mathbf{e}}+ \tag{2.11}\\
+M^{|\alpha|+1} \Gamma(\varrho|\alpha|)\|u\|_{\sigma}
\end{gather*}
$$

Let ψ be a G_{0}^{d}-function with its support in Ω and equal to 1 on the support of φ. Clearly $D^{\gamma} \varphi D^{\beta}(u \psi)=D^{\nu} \varphi D^{\beta} u$. Using the inequality (see Hörmander [2])

$$
\left\|D^{\beta} u D^{\gamma} \varphi\right\|_{m-|\gamma| / \ell} \leqq C\left\|D^{\beta}(u \psi)\right\|_{m-|\gamma| / \ell}\left\|D^{\gamma} \varphi\right\|_{|m-|\gamma| / e|}
$$

and the fact that $u \in G^{e}(\Omega)$ from (2.11) we deduce

$$
\begin{equation*}
\left\|\varphi D^{\alpha} A u\right\| \leqq M^{|\alpha|+1} \Gamma(\varrho|\alpha|) . \tag{2.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|D^{\alpha} A u, \bar{\Omega}^{\prime}\right\|_{\infty} \leqq M_{1}^{|\alpha|+1} \Gamma(\varrho|\alpha|) . \tag{2.13}
\end{equation*}
$$

Since Ω^{\prime} is an arbitrary open subset of Ω, this completes the proof. Now we suppose $\varrho=1$. We choose a sequence $\left\{\varphi_{k}\right\} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{k}=1$ on $\bar{\Omega}^{\prime}$ and

$$
\begin{equation*}
\left|D^{\alpha} \varphi_{k}(x)\right| \leqq C^{|\alpha|+1} k^{|\alpha|} \quad \text { for } \quad|\alpha| \leqq k . \tag{2.14}
\end{equation*}
$$

Taking $\varphi=\varphi_{2 N}$ in (2.6), from (2.14) it follows

$$
\begin{gather*}
\left\|\left[A_{\alpha \beta}, \varphi_{2 N}\right] D^{\beta} u\right\| \leqq M^{|\alpha-\beta|+1} \Gamma(|\alpha-\beta|) \sum_{|\gamma| \leqq N} 1 / \gamma!\left\|D^{\beta} u D^{\gamma} \varphi_{2 N}\right\|_{m-|\gamma|}+ \tag{2.15}\\
+M^{|\alpha|} \Gamma(|\alpha|)\|u\|_{\sigma}
\end{gather*}
$$

where $|\beta|-\sigma+m+n+1<N \leqq|\beta|-\sigma+m+n+2$. As above we obtain

$$
\begin{gather*}
\left\|\varphi_{2 N} D^{\alpha} A u\right\| \leqq \sum_{|\beta| \leqq|\alpha|} M^{|\alpha-\beta|+1} \Gamma(|\alpha-\beta|) \sum_{|\gamma| \leqq N}\left\|D^{\beta} u D^{\gamma} \varphi_{2 N}\right\|_{m-N}+ \tag{2.16}\\
+M^{|\alpha|+1} \Gamma(|\alpha|)\|u\|_{\sigma} .
\end{gather*}
$$

Let $\psi_{2 N} \in C_{0}^{\infty}(\Omega)$ equal to 1 in the support of $\varphi_{2 N}$ such that

$$
\left|D^{\alpha} \psi_{2 N}(x)\right| \leqq C^{|\alpha|+1} 2 N^{|\alpha|} \quad \text { for } \quad|\alpha| \leqq 2 N .
$$

Then it follows

$$
\begin{gather*}
\left\|\varphi D^{\alpha} A u\right\| \leqq \tag{2.17}\\
\leqq \sum_{|\beta| \leqq|\alpha|} M^{|\alpha-\beta|+1} \Gamma(|\alpha-\beta|) \sum_{|\gamma| \leqq N}(1 / \gamma!)\left\|D^{\beta}\left(u \psi_{2 N}\right)\right\|_{m-|\gamma|}\left\|D^{\gamma} \varphi_{2 N}\right\|_{|m-|\gamma||}+ \\
+M^{|\alpha|+1} \Gamma(|\alpha|)\|u\|_{\sigma} .
\end{gather*}
$$

This implies that

$$
\begin{equation*}
\left\|D^{\alpha} A u, \bar{\Omega}^{\prime}\right\|_{\infty} \leqq M^{|\alpha|+1}|\alpha|! \tag{2.18}
\end{equation*}
$$

Hence the proof of Theorem 1 is completed.
Remark. Let $K \in D^{\prime}\left(R^{n} \times R^{n}\right)$ be a distribution defined by
(2.19) $K(F)=(2 \pi)^{-n} \int e^{i(x, \xi)} a(x, \xi) F(x, \xi) d x d \xi \quad$ for $\quad F \in C_{0}^{\infty}\left(R^{n} \times R^{n}\right)$,
where. $\hat{F}(x, \xi)=\int e^{-i(x, \xi)} F(x, y) d y$. Obviously the distribution K is the kernel of a pseudo-differential operator A, i.e.

$$
(A u, v)=K(u \otimes v) \quad(u, v \in S)
$$

It is easily seen that under assumptions I, II the kernel K is ϱ-hypoanalytic in the domain $\left\{(x, y) \in R^{n} \times R^{n} ; x \neq y\right\}$.

3. Hypoelliptic pseudo-differential operators

Let $a(x, \xi)$ be the symbol considered above. Assume there are non-negative constants M_{1}, N_{1} independent of α, β such that

$$
\begin{gather*}
|a(\xi)-a(\eta)| \leqq M(1+|\xi-\eta|)^{N_{1}}(1+|\xi|)^{m-\sigma} \tag{III}\\
\int\left|D^{\alpha} a^{\prime}(x, \xi)-D^{\alpha} a^{\prime}(x, \eta)\right| d x \leqq M_{1}^{|\alpha|+1} \Gamma(\varrho|\alpha|)(1+|\xi-\eta|)^{N}(1+|\eta|)^{m-\sigma} \tag{IV}
\end{gather*}
$$

with a real $\sigma \geqq 2$, and

$$
\begin{equation*}
|a(\xi)|, \quad\left|a^{\prime}(x, \xi)\right| \geqq C(1+|\xi|)^{m} \tag{V}
\end{equation*}
$$

for $|\xi|$ sufficiently large.
Theorem 2. Let $a(x, \xi)$ be a C^{∞} symbol which satisfles the assumptions $\mathrm{I}-\mathrm{V}$, and let Ω be an open subset of R^{n}. Then $u \in H^{-\infty}$ and $A u \in G^{e}(\Omega)$ imply $u \in G^{e}(\Omega)(\varrho \geqq 2)$.

Suppose that $|a(x, \xi)|,|a(\xi)| \geqq C(1+|\xi|)^{m}$ for $|\xi| \geqq R$. . In the following $\chi(\xi)$ will denote a C^{∞} non-negative function which is equal to 1 for $|\xi| \geqq R+1$ and vanishes for $|\xi|<R$. Consider the symbol $e(x, \xi)=\chi(\xi) / a(x, \xi)$ and denote by E and G the pseudo-differential operators with the associated symbols $e(x, \xi)$ and $\chi(\xi)$. Setting $T=E A-G$ and $T_{1}=I-G$ we decompose u as

$$
\begin{equation*}
u=E A u-T u+T_{1} u \tag{3.1}
\end{equation*}
$$

Lemma 1. For any real s there exists a non-negative constant C_{s} such that

$$
\begin{array}{lll}
\|E u\|_{s} \leqq C_{s}\|u\|_{s-m} & \text { for } & u \in S, \\
\|T u\|_{s} \leqq C_{s}\|u\|_{s-\sigma} & \text { for } & u \in S \tag{3:3}
\end{array}
$$

and
(3. 4) $\quad\left\|\left[A_{\alpha \beta}, \varphi\right] u\right\|_{s} \leqq C_{s}\|u\|_{s+m-2}$ for $u \in \dot{S}$, where $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$.

Proof. To prove (3.2) we remark that the symbol $e(x, \xi)$ satisfies conditions (I), (II) with m replaced by $-m$. The estimates (3.3) and (3.4) follow in a similar way as (2.9).

Proof of Theorem 1. Under our conditions the operator A is hypo-elliptic (see Volevič [4]); hence we may assume that $u \in C^{\infty}(\Omega) \cap H^{\prime}$. Since the statement of the theorem is local it is sufficient to prove that every point in Ω has an open neighborhod ω in which $u \in G^{e}$. In the following we denote by ω_{ε} the set of all points of ω at a distance $>\varepsilon$ from $C \omega$. Let $\varphi, \psi \in C_{0}^{\infty}(\omega)$ be fixed functions such that $\operatorname{supp} \varphi \subset \omega_{2 \varepsilon}$, $\operatorname{supp} \psi \subset \omega_{\varepsilon}$, and $\varphi=1$ in $\omega_{3 \varepsilon}, \varphi=1$ in $\omega_{2 \varepsilon}$. For $u_{1}=u \psi$ we get from (2.2) and (3.1):

$$
\begin{align*}
\varphi D^{\alpha} u_{1}= & E \varphi D^{\alpha} A u_{1}-\sum_{|\beta|<|\alpha|}\binom{\beta}{\alpha} E A_{\alpha \beta}\left(\varphi D^{\beta} u_{1}\right)-T\left(\varphi D^{\alpha} u_{1}\right)+ \tag{3.5}\\
& +\sum_{|\beta| \leq|\alpha|}\binom{\beta}{\alpha} E\left[A_{\alpha \beta}, \varphi\right] D^{\beta} u_{1}+T_{1}\left(\varphi D^{\alpha} u_{1}\right)
\end{align*}
$$

We remark that

$$
\begin{equation*}
\varphi D^{\alpha} A u_{1}=\varphi D^{\alpha} A u-\varphi D^{\alpha} A(1-\psi) u \tag{3.6}
\end{equation*}
$$

Since $(1-\psi) u=0$ on $\omega_{2 \varepsilon}$ it follows from Theorem 1 that $A(1-\psi) u \in G^{e}\left(\omega_{2 \varepsilon}\right)$. This implies that

$$
\begin{equation*}
\left\|\varphi D^{\alpha} A u_{1}\right\| \leqq M^{|\alpha|+1} \Gamma(\varrho|\alpha|) . \tag{3.7}
\end{equation*}
$$

From (2.10), (3.2), (3.3), and (3.4) we obtain that

$$
\begin{equation*}
\left\|E A_{\alpha \beta}\left(\varphi D^{\beta} u_{1}\right)\right\| \leqq M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|\varphi D^{\beta} u\right\|, \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\left\|T\left(\varphi D^{\alpha} u_{1}\right)\right\| \leqq C\left\|D^{\alpha-2}(u \psi)\right\|\|\varphi\|_{2}, \quad \text { and } \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\left\|E\left[A_{\alpha \beta}, \varphi\right] D^{\beta} u_{1}\right\| \leqq M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u_{1}\right\|_{-2} . \tag{3.10}
\end{equation*}
$$

Applying Leibniz's formula we may write

$$
\begin{gather*}
\left\|T\left(\varphi D^{\alpha} u_{1}\right)\right\| \leqq C \sum_{|\beta|<|\alpha|-1}\left\|D^{\beta} u ; \omega_{\varepsilon}\right\|\left\|D^{\alpha-\beta} \psi\right\|\binom{\beta}{\alpha} \tag{3.11}\\
\left\|E\left[A_{\alpha \beta}, \varphi\right] D^{\beta} u_{1}\right\| \leqq M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|) \sum_{|\gamma| \leqq|\beta|}\left\|D^{\beta-\gamma} u ; \omega_{\varepsilon}\right\|\left\|D^{\gamma} \psi\right\|\binom{\beta}{\alpha} . \tag{3.12}
\end{gather*}
$$

Denote by $\alpha(\xi)$ the function $\chi(\xi)-1$. It is easy to see that $\alpha(\xi) \in C_{0}^{\infty}\left(R^{n}\right)$. Obviously

$$
T_{1}\left(\varphi D^{\alpha} u_{1}\right)(x)=(2 \pi)^{-n} \int e^{i(x, \xi)} \alpha(\xi)\left(\varphi D^{\alpha} u\right)^{\wedge}(\xi) d \xi
$$

Applying Parseval's formula we obtain

$$
\begin{equation*}
\left\|T_{1}\left(\varphi D^{\alpha} u_{1}\right)\right\| \leqq M^{|\alpha|+1}\|\varphi u\|+\sum_{|\beta|<|\alpha|-1}\binom{\beta}{\alpha}\left\|D^{\beta} u ; \omega_{\varepsilon}\right\|\left\|D^{\alpha-\beta} \varphi\right\| . \tag{3.13}
\end{equation*}
$$

Combining (3.5), (3.8), (3.11), (3.12), and (3.13) we get

$$
\begin{gather*}
\left\|D^{\alpha} u ; \omega_{3 \varepsilon}\right\| \leqq \sum_{|\beta|<|\alpha|} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u ; \omega_{2 \varepsilon}\right\|+ \tag{3.14}\\
+\sum_{|\beta|<|\alpha|-1}\binom{\beta}{\alpha}\left\|D^{\beta} u ; \omega_{\varepsilon}\right\|\left(\left\|D^{\alpha-\beta} \psi\right\|+\left\|D^{\alpha-\beta} \varphi\right\|\right)+ \\
+\sum_{|\beta|<|\alpha|-1} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|) \sum_{|\gamma| \leqq|\beta|}\binom{\gamma}{\beta}\left\|D^{\beta-\gamma} u ; \omega_{\varepsilon}\right\|\left\|D^{\gamma} \varphi\right\| \cdot
\end{gather*}
$$

We choose two sequences $\varphi_{k} \in C_{0}^{\infty}\left(\omega_{(k-1) \varepsilon}\right), \psi_{k} \in C_{0}^{\infty}\left(\omega_{(k-2) \varepsilon}\right)$ such that $\psi_{k}(x)=1$ in $\omega_{(k-1) \varepsilon}, \varphi_{k}(x)=1$ in $\omega_{k \varepsilon}$, and

$$
\left\|D^{\alpha} \varphi_{k}\right\|_{\infty} \leqq C^{k+1} k^{|\alpha|} \varepsilon^{-|\alpha|}, \quad\left\|D^{x} \psi_{k}\right\|_{\infty} \leqq C^{k+1} k^{|\alpha|} \varepsilon^{-|x|}
$$

for $|\alpha| \leqq k$. If in (3.13) we take $\varphi=\varphi_{k}$ and $\psi=\psi_{k}$ from (3.14) it follows

$$
\begin{gather*}
\left\|D^{\alpha} u ; \omega_{|\alpha| \varepsilon \mid}\right\| \leqq \sum_{|\beta|<|\alpha|} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u ; \omega_{(|\alpha|-1) \varepsilon}\right\|+ \tag{3.15}\\
+C \sum_{|\beta|<|\alpha|-1}\binom{\beta}{\alpha}\left\|D^{\beta} u ; \omega_{(|\alpha|-2) \varepsilon}\right\||\alpha|^{|\alpha-\beta|} \varepsilon^{-|\alpha-\beta|}+ \\
+\sum_{|\beta|<|\alpha|} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u ; \omega_{(|\alpha|-2) \varepsilon}\right\| \sum_{|\gamma| \leqq|\beta|}|\gamma|^{-e|\gamma|} \varepsilon^{-|\gamma|}|\alpha|^{-|\gamma|} .
\end{gather*}
$$

Let δ be a non-negative constant, sufficiently small. If we take ε such that $|\alpha| \varepsilon \leqq \delta$, then from (3.15) we obtain

$$
\begin{aligned}
& \left\|D^{\alpha} u ; \omega_{|\alpha| \varepsilon \mid}\right\| \leqq \sum_{|\beta|<|\alpha|} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u ; \omega_{(|\alpha|-1) \varepsilon}\right\|+ \\
& \quad+\sum_{|\beta|<|\alpha|-1} M^{|\alpha-\beta|+1} \Gamma(\varrho|\alpha-\beta|)\left\|D^{\beta} u ; \omega_{(|\alpha|-2) \varepsilon}\right\| .
\end{aligned}
$$

By recurrence with respect to $|\alpha|$ we get

Hence

$$
\| D^{\alpha} u ; \omega_{|\alpha| \varepsilon \mid} \mid \leqq M^{|\alpha|+1} \Gamma(\varrho|\alpha|)
$$

$$
\left\|D^{\alpha} u ; \omega_{\delta}\right\| \leqq M^{|\alpha|+1} \Gamma(\varrho|\alpha|) .
$$

Since δ is arbitrary this implies that $u \in G^{e}(\omega)$, and the proof of Theorem 2 is complete.

Bibliography

[1] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), 355.
[2] L. Hörmander, Linear partial differential operators (Berlin, 1963).
[3] L. Hörmander, Pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), 501.
[4] L. R. Volevič, Hypoelliptic convolution equations, Dokl. Akad. Nauk SSSR, 168 (1966), 1232.
[5] L. Boutet de Monvel et P. Krée, Opérateurs pseudo-différentiels et classes de Gevrey, C. R. Acad. Sci. Paris, 263 (1966), 245.

FACULTY OF MATH. AND MECH.
UNIVERSITY OF IASHY (ROUMANIA)
(Received Aug. 30, 1968)

