. Note on power series with positive coefficients

By LASZLO LEINDLER in Szeged

We prove the following

Theorem. Let A(t) be a positive, non-increasing, integrable function on the

1 ] - 0[,1 (%)] and let F(x) be defined on the

interval 0<t=1 such that A (m

/

interval 0=x <1 by the series 2, ax* with a,=0. Further let 1 =p = co, Then we have
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If A(t)=t"" (r<1), this theorem reduces to a theorem of RAIS SHAN KHAN [3],
which in its turn includes a theorem of Askmy ([1], r=0) and a theorem of -
Heywoop ([2], p=1).

The proof is similar 1o that of the mentioned theorems.

Proof. We may assume 1:z=p < oo, since under the assumptions of the theorem

both (1) and (2) mean for p=oo that the series > @, converges. First we show
k=0

that (1) implies (2). Set y = 1—xand 4,= > a,. Since (1—
|=0
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Using this we obtain for mz2:
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This proves that (2) follows from (1).
The proof of the-inverse statement is a bit longer. We have for m=1
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Hence and from (3), (4), and (5) we deduce for m=1 and 1 =p <, that

1

T m > i
[ Ad—x)(FE)ydx=0() 2/1[-,1—] n2 D02 2 40 =
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Thus (2) implies (1), and this completes the proof.
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