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A funct ion/ defined on a set of ordinals and having ordinals as values satisfying 
/'(a) < a will be called regressive. As a matter of fact we shall not require the validity 
of this inequality for "small" ordinals — what we mean by this latter phrase will 
be quite clear later. In this paper we are going to examine some questions concerning 
the existence of regressive functions subjected to some additional conditions such as 
we shall require/ to be one-to-one or divergent (for the definition see below) and we 
shall restrict the domain of / or occasionally its range too. To this end a review of 
some definitions and theorems in the theory of stationary sets is necessary. 

1. Preliminary definitions and theorems. Let p be a cardinal number the cofinality 
p* of which is A function / defined for some ordinals preceding p and having 
ordinals <p as values is said to be regressive if it satisfies the inequality / (a) < a 
in its domain whenever a =-oc0, where a0 i s a n ordinal depending on/. The function 
/ is called divergent if the set 

{«:./'(«) S / t} 

is not cofinal to p whichever the ordinal /.t < / ; may be. 
The set SQp is said to be stationary if there can not be defined any divergent 

regressive function on it. According to a celebrated result of W . NEUMER [1] this 
condition can be stated equivalently in a form that every band meets S. Here by band 
we mean any set cofinal to p which is closed in the topology induced by the natural 
ordering of p. 

Considering the first form of the definition it is quite clear that the union of 
less than p* non-stationary sets is not stationary, either. In the sequel, however, 
we shall need the following much stronger result, established by the first of the 
authors (see [2]): 

T h e o r e m 1. 1. Let {Sx}„<p* be a sequence of non-empty and non-stationary 
sets and suppose that the set of their initial elements, which are supposed to be distinct, 
is also non-stationary and cofinal to p. Then the union class U Sa is not stationary 
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2. If the regular cardinal number m is smaller than p* then it is easily seen 
that the set of all ordinals preceding p and being colinal to in is stationary. In fact, 
it is quite simple to verify that the mi\\ element of each band belongs to this set. 
When, however, we consider the set S of all ordinals preceding p which have cofi-
nalities greater than or equal to that of p, the situation is different. Indeed if we 
take the closure of a set of type p* cofinal to p and containing only successor ordi-
nals, then the band obtained will contain only ordinals of cofinalities smaller than 
p\ This means that there exists a divergent regressive function defined on this set S. 
It can be shown, however, that there does not exist a divergent regressive function 
which maps ordinals into ordinals having greater cofinalities. More exactly the 
following theorem holds, where, of course, we tacitly suppose that p is a singular 
cardinal number. 

T h e o r e m 2. 1. Let m be a regular cardinal number, p*Sm-<p. Let us denote 
by M the set of ordinals -<p which are cofinal to m and by N those cofinal to m or 
to some greater regtdar ordinals Then there does not exist any divergent regressive 
function which maps M into N. 

For this theorem we first present what we think to be the most concise proof 
of it, and after that we outline another way leading to its proof, which, apart from 
the fact that it is in some respects more illuminating than the first proof, will employ 
some ideas useful later too. 

P r o o f . Suppose, on the contrary, that there is a divergent regressive function 
/ which maps M into N and let g be a divergent regressive function on N — such 
a function g does exist in view of the non-stationarity of N seen above. For any 
a£N let g'(a) be the least element of M exceeding g(a). Then obviously we have 
g'(a) a. Now for any £ 6 M we define the function /?(£) as g'(f(£)). This function 
is divergent, regressive, and maps M into itself; but the existence of such a function 
is a clear contradiction, since in view of the fact that the sets M and p have similar 
order types this would mean that there exists a divergent regressive function on the 
whole set p, which, however, is obviously stationary. 

If we had required the existence of a divergent mapping/of M into N statisfying 
the regressivity condition / ( a ) < a all over its domain, then it would have been easy 
to give a negative answer for this question. In fact if we consider the initial element 
of the set M we cannot find a smaller one in N. And yet, it might be of some interest 
that the essential point of the above theorem is the non-existence of such a mapping. 

Indeed, on account of the non-stationarity of N we have the existence of a band 
B in the complement of N. Now, according to the fact that a band is always stationary, 
if we define a divergent regressive function / (in the sense used here generally) on 
the set M into the set N, it cannot always jump over the elements of B. More precisely 
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said, if we define 011 B the function g by 

g{ß) = min {./'(a) :«>•/? & a€M}, 

then g will not be regressive. So if ß is large enough and such that g(ß)^ß, then 
the first element a of M exceeding ß cannot have an image ß S / ( a ) < a such that 
f(a)£N, which, however, is required for all "large" «. 

3. If S is a non-stationary set, then by definition there can be defined a divergent 
regressive function / on S. If p is a regular cardinal number, the divergence of / 
is an obvious restriction on the cardinalities of the inverse images 

{«:/(«) = /£>; 

indeed it says that these cardinalities are all smaller than p. In what follows we are 
going to investigate the question whether this condition can be strengthened in some 
way. This problem for singular p has also a meaning even if it has no such inspiration 
as in the regular case — thus in the sequel we shall not exclude the singular case, 
either. However we will return once more to this point later (cf. Section 5). 

Since the behaviour of the above stated problem is different for p = ü, x and 
for p chosen greater, we shall treat the first case separately. A lemma will be useful 
to this end. 

L e m m a 3.1. If & is an arbitrary ordinal and A is the set of all successor ordinals 
preceding it, then the unique one-to-one function f defined on A such that f(a)-<a 
for any a(iA, is the one which transforms each element of A into its immediate prede-
cessor. 

The proof of this lemma can be easily carried out by transfinite induction on 
$ so we do not go into further details here. 

This lemma can be simply translated into an assertion about regressive functions. 
Here we are interested only in the case p — K x. 

L e m m a 3. 2. If A denotes the set of all successor ordinals before then 
the essentially unique one-to-one regressive function f defined on A takes over each 
element of A into its immediate predecessor. 

Here the word "essentially" refers to the fact, that there are several functions 
which meet the requirements of the lemma but they differ only in their values assumed 
for small arguments. As a matter of fact, when talking about regressive functions, 
we are in no way concerned which values they take for small arguments. E.g. in the 
above lemma we only require / to be essentially one-to-one — it is quite clear what 
we mean by this. As to the proof of the lemma it uses the same idea as occurred 
in the second proof of Theorem 1.1. 
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P r o o f . Let us temporarily denote by B the set of all limit ordinals less than 
Ki and for any 1KB let 

g(fi) = min {/(«):«>•/? & a <=/!}. 

Since the set B is obviously stationary, the function g cannot be regressive. Choose 
a f)(-B such that g([l) S/?. If /? is chosen large enough, then Lemma 3. 1 provides 
for the uniqueness of / (a ) whenever a >fi . 

Now we are ready to state our main result concerning the ease y; ~ X,: 

T h e o r e m 3. 3. If S is a non-stationary subset of ftj then there is a regressive 
function f on S which assumes each of its values at most twice. This bound is the best 

possible one. 

P r o o f . In view of Lemma 3. 2 it is simple to verify the second assertion of 
the theorem. In fact if we choose the set S such that it contains all successor ordinals, 
then by the lemma we have that the values of / assumed on this part of S cover 
the whole set of the countable ordinals (i.e. the set of all ordinals less than Xi). 
Thus the values assumed by / for limit ordinals will be assumed at least twice. 

In order to prove the first assertion of the theorem it is sufficient to show that 
if S is a non-stationary set containing only limit ordinals, then there exists a one-
to-one regressive function on it. This can be done as follows: 

Let / b e an arbitrary divergent regressive function on S, and consider its values 
assumed in any of the intervals / = [£t, £ t + 1 ) formed by two consecutive countable 
limit ordinals. According to the divergence o f / it takes each ordinal at most count-
ably many times as value; thus / assumes its value in I t at most countably many 
times. So we can modify the values o f / assumed on the inverse image of Iv so that 
they still remain in / t but are all different. If we carry out this step for all such inter-
vals lt we obtain a one-to-one regressive function on S as required. 

4. Now we are going to discuss the case Since we admit also singular 
cardinal numbers as p here, we shall not be able in general to omit the adjective 
"divergent" from beside the expression "regressive function" as we sometimes 
did before. Nonetheless this question will be discussed later separately, and lastly 
we sail see that for other reasons this adjective can be omitted for singular/? as well. 

As said before, in the sequelp shall denote a cardinal number not cofinal 
to This latter restriction o n p is necessary since otherwise the theory of regressive 
functions becomes trivial and is of no interest for us in what follows. 

The result we shall obtain says essentially that the cardinality conditions for 
the inverse images of regressive function cannot in general be strengthened. In order 
to show this in a precise form we first prove a lemma. 
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L e m m a 4. 1. For any regular cardinal number m satisfying #0-<m<p there 
exists a non-stationary set such that any divergent regressive function defined on 
it assumes some large values at least m times. 

Here, of course, the word "large" expresses the fact that there are such values 
greater than any given ordinal less than p. 

P r o o f . Let the band B be the closure of the set consisting of all ordinals </> 
which are cofinal to m and let S be its complement; by definition S is not stationary. 
Now if / is any divergent regressive function on S then define the function g for 
ß £ B by 

g(ß) = min {/(a): a>jS & a CS1}. 

Since a band is a fortiori stationary, the function g is not regressive. Consider 
a large ß£B with g(ß)^ß and denote by ß' its immediate successor in B. It follows 
that the ordinal type of the interval [ß, ß') is m, a regular cardinal number greater 
than x 0 ; thus there cannot be defined on it a divergent regressive mapping it into 
itself — considering these concepts "relativized" to the given interval. And this 
latter assertion says exactly that there exists some ordinal p in the interval [ß, ß') 
such that the set 

{a£S:ß-<a<ß' & /(a) = p] 

has power m. Thus the lemma is proved. 
Of course it does not make any difference whether or not we require m to be 

regular in the above lemma, unless p is the successor of a singular cardinal. As we 
shall see in Section 6, the regularity of in in this latter case is essential. Thus neither 
can we, in general, omit the regularity condition imposed on m from the following 
theorem, which is an extension of the preceding lemma. 

T h e o r e m 4.2. Suppose > X i and is not cofinal to Then p has a non-
stationary subset S such that, whichever the regular cardinal m<p may be, each 
divergent regressive function defined on S assumes some large values at least m times. 

P r o o f . I f / ; is the immediate successor of a regular cardinal, then the assertion 
of the theorem coincides with that of the preceding lemma. Thus the remaining 
cases are: 

a) p is the immediate successor of a singular cardinal in; 
b) p is a limit cardinal. 
The proof in case a) is most simple. Indeed, for any regular cardinal number 

m -<p let Sm be a non-stationary set satisfying the requirements of the preceding 
lemma and denote by S their union if m runs over all such values. Since the number 
of values taken by m is less than p =p*, the set S is non-stationary and thus meets 
all the requirements of the theorem. 
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The case b) will be contained in Theorem 5. 1 below, which will be verified in 
a way independent of what we have done up to now. But, for the sake of the rnqre 
ambitious readers, we point out that this ease can be dealt with in a manner similar 
to case a), as follows. 

As is well known, p can be represented as the sum of p* smaller regular cardinal 
numbers: 

P = U " V 

As before, for each ma we designate a non-stationary set Sa satisfying the requirements 
of the above lemma with m=m„, i.e. such that any divergent regressive function 
on it assumes some large values at least mx times. 

Now if we took the union of all such sets Sx, then the obtained set S would 
have the required properties of the theorem except that it might be stationary. In view 
of Theorem 1.1, however, this latter case can be avoided by taking the union only 
of some appropriate upper sections of the sets Sx. 

Now we shall indicate more exactly how this may be done. 
Select an arbitrary non-stationary set S of power p* which is cofinal to p 

and adjoin in turn its elements to the sets Sa. Omit those elements in Sa preceding 
the corresponding adjoined elements of I ; then in view of Theorem 1.1, the union 
of all sets obtained this way will be non-stationary, and — as seen just now — it 
satisfies the other requirements of the theorem, too. 

5. As pointed out earlier, Theorem 4. 2 remains true, with a slight change, 
even if we do not require the divergence of the regressive functions mentioned 
there, i.e. we have the following: 

T h e o r e m 5. 1. Suppose the cardinal p is greater than, and not cofinal to 

Then there exists a non-stationary subset S of it such that, whichever the regular 

cardinal m<p may be, each regressive function on S assumes some values at least 

m times. 

The price of the omission of the divergence condition imposed on / is that, 
unlike in the earlier cases, here we cannot expect / to assume large values at all. 
A natural substitute for this still remains true; namely, as easily seen from the 
proof below, / assumes some values at least m times even if we confine ourselves 
to large arguments in the domain of / . 

Since in case p is regular, the theorem is trivially true for any non-divergent 
regressive function, the assertion for regular p is contained in Theorem 4. 2: thus 
we have to deal only with singular cardinals in place of p. Nevertheless the proof 
given here will apply for any limit cardinal so as to fulfil our earlier promise of 
giving an alternative proof of Theorem 4. 2 in this critical case. 
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P r o o f , i f p is a limit cardinal, then the cardinal numbers preceding it form 
a band; select its complement as the non-stationary set S. Let / b e an arbitrary re-
gressive function on S and choose m to be a sufficiently large successor cardinal. 
Then / will be regressive on the lower section of S formed by its elements contained 
in m, too. This set, however, is stationary in m and hence the function / cannot 
be divergent here. This means that for some p < m the set 

{a: a m & / (a ) = p) 

has power m, which implies the assertion of the theorem. 

6. We mentioned earlier that Lemma 4. 1 fails for singular m. In fact, the follow-
ing theorem is true. 

T h e o r e m 6. 1. Let m be a singular cardinal number and let p be its immediate 
successor. If S is a non-stationary subset of p, then there exists a regressive function 
f on it which takes each value less than m times. 

Since p is obviously regular, such a func t ion / must be divergent. The proof of 
the theorem might be compared to that of the first assertion in Theorem 3. 3. 

P roof . Let M denote the closure of the set formed by all ordinals ~<p having 
endings similar to m — i.e. each of which has some appropriate upper section of 
type m. Obviously, M is a band. 

First we want to show that the assertion of the theorem is valid for the set 
S = p — M which is now clearly non-stationary. 

To this end let us consider any of the intervals / t = , L) formed by two 
consecutive elements of M. According to the singularity of m, such an interval 
can be decomposed as the sum of a number less than m of its subsets each of which 
has cardinality -</«. Now define the regressive func t ion / on Iz as follows: transform 
every element of such a subset onto its initial element with the exception of this 
latter one the image of which will be If we consider a function / , obtained this 
way on each of the intervals Ix as a part of a function / defined on the whole set S, 
this latter function will meet all the requirements of the theorem. 

Thus what now remains for us to verfy is that the assertion of the theorem 
holds for any non-stationary subset of M. For this aim we modify slightly the defini-
tion of the above intervals 7t inasmuch as we adjoin to them their left endpoints, 
i.e. we put 7 t =[£ t , 

Let us now be given a non-stationary subset S of M and a divergent regressive 
function / defined on it. If Ix is any of the considered intervals, then clearly its 
whole inverse image under / has power g m; thus, in view of the singularity of m, 
we can modify the values in it assumed by / such that they still remain in Ix but 
each of them will be taken less than m times. Since the disjoint intervals It altogether 
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covcr the entire set p, by carrying out these modifications of the function / in all of 
the considered intervals, the obtained function will satisfy all the requirements of 
the theorem. 

7. What now remains concerns our "standard" idea. It can be formulated 
in a lemma and why we did not do it before is that we thought that it was more 
simple to carry out the proof in each particular case. Nonetheless, for the sake of 
its own interest, we now bring it into the limelight: 

Lemma 6. 1. If B is a stationary set in p and f is a divergent regressive 

function defined on some subset of p, then f cannot jump over all the large elements 

of B, i.e. there are some large fi in B such that for every a in the domain of f and ex-

ceeding P we have /(a) £ ft. 

We omit the proof. 
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