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In several previous notes (see PEETRE [8], [9 ] , [ 1 0 ] ; see also G O U L A O U I C [ 5 ] ) we 
found various conditions, both necessary and sufficient, for a function to be an 
interpolation function, of given power p, 1 <p < co — a notion which has its origin 
in the work of F O I A Ç — L I O N S [4] . In particular what concerns non-exact interpolation 
functions our results were almost complete, while as for exact interpolation functions 
the problem is, up to our knowledge, still essentially open (unless p — 2, see 
D O N O U G H U E [3] ) . This note is devoted to the observation that the methods of [8], [9 ] , 

[10] are sufficiently powerful to settle the question not only in the limiting case p = 1 
(and, by a conveniently modified argument, the case p = ° ° too), which is fairly 
obvious (see [5]), but also in two additional cases of a quite different nature: 
1° 0 < />< 1, 2° 0 </>-<oo and, in place of the field of real numbers R, a general 
local field F (e.g. the field of P-adic numbers Q P , P being any (rational) prime number). 
In case 1° we thus have to leave the realm of Banach spaces and admit "quasi-Banach" 
spaces; in case 2° we encounter analogous vector spaces over the field F. The 
possibility of both types of extensions, when dealing with interpolation in general, 
was first realized by K R É E [6]. In fact it is possible to treat both cases simultanously 
within the framework of what we call "g-normed additive groups", with a given 
q, 0 < g ̂  «D, and p ranging in the interval 0 <p S q. Clearly q = 1 in case 1° and 
Q — °° in case 2°. (It should be noted that there are also other parallels between 
thé two cases. E.g. to D A Y ' S theorem [2 ] to the effect that (in general) ( L P ) ' = 0 if 
p<l (case 1°) there corresponds (L")'=0 if /?<=«= (case 2°): there is (in general) 
no integral for functions with values in F (see M O N N A [7]). 

* 

Let G be an additive (Abelian) group. By a g-norm, where 0 < g ̂  in G we 
mean a mapping G$a-<~llall £R+ such that 

a) Ml =0<*a =0, 
b) ||« + è | | s ( | | a r + | |èr) , / e (i.e. ||a + è | |Smax(M|, | |è | | ) if e = 

If Q < oo then a —•Hall is a g-norm if and only if a — ||a||8 is a 1-norm. Therefore there 
are really only two cases: 1° q = 1 and 2° g = oo. But it is, from the notational point 
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of view, convenient not to pretend of this fact. An additive group G in which a 
<?-norm is singled out we call a @-normed additive group. The principal example 
is of course when G is a vector space over a "^-valued" field F. If F=R with its 
usual valuation (absolute value) we must have Q ^ 1 (unless G =0) but if F is a local 
field (say, the field of P-adic numbers QP) the case g = of course can occur (see [7]). 
If л is an endomorphism of G (i.e. n(a + b) = n(a) + я(Ь)) we say that л is bounded 
with bound M if 
(1) IMI s M\\a\\. 

The additive group of bounded endomorphisms of G we denote by 3§(G). 

Let I be a locally compact space provided with a positive measure ц, £ a 
positive ^-measurable function on X, G a complete g-normed additive group, 
0</7<oo. Denote by Jf=Jf(G) the space of bounded /¿-measurable functions 
on X with values in G and compact support. If a £ Ж we set 

(2) n i c = ыц = [¡{тытуЦ11'-
X 

This is clearly a g^norm in Ж, with gx = min (Q, p). The completion of Ж in this 
¿»i-norm we denote by Lj?=Lj?(G). A great portion of the theory of L p spaces with 
values in a Banach space E (over R), as developped e.g. in BOURBAKI [1], chap. IV, 
can be carried over to the present case, LP spaces with values in a complete g-normed 
additive group G (and weight function Q. But if p<g, as we have already remarked, 
there is (in general) no integral (see [7]). 

Now we come to our main definition. We say that a function H=H(z0, z{), 

defined, continuous, and positive for z0 >0 , z, >0 , is an exact interpolation function, 
of power p, with respect to G, if for any X, ц,С0, С i it follows from nd 3S(LQ П ^(L^) 

that тс£#(£.{!), with C=tf(C0, Ci) and 

(3) M=smax(M0 , MO 

for the three bounds M Q , M 1 , M involved. We consider here only functions H 
which moreover are homogeneous of degree I. We can thus write 

H{z0, z , ) = ZCMZJZQ) 

where It is uniquely determined by H. 

Our main result now reads: 

T h e o r e m . Assume that H is an exact interpolation function of power p, with 

respect to a complete q-normed additive group G satisfying the condition: 

(*) For every e>0 there exists a positive number A<e and an endomorphism 

X of G such that Ма)\\=Ца\\. 

Then <p(d) =(h(ff l l p)y is concave. If p = Q this condition is also sufficient for H 

to be an exact interpolation function of power p, with respect to any G. 
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Remark. If G is a vector space over a field F one can take / in (•£) to be. 
multiplication with a suitable c 6 F. E.g. if F=QP we may take c to be a power of P. 

Proof (necessity). As in [9], p. 170, we take X to be the set of n.+1 points 
x, x1, ..., xn and assume that ¡i to each of these points assigns the mass 1. Further-
more we take Co = l and £^x) = z, t^1(x?)=zi (/ = 1, . . . ,«) where 

(4) Z P = i ( Z P + . . . + 2 I ) . 

For a given e > 0 we choose A and x as in ( * ) and take n to be the integer part of 
1IX", i.e. + 1 or 
(5) 1-e" < 1-A" < 1. 
We define n by 

na(x) = 0, 7:a(Xi) = (x)) (/= 1, ..., «). 

For the three bounds of 7t we have then (using the condition on 7 in (•£)) 

M 0 = An l l p, M , = A - z [zf + ... + zn 1 1", [ № ) ) " + - +(h(zn)Y]
i'" 

or, in view of (4) and (5), 

M0 S 1, M, S 1, M > (1 - E ' ) ' / ' ^ { i [ ( / z ^ ) ) ' * - +(A(2„))"]}1/P. 

From (3) it follows now 

(1 _ £ P ) 1 [ ( / , ( Z I ) ) P + . . .+( / , ( z „)) ' ] <= (A(z))" 

or if we set <7f = zf (/'= 1, ..., /7) and use (4) again 

Assume for simplicity that«is even, say n—2m. Then we may take <7; = <r if; = 1, ...,m 
and at =T if i = m +1, ..., w. It follows that 

2 [ 2 
or, since e > 0 was arbitrary, 

<PQT) + < P ( T ) ^ ^ | FF + T 

This proves the concavity of (p. 

Proof (sufficiency). Let us set (see [8]) 

Kp(t,a)= inf (||a0||fo + ip||a1||f1)1/p 

a = ao+ai 
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where 0 < i < « > and a^L^ + L^. It is readily seen, using (1), that 

Kp(t, no) S max ( M 0 , Mt)Kp(t, a). 

Thus if we can find a representation of the form 

(6) Ml{ = m„{t, a)] 

with a functional $[(p] which is monotone and homogeneous of degree 1, we are 
through, because we then get 

IMIC = <P[Kp(t, na)} max (M0 , Mx)4>{Kp(t, a)] = max ( M 0 , M j ) M c , 

which leads to (3). By (2) we obtain 

(7) [Kp(t, a)]- = . inf/[(C0(*)IM*)lQp + ('Ci(*)ll«i(*)ll)p]<fo = 
x 

= f inf [(C0 (*) ||a0 (x)||)p + (iCi (*) IK Mil)"] d{i. 
x 

We claim that (if p ^ g ) 

(8) inf [(r0(*)R(*)ll)p•+ ('£ i(*)ll«.(*)ll)p] - [min (C0(*),-fCi(*))IK*)ll]p. 

Indeed we have, by the "^-triangle inequality" and using the fact that p ^ g , 

min (C0(x), (-v))!|fl(x)|| S [(£<>(*) Ikotoll)9 + ('(, (*) toll)«]1'« 3= 

s [(Co 00 K tollY + OCl to llfli tollp)]1/p. 

This leads to " a " in (8). But by considering the special decomposition a0=a, 

a1= 0 or ao=0, =a, depending on the value of t, we see that the corresponding 
lower bound is attained. Thus we get effectively " = " in (8). Inserting next (8) in (7) 
we arrive at the formula 
(9) ' Kp(t,d) = \\a\\min^tM. 

Now every concave function <p admits the representation (see [9]) 

OO 

<p(o) = CQ + C^CT + J min (1, ia)d£(z) 
o . 

where C0 and C L are positive constants and ^ is a positive measure on (0, <*>). It 
follows that 

OO • 

(//(Co, Ci))p = C0Cg + C , C ? + / (min(Co, t C j y d U t " ) ' 
o 

or, by (9), with d<x{t) = d^(t% 
OO 

(10) | | a | | { = [C0\\a\\j?0 + Cja\\l +f (Kp(t,a)yd«(,tj\
1 1''. " 
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Since, by (9), 

Ml;,, = l i m Kp(t> à), ||a||Çl = lim \ Kp(t, a), (—00 r-*o « 

(10) is a representation of the desired type (6). 

Remark. In conclusion we remark that the above result probably also can 
be extended to the case when not only the weight function Ç but also p is a varied, 
à la S T E I N — W E I S S [12] (i.e. we have spaces and in place of just L£0 and 
by making use of the corresponding ideas in P E E T R E [11]. 
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