A generalization of the Rees theorem in 'semigrdups
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1. Introductlon and summary

The Rees theorem asserts that a semigroup S is completely O-simple if and only
if S is isomorphic to a regular Rees matrix semigroup #°(G; I, A; P) over a group
with zero G° (3.5, [1]; see also the original paper of REEs {5]). As with the Rees
matrix semigroups over a group with zero, we can construct -a semigroup
AMOD; I, A; P) starting with any semigroup D instead of a group. A natural way
of generalizing the Rees theorem consists on solving the following problem: to give .
an abstract characterization of semigroups #%D; I, A; P), where D is taken in
a class of semigroups containing the class of groups. The purpose of this paper
is to give several solutions of this problem, with some restrictions on P, using the
notion of a 0-matrix decomposition of a semigroup [3]. '

We say that a semigroup S has a 0-matrix decomposition if .S has a zero 0 and
‘there exists a congruence ¢ on S such that (a) 0 is a g-class and (b) S/P is a rectangular
O-band (i.e., a completely O-simple semigroup with trivial subgroups).' In such
a case, ABAS A or 0 for all g-classes 4, B. If all the g-classes which are subsemi-
groups of S belong to a class 7 of semigroups, we say that S is a 0-matrix of semi-
_ groups of type 7. In case S has no zero, obvious modifications of the preceding
definitions yield the concepts of a matrix decomposition and a matrix bf semi-
groups of type . Using this terminology and separating the cases with and without
zero, we obtain the following weakened versions of ‘the Rees theorem:

(i) A semigroup § is a matrix of groups if and only 1f A= ./II(G L A; P),
where G is a-group (Theorem 12, [4]). '

(ii) A semigroup Sis a 0-matrix of groups such that the classes of the correspond-
ing congruence g satisfy ABA=A4 or 0, 1f and only if S=.#°(G; I, A; P), where
G is a group (4.5 [3)). .

In view of this situation, for the case without zero, we introduce the class of
composable semigroups (2. 1), which, e.g., contains the class of bisimple seinigroups
with identity (2. 3). For the case with zero, we introduce a special kind of matrix
decomposition, the Rees 0-composition @A. 3). Our main results are:’
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(1) A semigroup S is a matrix of composeble semigroups if and only if -
= #(D; I, A; P), where D is a composable semigroup and P is a A X I-matrix
over G, the group of units of D (3. 10).

(2) A semigroup Sisa Rees 0-composition 1f and only if S= JOD; 1, A P)
- where D is a semigroup with identity and P is a regular A X I-matrix over G°,
G bemg the group of units of D (3. 4).

(3) We give an abstract characterization of #°(D; I, A; P) when D is a bi-.
simple inverse semigroup with identity, P is a regular A XI-matrix over G, and
G is the group of units of D (5. 1). This characterization uses properties of the
- partially ordered set of idempotents and the fact that principal right [left] ideals
form a semilattice under intersection.

" In section 2, we study right [left] composable semigroups. Using the notion
of an r-composition of semigroups (2. 4), introduced by YosHIpA [8], we show ‘in
2. 5 that any r-composition of right composable semigroups is isomorphic to D X R,
where D is right composable and R is a right zero semigroup. Our main results (1)
and (2) are established in section 3. We also prove that the class of composable
_ sernigroups is the largest class € with the property that every matrix of semigroups

of type € is a Ree_s composition (3. 9). Section 4 is devoted to O-restricted homo-
morphisms of semigroups .#°%D; I, A; P) discussed above; they can be described
in essentially the same manner as those of a Rees matrix semigroup over a group
with zero (4. 1, 4.2). We also. eharacterize Rees matrix semigroups which can be
expressed as products of some special semigtoups (4. 3). The abstract characterization
“described in (3) above is given in section 5. It is of interest to note that 5. 1 makes
it possible to construct certain 0-bisimple regular semigroups from bisimple inverse
semigroups with identity. The characterization given in 5.1 simplifies.if we assume
that the idempotents form a subsemigroup. We obtain, e.g., the structure of any
bisimple semigroup whose idempotents form a subsemigroup isomorphic to the
Cartesian product of a semilattice with idéntity and a rectangular band (5: 6). In
Section 6, we conclude by giving an example of a bisimple regular semigroup whose
set of idempotents does not satisfy the conditions of the version of 5.1 without
zero. : :

Recently STEINFELD [7] gave an abstract characterization of matrix semigroups
. AO(D; I, A; P) which are locally regular (i.e. the entries of P are not necessarily
taken in G°, wheré G is the group of units of D, but certain entries of P have
invertibility properties). Our results concern the instance in which the entries of
P are in G°.and widely supplement those of Steinfeld in this case.

Except for thé concepts defined in the paper, we follow the notation and termi-
nology of CLIFFORD and PRESTON [l]. In section 3 and 5, we use a number of concepts
introduced and results proved in [3]; howe{ler, the knowledge of {3] is not-indispens-
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. able. In order to avoid repetition, >instead of ¢S is a semigroup with identity [zero]”
we write §=S! [S=S°]. If §=S' [S=S5"], then 1 [0] denotes the identity [zero}
of S unless stated otherwise. : '

2. Composable semigroups

Definition 2. 1. A semxgroup S=S!1is called rzght [left]. composable if
for any ac S, axa=xa [axa=ax] for all x€ S implies a=1. A semlgroup is called
" composable if it is both right and left composable. :

The reason for this terminology as well as the importance of such semigroups
will become clear later (2. 5). We consider now some propertles and examples of
these semigroups. ' .

Proposition 2.2. A semigroup S is [right] composable if and only if S'= st
and the identity transformation on S is the only inner [right] translation of .S which
is also a homomorphzsm

Proof. The bracketted part follows dlrectly from the equwalence of the
statements: (i) ¢, is a homomorphism, (i) (xa)(ya)=(xy)a for all x, y€S,
(iii) aya=ya for all y¢ S, when S=S'. S

Proposition.2:3. Any bisimple semigroup S=_S8"t is composable.

Proof. LetacsS and suppose that axa=xa for all x¢ S. Since S is bisimple,
there is z€ S such that a.%z and zR1; a¥z implies za =z since a®> =a. If 2z’ is an
inverse of z, then z%2’z, which implies z’z==z"za. Since axa=xa for all x€ S,
‘we obtain z'z=z"za=z'aza=z’az. On the other hand, zZ1 implies zz’' =1, which
together with 2’z=z’qz yields

i =z = z(z’z)z’ =z(z’dz)z' =(zz")a(zz")=lal =a.
Hence S is right composable; analogously S is.also left composable.
Example 1.*) Let S be a left group which is not a group. Then S?! is right

composable. Since every idempotent e of S is a right identity of S, we have exe =ex
for all x¢ S*; hence S* is not left composable.

Example 2. Let S=S' and let S have a minimal two-sided completely
simple ideal K which is neither a left nor a right group. Further suppose that 1 is
the only idempotent of S not contained in K. Then S is composable. For if axa=xa

*) The referee points out that the right composa}ble semigroups are precisely those semigroups
with’ identity containing no proper left ideals with identity (the verification is left to the reader).
Hence any left simple semigroup with identity, or a semigroup S* where .S is a left simple semigroup
without -identity, is right composable.

8*
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for every x€ S and some a€ S, then a® =a and thus either =1 or a€ K. The latter
possibility is excluded since axa=xa for every x€ K implies aZx for every x¢K,
which in turn implies that K is a right group, contradicting the hypothesis. Thus
S is right composable; by symmetry S is also left composable.

Example3. Let S=S! be the union of groups such that no 2-class of S dif--
ferent from the @-class containing the identity is a left or a right group. Similar
reasoning as in the previous example shows that S is composable.

Definition 2.4 (cf. [8]). A'semigroup S is said to be an r- composition
[i-composition] of semigroups {D;},c,if S= U D,l, DAﬂD gifl #u, and each
D; is a left [right] ideal of S.

Note that if S is an r-composition of semigroups D,, the equivalence relation
induced on S is a congruence ¢ such that S/g is a right zero semigroup, and con-
versely, every such congruence induces an r-composition of S. Furthermore, for
a given family of pairwise disjoint semigroups, there may exist no r-composition
(see [8]). The importance ofthe class of right composable semigroups stems from
the next two theorems. :

Theorem 2.5. Let S be an r- composmon of right composable semlgroups
. D,, A€ A, with identities 1,. Then the set R, ={1,|A1€ A} is a right zero semigroup,
all D, are isomorphic, and S= D, X R,, where Dy is any of the semigroups D, . o

Proof. For any A, u€A and x€D,, we get xl;ED,l so that xl,l—l,lxll,
© since also x=1,x, we obtain 1,1,x1;1,=x1,1, for every xED Since 1, 1,€D,
~and D, is right composable it follows that 1,1, —l This proves that R, is a rlght
zero semigroup. Fix any index, say 1€ 4, .and deﬁne o by xp=(xl,, 1) if x¢D,.
A straightforward calculation shows that ¢ is an isomorphism of S onto D, X R,.
(This is a special case of Theorem 14, [4].) It is now clear that ail D; are isomorphic: -
Consider the following conditions on a class 4 of semlgroups
(A) Every semigroup in % has an 1dent1ty
(B) % is closed under isomorphisms. 4
(©) If a semigroup S is an r-composition of semigroups . C,1 in %, }EA
then R, = {1,|1, is the identity of C,, A€ A} is a subsemigroup of § (and thus, by
the proof of 2.5, S=C; XR,, where C; is any of the semlgroups C,I and R, is a
, rlght ZEro semigroup).

Theorem 2.6. Let € be a class of semigroups satzsfymg (A), (B), (C) Then
every semtgroup in € is right composable

, Proof. Let Cefg and suppose that exe%xe for some e€C and all x€C.
Let « be an isomorphism of C onto a semigroup D disjoint from C. In §=CUD
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definé multiplication as follows:

xy if x,yeC or x,y€D,
x*y=1[(xe)a]y if xeC,yeD,
(xa~Yey if xeD,yeC

(multiplication in C and D is denoted by juxtaposition). A simple calculation shows
that this multiplication is associative. Hence S'is an r-composition of C and D.
By (B), D&% and thus by (O), the 1dent1t1es I¢and 1, of C and D, respectively, form
a rlght zero semlgroup Hence :

ex = [(Ice)a]lp = lc*ln = 11)7

which. 1mp11es that e—lc Consequently Cis right composable

Corollary 2.7. The class of right composable sengroups is the largest class
of semigroups satisfying (A), (B), (©). :

: 3. The main theorem

Recall that a.rectangular 0-band is a regular Rees matrix‘s_emigroup over a one
element group, and that a congruence ¢ on a semigroup S is called an I-matrix -
congruence if S/g is a rectangular O-band and I is the complete inverse image of 0.
- The classes of ¢ which are complete inverse images of nonzero idempotents: in

S/ are called nonzero classes of g, the others are zero classes. We are interested
here solely in the case when S has a zero and I=0; in such a case, g is called a
O-matrix congruence on S. These concepts were introduced and studied in [3] (see
" particularly section 1).: ‘

Definition 3. 1. Let % be a class of semigroups. A semigroup S is said to be
a O-matrix of semigroups of type € 1f S=S° and there is a 0-matrix congruence
9M on S whose nonzero classes are in %. :

Proposition.3.2. If §=S8° is a semigroup having a O-matrix congruence
M all of whose nonzero classes have an identity, then ‘JJE is the finest 0- matrzx congruence -
on S.

‘Proof. Let 9 be as in the statement of the proposition, and ®(0) be the
finest 0-matrix congruence on S (2. 6, [3]). If A is a nonzero class of M, then « = d>(0)| i
is a matrix congruence (i.e., 4/« is a rectangular band), and since 4 has an identity,
o must be the universal relation. Hence A is a class of $(0). Conversely, if Bis a non- '
zero class of @(0), it must be contained in a nonzero class 4 of M and thus B= 4,
~i.e., Bis a class of M. It follows that M and H(0) have the same nonzero classes
~which by 2.2, [2], implies 9 = &(0). ' 3
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Definition 3.3. A semigroup S is called- a Rees O-composition if S=S°
and there is a 0-matrix congruence M on S whose classes, denoted by DI (14 I A€ A),
satisfy the condition :

(D) for every M-class 2., there exists an element x;, € 2?,-,-, with the property
~ that for every j€I, pc A:

X325, = Xy or 0 and Zj,x; = I, or 0.

jA
Remarks. 1) More precisely, we should speak of a ,,Rees 0-composmon
relative to M”’; however in 3.5 we will prove that every nonzero class of - M has
an 1dent1ty, which by 3. 2 will imply uniqueness of 9N.

" ii) Note that EM Z;,#0if and only if X; is a nonzero class (p. 80,[3]) so
that by (D), x;; m =2 if and only if X, is a nonzerfo class; analogously for
metl

iiiy A 0- matrix of semigroups of some type % need not be'a Rees 0- composmon
e.g., a 0-matrix of groups is in general an ideal extension of a completely 0- snmple
semigroup.

Definition 3.4. Let D=D! be a semigroup with the group of units G
(i.e., G is the #xclass of 1), and let P be a regular A X I-matrix over G° (i.e., in each
row and each column of P there is at least one nonzero entry). By .#%D; I, A; P)
~ denote the set of all elements (a; i, 1), with a€ D° (D with zero adjoined even if
D already has a zero), i€, 1€ A (the elements (05 i, ) are identified with a single
‘element 0, the zero of #°(D; [, A; P)) together with the multiplication

. (@5 5 ) (b; g, W= (apubs i ) }
Then #°(D; I, A; P) is a semigroup which we call the Rees matrix semigroup
.’(over D®). The congruence IR defined by (a;/, A)‘JJ?(b Jj, Wei=j, A=pu, and
. 09O is called the associated congruence.

' If D is a group, D =G and our terminology and notation agree w1th that used
in [1] except that we consider only a regular sandwich matrix P. We are. now ready
to. state our main result. ' :

_ Theorem 3.4. A semigroup S is a Rees 0-composition if and only if S is iso-
morphic 10 a Rees matrix semigroup ,//O(D I, A; P), where D=D'..

Proof. Suﬂimency. Let Q= .#%D; I, A; P) where D—Dl. Note first that
the associated congruence M on @ is a O-matrix congruence; its classes different
from 0 are the sets Z;,={(a; i, A)|acD}, icl, A€ A. Let x;;=(l;i, 2); since M
~is a 0-matrix congruence, %, 2, S 2, U0 for any j€I, € A. If x;, £;,#0, then
' X 2;,E %y, and p;;#0. Consequently, for any (y; i, p)€ Xy, we obtain

= ip>

. - '(y,l,it) —.(l,l,/’{)(ph ya]’.u)-e-xtlzju:
whence x;;Z;, = Z;,. The other half of condition (D) is established similarly.
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Necessity. The proof is broken into several lemmas in which S is a Rees
0-composition, and ZX;; are the classes of the congruence induced.
“Lemma 3. 5. Every nonzero class X, has an identity (denoted by'1;;).

Proof. Let X; be a nonzero class; then x;;Z;=2,x,=2; (by (D)).
There is 1€ Z;; such that x;;=x;,t and forevery y€ X2, y=ux,, for some u€ZX,.

Hence yr=ux,t=ux,, =y, i.e., 1 is a right identity of X,,. Dually, X, also has.

a left identity which implies that 1,,=1 is the identity of IX;,.

Lemma 3.6. If y€ Z,i, then y—l,,,y v1;, whenever %, and X;, are nonzero
classes. ‘

Proof. Since X, is a nonzero class, 'x;,Z;; =Z;; by (D). For any ;vé Z.,
we obtain y=ux;, u for some u€ I;;, so that 1, y=1,x,u=x;, u=y. The equality
=yl;; is established analogously. ' '

As a consequence of 3.6, we have
11;4116 - 116’ IMIJ). - 11).

provided that X, Xy,
express mention..

2 and X, are nonzero classes. We will use this without

Lemma-3.7. Let
S, = {AES[x.%l,,,x,?lk; for some I,k€1 v, AEA}UO

. rhen S, isa completely 0-simple subsemigroup of S, and Sy mrersects every class .
of M.

Proof. Let x€ZX,;NS, and yeX;, NS,. If xy=0; then xXy€S,. Suppose
xy#0. We have xZl,,, xZ1,;, ¥R 5, y&l,, for some k, mel, v, 5¢A. Con-
sequently . _ - A

Xl = xl; = xhy 1 = xl; = x.

So we have x1;,%x; thus x21;, implies xiﬁ,ﬂliv. Since 2 is a left congruence,
YR 5 'implies'xy?/?xl)-a, and hence xyZl;,. One shows similarly that xy#1,,,
which proves that xy€ S,. Thus S, is a subsemigroup of S. '

Let Z;; be any class and Z.,, Z;be nonzero classes. Then by (D), x;Z;,=Z;,
whence x;t=1;, for some 7€ X;,; this together with x;=1,x; (3.6) implies
x;R1;,. Dually, we obtain x;;#1,,, and thus x;,€ Z;;N-S;, which proves the
last statement of the lemma. Further, if X is a nonzero'class, then %, S, =G,
_the group of units of X;;. For obviously X;; NS, 2G,;, while the opposite inclusion
holds.since x€Z;; NS, implies xZ1,,, x#1;, for some jclI, u€ A; this together
with 1,21, 1,%1;, implies xo#1;,. It then follows that the restriction of M to
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S, is a O-matrix congruence whose nonzero classes are groups. By 3. 6, every element
of S, has a left (and a right) 1dent1ty, and thus 4. 1 and 4. 5 of [3] 1mply that Sl
is completely O-simple.

Let H;;=ZX,; S, and choose any nonzero class ZX,; then Hu is the group .
of units of X,,. For each i€, A€ A, select EH,1 and g¢,€H,, and define P
as the A><I-matr1x P=(p;) over HY, by

, s if giti€H,y,
L ) - otherwise.

Lemma 3. 8. Every nonzero element of S is uniquely represent‘abléin the for)n ‘
raq; witha€ X, i€l, A€ A and the mapping ® defined by (a; i, ))® =r,aq,, 09 =0,
is an isomorphism of AMNZ; 1, A; P) onto S.

 Proof. For A€ A, there exists i€l such that X, is a nonzero class. Hence

g; has a unique inverse ¢ in R, MLy, since Hj; is a group and S, is completely
0-simple. Thus 1,,9,=g¢; and ¢,g;=1;,. Now M=RNEL, where R[L] is a O-left
[0-right] zero equivalence on S (1.7 and 1.10, [3]). Let C;, i€l, and T, A€ A,
~ denote the R and’  classes of S, respectively, different from 0. For every x€T,,
by 3.6, we obtain xq;q;=x1,, =x, and analogously, for every y€I';, yq:q,=y.
. The mappings x —~xg,(x€I,) and y~yq; (y€I,) are mutually inverse C;-class
preserving one-one mappings of I'; onto I', and of I', onto I';, respectively. Using -
r; and r{, one similarly establishes one-one I'j-class preserving correspondences

between C, and C;. Tt follows that the mappings x —>rxq, (x€ Z,,) and y —r} yq;
~ (p€ Z,,) are one-one inverse mappings. Since every nonzero element of S belongs

to some X;;, this proves the first part of the lemma and also that @ is one-one and

onto. The proof that @ is a homomorphism is the same as for the corresponding
~part of the Rees theorem in [i], pages 93 and 94

This completes the proof of 3. 4.
Recall that a matrix congruence ¢ on a semigroup S is a congruence such-that

S/o is a fectangular band (see, e.g., [4]). If we adjoin a zero to'S and extend ¢ to
- S° by letting 000, we get a 0-matrix congruence. Definitions 3. 1 and.3. 3 then carry-
over to this case if we then remove the zero. We thus obtain a matrix of semigroups
.of type € and a Rees composition #(D; I, A; P). The next theorem shows that
for the case of a matrix of semlgroups the class of composable semigroups is the
best in a certam sense.

Theorem 3 9. Let € be a class of semtgroups closed under zsomorphzsms :
Then every semigroup in € has an identity and every matrix of semigroups of type
% is a Rees composition if and only if € is contained in the class of composable semi-
groups. '
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Proof. Necessity. Let S be an r-composition of semigroups C; in &, e
By hypothesis and 3.5, S=./(D;I, A; P) with D=D'. Since every C, and
D have identities, 3.2 implies that, by identifying S with .#(D;1I, A; P), the
- congruences induced by the r-composition and by the Rees composition coincide.
Hence we may set = {1}, A= A’.1f 1,is the identity of C;, we have 1, =(p'; 1, 4);
it follows that the set R,={1,]1€ A} is a subsemigroup of S. We have proved that
¢ satisfies condition (C) (preceding 2. 6); since % satisfies (A) and (B) by hypothesis,
2.6 implies that every semigroup in % is right composable. A dual proof shows
‘that every semigroup in € is also left composable.

Sufficiency. Let § be a matrix of composable semlgroups Zi wrth identity -
1;,, i€l, A€ A. To establish condition (D) in this case, it suffices to show that

1, 2,,=2%;, and Z;,1,=2;, for all i,j€l, A, peA. The set C;=UZ%,; is an
1€4

r-composmon of semigroups X; which are (rrght) composable 2. 5 then implies
115, dually, we have ],,11 ia=1;;. Hence
1 - lulm (lzllﬂ.)lm - 11}.(1]) lm)e 11}.2]”’

whence for all xE z;

=13

Y = 1,x€l T xC 1,5,
Consequently X;,&'1,,X;,; the opposite 1nclus1on holds since Z,l):m_ Z;,- Thus
1,Z;,=Z;; the equality X;1;,=2;, is proved symmetrically. Therefore Sis a
‘Rees composition. . ' '

Corollary 3. 10. A semigroup S is a matrix of composable semigroups if and
only if S=.#(D; I, A; P), where D'is composable. - '

It appears to be much more difficult to obtain a characterization of a 0- matrix
of semigroups of type 7 without additional restrictions. The next theorem which
generallzes 4.5, [3], points in this direction. ’

_Theorem 3.11. Let S be a O-matrix of bisimple semigroups with identity.
Then the following conditions on S are equivalent: :

a) S is regular.

.b) S is 0-bisimple. _

¢) S is a Rees 0-composition.
In such a case; S=#°(D; I, A; P), where D= D" is bisimple.

Proof. Denote the classes of the 0-matrix congruence (see 3.2) by X, i€,
A€A, and if X}, is a nonzero class, let 1,; denote its identity. Recall the notatlon

. C szls FA._‘ Uzzl

a)=>b) If x¢€ Z;;, then by regulanty of S, x=xyx for some y¢ Z;,. It follows
that e==yxisanidempotent of Z;, and x%e. Since Z;;isthena b1s1mple semigroup,
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‘we have eZ1;;, and thus xZ1;;. If X,; is any nonzero class, 2. 3and 2.5 imply
1;La=1j; and 1;1;;=1,,, ie, 1;2];;. Thus x21,; which shows that: any two
-elements of I', are Z-equivalent. By symmetry we obtain that any two elements
-of C; are also 9- -equivalent. Since these statements hold for any i, 21t follows that
S is 0- blsxmple :

b)=c). Consider any ZX;; and any nonzero classes X, and X,;. Since S is
‘0-bisimple, there exists x€ S such that 1,,%x and xZL1y;. It follows that x¢€ X, N S, .
Let x;; be any element of X; NS, and suppose that x;,Z;,#0; then x; 2,E 2.
Let y€ Z,,. Since S is 0-bisimple and contains nonzero idempotents, S is regular
.and thus. y =¢y for some idempotent e€ 2;,. 'Hence X, is a nonzero class and thus
X;; R, which implies 1, =x;,z for some z, and Xx;; =1,x;;. By symmetry, we
have x;,=x;1,, for some n€ I, which together with lj;.gl,,,-_ implies x;; =x;;1;;.
‘Consequently ' : :

y=ey=ly (ey) = lypy : (?‘i;.z)y =.(xiilj).)zy = Xi;.(lj;.ZJ’) €Xi,2 5,

' Therefore 2,Ex,;2;, and the-equality holds. The proof 6f Zjuxu‘:)?j,_, 1f Zy,isa

=
nonzero class, is dual Therefore (D) holds and S is a Rees 0-composition. g

c)':>a) .By 3.4, S=./4%D; I, A; P) with D=D!, and by the uniqueness of
induced congruences (3.2), D is bisimple. Item a) then follows by a stralghtforward
computatlon in #%D; 1, A; P) usmg regularlty of D.

4. Homomorphisms of Rees matrix semigroups _

A homomorphism ¢ of a semigroup S=S° into a semigroup 7=T7? is said
to be O-restricted if ap =0=a=0. A homomorphlc image of a Rees matrix semi-
group need not be a Rees matrix semigroup; however, if ¢ is a O-restricted homo-
morphism of a Rees matrix semigroup S onto. S*, then S* is also a Rees matrix
. semigroup. The next theorem describes all O-restricted homomorphisms of a Rees

matrix semigroup into another; it generalizes a result of Munn (3. 11, [1]). Recall
~that for a semigroup D, D° denotes the semigroup obtained by ad]ommg a zero
to D (even if D already has a zero)

Theorem 4.1. Let S=.4°D;I, A; P), S*= 4%D*; I*, A*; P¥), where .
D and D* are semigroups with identities 1 and 1%, respectively. Let w be a O-restricted
homomorphism of D° into (D*)°. Let i—~u; be a mapping of I into the R-class of
lw, 2—1, be a mapping of A into the ¥-class of 1w, and &,y be mappzngs of I into
I* and A into A¥, respectlvely such that

A1) : - Pyi® = U; D%y ioll;
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Sfor all i€l )LéA, For each element (a; i, 2)€ S, define
) : (a i, )0 = [u (am)v,; id, le]

Then 6 is a O-restrzcted homomorphism of S into S*. Conbe;sely every O-restr 1cted o

~ homomorphism of S into S* can be obtained in this faslnon

Proof. In the direct part, the proof that 0 is a homomorphlsm is the same
as in 3. 11, [1], and is omitted. It is clear that @ is O-restricted:

For the converse, the proof of 3. 11, [1], is modified as follows. The mappmgsvt
¢ and y are defined as there (substituting # and - %-classes by R and 2-classes,
respectively; see the proof of 3. 8). We select a nonzero class X, of the associated
congruence M of S, and denote its identity by 1,,. Then 1,,0 is a nonzero idem-
potent so that the class of IN* (the associated congruence of §*) is nonzero, whince
- Ply, 14,7&0 The equation

® (pii'x; 1, D0 = [piy ho(x); 10, 1Y]
defines a homomorphism of _D'into D*. For every i€, define u; by
@ (134,10 = [u3 10, 1]

and for every 2 € A, define v, by

(5) v _ (il 1,00 = [Pw w5 19, APl

Since (l;i, DZ(p7i; 1, 1), by (3) and (4), we obtain

[us; 10, W] L1pi7 o (10)5 10, 1y],

- which implies u,S,”lco Similarly (p7t; 1, DZ(p1t; 1, 2) implies, by (3) and
),
[le 1005 19, }l//]@[l’w m(lw) 19, 1Y],

which implies le (Pt 2 m)(la)) whence v; % w. ‘Writing (a; i, ))E S in the form

(14, ) (pifa; 1, D (p1'; 1,))
and applying 0, we obtain (2). From (2), we have

(136, 220 = [u(puw)v;; i, 2],
[(15 4, DO = [u;(lw)v;p5y iwui(10)v; 5 19, W]
and thus _ : :
©) u(p; 0, = 11}(1w)“;.[’fw,i‘plli(lw)vz-
Since ;1w and v, Zlw, wé have u(lw)=u,, uju;=lo, (l‘cu)u,-_:v,._', v;0;=lw for
some u},v;€D. Taking into account u(lw)=u;, (lw)v,=v, and multiplying (6)
on the left by u; and on the right by v}, we obtain (1).
To state the next corollary, using the notation of 4. I, we deﬁne a left invertible
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I* X I-matrix U over (D*)° as a matrix which has exactly one nonzero entry in each
" row and-in each column, this entry being in the #-class of 1*. A right invertible

AX A*-matrix V is defined dually. The proof of the following corollary is essentra]ly
" the same as the proof of 3.12, [1].

Corollary 4.2, Two- Rees matrix sémigroups JHUD; I, A; P) and
AO(D*; I, A*; P*) are isomorphic if and only if there exists an isomorphism w of
D onto (D*)°, a left invertible I* X I-matrix U over (D*)° and aright invertible A X A*-

“madtrix V over (D¥)°-such that Pw=VP*U. '

We now consider the special cases of Rees matrix semigroups which can be
conveniently expressed as products of certain semigroups. Let- 4 and-B be semi-
groups, where B has a zero 0. By 4 X°B denote the Rees quotient 4 X B/4 X0

(A X B is the Cartesian product of 4 and B). Let P be a A X I-matrix over a group
with zero G°. We say that P. satisfies condition (M) if every nonzero product of
the form .

pﬂ._lupluzpi_zlzplzla p/l.,-. tin- 117},. ,x,,PA,,z,,P)nu
is equal to 1, the 1dent1ty of G (p.97, [3]) Recall the definition -of S1 (3 7)

' Theorem 4 3. Let S=.%D;I, A; P) and let G be the group of units of _
D=D'. Let P be the AXI-matrix wtth entries

T {1 if P;u'¢0 _
Pa if pu=0.

- Let B=./°(1;I, A; P), where 1 denotes a one element .group. " Then
S, = .#%G; I, A; P) and the following stateménrs are equivalent: - T
a) S=Dx°B; b) S;=Gx°B; ') P satisfies (M).

Proof The first. statement follows easily from the proof of 3.7; b) and c}
- -are equivalent by 4. 13, [3] ((@)=(e)). Since S, = #%G; I, 4; P), it follows easily
that a) implies b). Suppose that c) holds. By 4. 13 and 4.10 of {3], there exists a sub-
. semigroup F of S, intersecting every s#-class H;; of S, in exactly one element;
denote it by e;. If H;, is a group, e;; is an idempotent and thus ‘e, =(p5; i, ). .
Iffor (x; i, )€ S, (x; i, A)e;; #0, then p,; 0 and thus e;; = (p7'; j, 4). ‘Consequently
(x; i, Nej=(x; i, 2). Symmetrlcally, if e,”(x i, 1)#0, then e,,,(x i, A =(x;i, A).
Applying. 4 8, [3], we obtain a).. =~

Corollary 4.4, Let §= J/"(D I, 4; P) Ifthe group of units ofD is trmzal
then S=D X°B, where Bis as in 4.3. ‘

Proof. If the group of units of D is tr1v1al 4.3 1mp11es that S, = B, whence
S D><°B again by 4, 3. ‘
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5. Rees matrix semigroups over a bisimple inverse semigroup with identity

The principal object of this section is to give an abstract characterization of -
“such a semigroup using certain properties of its set of idempotents. From this we

" - then derive simple characterizations of several classes of semigroups. The set Eg

of idempotents of a semigroup S is now considered as a partially ordered set under
‘the usual order e=fwoe=e¢f =fe. If we write Es=C, where C is a semigroup,
- it means that Eg is a subsemigroup of S and is isomorphic to C. )
Theorem 5.1. Let S be a 0- -bisimple Asemigroup Then S= #%D; I, A; P),
where D=D! is a bisimple inverse semigroup if and only if S sansﬁes

a) for alI a, b, c€S,abc=0=ab=0 or bc=0;
b) there exist order Isomorplnsms ¢ and  of Eg onto E,,

where A=TX°B, T=T'isa semzlatttce, B isa recrangular 0-band, such that for all
e f‘E ESs

) ef=felep)(fo)=fo,
i) ef=ea(ef)(f)=ey,
i) if ep =(x, d) and e =(y, b), then a=b;.
c) forall e, f€Eg,
i) eSNfS#=0=eSNfS=efS,
i) SeN Sf#0=SeN §f= Sef.
In such .a case, T=E, B= : MO(1; 1, A; P), where Pisasin 4.3,

) Proof. Necessity. For convenience we identify S with #°(D; I, A; P).
Item a) follows from the fact that the associated congruence I is a O-matrix
congruence- (1. 6, [3]) Let T=E,, B=4°1; LA, P), and A=TXP°B. It is easy
to see that

)] Es = {(Cx; 4, '1)|Pu #= 0, Xpyx = x}UO.
On E; define the mappings ¢ and ¥ by:l
(x;i, D0 = (xpy, (134, 4) if x#0, and 0p=0,

o (x; 5, )¢ = (pux,(1;i,4) -if x#0, and Oy =0.

- Note that h '

) , EA—{(e (l I,l))]éETp;_,#O}UO ‘
Using (1) and (2), it is stralghtforward to verlfy that ¢ and y satisfy all the conditions

in b). We prove only that ¢) i) holds; ¢) ii) is treated analogously Thus let e=(x; 7, A),
f= (y J» 1) be idempotents of S such that eS ﬂfS;éO Then .

(3, Dz k v) (v; Jo (w; m, 8) #0 .
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for some (z; k, v), (w; m, §)€S and hence i=j. Since e, f€ Ej, (I) yields p,h¢0
Pui=P,; 720, which by commutativity of 1dempotents in D implies
. xpiiy = (Xpa) (yP,u')P,u' = (yPu) (X2 P’ -
Consequently .
of = (x; i, H(y3 iy ) = (Yp,.y,r u) = (31, W(PupE" i 1)

which implies efceS NfS. Conversely, if x€eSNfS, then x= ex =fx=efx¢€ efS,
Therefore eSS fS=¢fS. .

Sufficiency. We will freely use the termmology and results of [3] First note:
that S is regular (0-bisimple containing a nonzero idempotent). Since S is 0- bl_slmple,,
for a0, b0, there is ¢c€ S such that aS=c¢S, Sc=Sb. It follows. aSh=cSh=
=cSc>0 and 0is a prime ideal of S, which together with a) implies that 0 is a matrix -
ideal of S (p. 74, [3]). By 1. 6, [3], S has a 0-matrix congruence; let M be the finest:
such. Then M=0 Nz, where asb=a=5b=0 or there exist ¢, , a,, -+, @, € § such that

3)  aS\0|a,S\0] -+ [4,5\0[bS\0
(|means “intersects”) and 7 is defined symmetrically using left ideals (2.6, [3])-
We will show that each nonzero class of 9)2 is a blslmple inverse semigroup with
identity.

If Bz ./%1;I, A;Q), then A= ,,zO(T; 1, A; Q). We -identify A4 with
MUT; 1, A; Q). '- : .
- Suppose that for e, f€ Es, eSNfS=0. By c) i), eSNfS=efS which implies
'f(ef)—ef ‘e(ef). Thus ef € Eg so that by b) l) we obtain o

(fo)l(ef) ol =(ef) o =(ep)[(ef) 9] 0.

Hence if e =(t; i, 1) and f(p (u J> 1), then i=j. Now, if e, f€Eg, e#0, edf,
then by (3)

' eS\0le, S™N0] -+ [e,S\0[fS\ 0

“for some e, e,, -, e,€Es since a,S=e,S for some e;€ Eg} by regularity of S.
Letting again e =(¢; i, 1) and fo=(u;j, u), the preceding observation implies
i=j. Dually, if ezf, eu//z(u‘ i, ), flp:(W'j, 1w, then A=p.

. i Conversely, if ep=(t;], A and * fo=(u;i,y), then (ep)[(e@) (fo)l=

=(e9)(fo) and (f9)[(ep)(f@)l=(ep)(fp), which by b) i) implies

elle@) (fPlo~! = [(e@) (fO)lo~' = f(ep) (fO)lo~1,
ie, eSNfS#0. Dually. ey=(v;i,A), fy=(w;j,4) implies SeNSf=0.
Consequently ' _
@ . edfeep=(1;i,2) and fo=(u;i,p),

)  efoey=@;ih) and fy=(vi), 2.
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Using (4) and (5) we now show that the classes of M different from 0 can be:
‘indexed by the set A XI. Let C=0 be a o-class; then C contains an %-class, and:
since S is regular; C also contains an idempotent e. If ep =(; i, 1), write C=C;.
By (4), the index i is independent of the choice of the idempotent-in-C. If C;=C;,
then cleatly i=j. Further, for any /€7, there is an idempotent (¢; i, 1) € 4 for some:
A€ A. Since ¢ is onto, there is e€ Eg such that e =(r; i, ). But then the o-class.
containing e has index i. We have proved that I can be used as an index set for the
o-classes distinct from 0. Similarly, the set of t-classes I' distinct from O can be-
indexed by A. Consequently, the 9M-classes distinct from O can be written as  X;,=
=C,NI; with i€, A€ A. o
‘ If %;, is a nonzero M-class and a€ X;;, then a*¢ X;;. For b an inverse of az,.
we obtain e=abac Eg, whence ep =(r; i, 1) is an idempotent of 4 and g,;>0.
Conversely, if g¢,;#0, for any ¢€T, (¢;/, ))€E, and thus (¢;i, Do~ 1=ecC;.
Hence e =(r; i, 2) and by b) iii), elp (u; i, 2) so that eEI‘,1 Thus e€ X;; which:
is then a nonzero M-class.

For the remainder of the proof let Z,, be a nonzero M-class. Let a€ X, ;:
then @ has an inverse a’€ 2;, for some jel, u€ A, and aa’, a’a are idempotents.
Since aa’€ X, and d'ac Z;;, we have (aa’)p =(m;i, p) and (@'a)p =(n; j, ) for -
" some m, nET In 4, (n;7,4) and (m;i, A) are nonzero idempotents. Letting. f=
=(n; i, A)Y~*! and g=(m;i, )e~1, we obtain

(@ aW)(ff)=n; j, s iy )= (3 j, D =(@a,

which by b) ii) 1mplles (@a)f=d'a, so that af=a. Analogously, using b) i), we:
derive ga=a. Thus a=ad'a=(af)a'(ga)=a(fa’g)a, where fa'ge Z,,l Therefore-
Z,;, is regular.

If a, b€ X,;, there exists c€ S such that aS=cS, Sb=Sc, S bemg O-blslmple
. Clearly c€ Z,;,. Letting &', b’, ¢’ be any inverses in X;; of a, b, c, respectively, we:
obtain a=cc’a, c=aa’c which proves al,;=cZX;, and c=cb’b, b=bc’c which.
proves 2, ;c=2X,b. Hence Zj; is bisimple.

We show next that the idempotents of X;; commute. Thus let e, fEES(VZ;;.
Since, e, /€ Z,;;, we have edf, etf, which by (4) and (5) yields e =(¢; i, 1), fo = (u; i, 1),
ey =(; j, v), fy=(w; k,v) for some t,u,v,weT, i,j,k€l, A; u, vE€ A. By b) iii),
i=j=k,A=pu=v. Thus ep, fo, eg&, fil commute. Let z€ X;, be an inverse-of ef’;.
for g=fze, we have g€ EsN X, and. ge=g. It follows that eg€ Es and gleg) =g,
which by b) ii) implies (g¥)[(eg)¥}=gy. Similarly (eg)g=eg implies [(eg)¥](g¥)=
=(eg)y. Since eg, g€ X;;, (eg)y and gy commute and thus (eg)y = gy. Consequently
eg=g, ie., efze=fze. Hence ef=efzef=fzef so that fef=ef and ef€Es. By
symmetry, we conclude that efe=fe, whence fec Es. Further, fef=(fe)(ef)=ef"
implies [(fe)ell(ef)¢l=(ef)¢ and efe=(ef)(fe)=/e implies [(ef)oll(fe)p]=(fe)o
by b) i). Since (fe)p and (ef)e commute, we obtain (ef)p =(fe)p, whence ef =fe-
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From the above, we also see that (1;i, A)p~! is a left identity of EgN ;.
Hence for a€ Z;; and its inverse a~! € X; (unique), we obtain

1; If)q)"a—[(l iAp~llaa"ta=ada=a.

Analogously (1; i, =Y is a right identity of Z;,. Therefore Z;; has an identity.

- We have proved that every nonzero M-class is a bisimple inverse semigroup

_with identity. By 3. 11, S is a Rees O-composition, and since every nonzero M-class

Zhas~ an identity, by 3.2, 9 must be the congruence associated to S. Therefore
HMD; I, A; P), ‘where _D=D' is.a bisimple inverse semigroup. For

s #0 Q|EgNZ;isa semlgroup isomorphism of EsN Z,, onto T;; = {(t i, M|te T}

‘Thus _

Dz-Esﬂ 2,2=T,;=T.

- It was shoWn'above that-q,-;,;é0<:n‘7,-;t is a nonzero M-class. Hence O =P. This.
-completes the proof.

Remark 5. 2. In the last part of the proof of necessity, we have in fact shown
‘that eS N fSSefS always holds. A simple computation then shows that eSNfS=
-=ef S'in ¢) i) can be substituted by any one of the followmg expressions: (a) efSCfS,
«(b) efefS, (c) ef=fef. :

In order to express ‘conveniently the corollarles of 5.1, we now mtroduce
‘the notion of a sum of rectangular bands.

Proposition 5.3. Let C=C% be a semigroup, |C|=>1; then the following
.conditions are equivalent: -

a) C is a band and for all a, b, c€C, ab+#0, bc #0=abc=ac#0;

b) - C is an orthogonal sum of semigroups BS, where B, are pairwise disjoint
‘rectangular bands (5. 11, [3], i.e., Cis the union of its subsengroups B, and 0, and
BB, =0 if af); . :

c) C=Eg for some rectangular 0-band B.

Such a semigrdup C will be called a sum of rectangular bands.

‘Proof. a)=b). For a#0, b0, let; atb<>ab>0. Then 7 is an equivalence
‘relation wiiose classes: B, are rectangular bands and C is evndently an orthogonal
-sum of BC. ‘

b)=c). We may put B, =.//l(1;1a, A, s P), where the sets Ia (respectively
~ A,) are pairwise disjoint. Let I="UI,, A= U 4,; let Q =(g;,) be the 4 X I-matrix

a a

-defined by: fori€l,, A€ A,

_ { 1 if a=p
_ D=0 if axp,
.and set B=.44°(1; I, A; Q). Clearly B is a rectangular 0-band and C= Ej.
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c¢)=a). Let B be a rectangular 0-band and suppose that Eg is a subsemigroup
of B. Letting C=Ejp and using the hypothesis that Ej is a semigroup, we see
without difficulty that C satisfies a).

Definition 5.4. Let P be a AXI-matrix over a group with zero G° and
identity 1. P is said to satisfy condition (N) if for all i, €I, 4, u€ A,

Pui#0, p;;#0, p_uj7£0 =5PEIPAjP;j1Pui =L

The statement of 5. 1 simplifies considerably if we suppose that the idempotents
of S form a subsemigroup, or that S has no zero, or that the associated congruence -
is a Brandt congruence (3. 2, [3]). Also, using 4. 3, we obtain certain other character-
izations of these semigroups; 5. 1 thus has the following corollaries.

Corollary 5.5. The following statements are equivalent for any semigroup S:

a) S is O-bisimple and Eg=TX°C, where T=T" is a semllamce and C. is
a sum of rectangular bands;.

" b) S=4%D; I, A; P), where D= Dl is a bisimple inverse semrgroup and

Es is a semigroup;

c) S=M°%D; 1, A; P), where D is as in b) and P satisfies (N);

d) S=DXPOB, where D is as in b) and B is a rectangular 0-band whose idem-
potents form a subsemigroup.

Proof. a)=b). Let B as in the proof of 5. 3, b)=c), and let A =T X °B. Then
Eg=C so that Eg=TX°C>~TX%Ez=E,. Since B is a rectangular 0-band, B"
satisfies 5. 1 a). [t follows that in turn 4, E,, Es, S satisfy 5. 1 a); the last implication

" holds since S is regular. If 8 is a semigroup isomorphism of Eg onto E,, then letting
@ =y =0, all conditions in 5.1 b) are trivially satisfied. Let e, € E5 and suppose
eSNfS#=0. Then ex=fy#0 for some x; y€ S. Let x” be an inverse of x and w be
an inverse of yx’. Using the fact that idempotents of S form a subsemigroup, we
obtain :

J(yx'w) =e(xx")w =e(xx")e(xxw = e(xx") f(yx'w) #0,

which implies eEgNfEg#=0. We identify Eg with TX°C and write e=(a, u),

f=(b,v), so that (a, u)(s,t)=(b, v)(p, q) =0 for some (s,1), (p,q)€TXC. It

follows that as=bp, ut=vq=0. Since C is a sum of rectangular bands, we have

ut,v,q€B, for some rectangular band B,. From ut=uvq =uvq it then follows

wv =u(vgqr) =(uvgr) =vgv€vC. In T, trivially abebT, so that ef€fEsSfS. Thus

5.2 (b) holds and hence also 5. 1 ¢) i); c) ii) is verified analogously. By 5. 1, b) holds.
by=c). If p;;#0, p;;#0, p,;#0, then

(Pi's 6D (s o) = (P56 )
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since the product on the left is a nonzero idempotent. Hence p;i'p;;p.i'=py!
and (N) holds.

c)=d). It is easy to see that (&) implies (M) Thus by 4.3, S=DX°B,
S, =GX°B, where D, B, G are as in 4. 3. Moreover, S,=4%G;I, A; P), where
P satisfies (N). From the proof of b)=>c), it follows directly that Eg, is a semigroup
and since S;2:G XO°B, Ey also is a semigroup.

d)=a). We identify S with D X0°B8. Since D is bisimple and B is O- blSlmple
it follows easily that S is O-bisimple. Evidently Eg= E,, X °Ep, where Ej, is a semi-
lattice with identity and Ejp is a sum of rectangular bands by 5. 3.

Corollary 5. 6. The following statements are equivalent for any semigroup S:

‘a) S is bisimple and Es=TXB, where T=T! is a semilattice and B is a
rectangular band,; . :

b) S=#(D; I, A; P), where D= D! 1Is a bisimple inverse semigroup and Eg
is a semigroup; '

¢) S=.(D;I, A; P), where D is as in b) ana' P satrsﬁes (N)

d) S=DXB, where D isas in b) and B is a rectangular band.

Recall that an inverse rectangular 0-band is called a Brandt 0-band (3. 2, [3]).
A semigroup K which is a sum of rectangular bands each of which contains only
one element is characterized by the fact that K has 0 and at least one more element,
‘and for any a, bEK

, (a if a=b;
P =10 if axb;

call such a semigroup a Kronecker semigroup.

Corollary 5.7. The following statements are equivalent for any semigroup S:

a) SisO- bzszmple and Eg=TX°K, where T=T" is a semilattice and K is
a Kronecker semigroup;

b) S=.#%D;1, A; P), where D=D! is a bisimple " inverse semigroup and
Eg is a semilattice; o

¢) S=M°D; I, I; A); where D is as in b) and A is the I X I-unit matrix;

d) S=DXP°B, where D is as in b) and B is a Brandt 0-band.

The proof of 5.6 and 5. 7 follows easily from 5.5 and is omitted. Note that
further characterizations of semigroups appearing in these corollaries can be given
using the results of the prev1ous section, i.e., using the notions of a Rees 0-composi-
tion and of a matrix of semigroups.
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6. Exami)le and conclusions

The following example shows that a. bisimple regular semigroup need not be.
a matrix of bisimple inverse semigroups. Let S be the semigroup generated by
a and b subject to the relations a=aba, b=bab=ab?. The elements of S can be
written in. an array: ’

2 am ... o ab a2b e - a™b

a a _

ba ba* --- ba™ --- b ba*b - ba"‘b

ba b .. bam e 13". bn' 2 . b" mp .
Ll - : . L2

The ZA-classes constitute the rows and the #-classes the columns of this array.
Hence S is bisimple and regular. Fs consists of two descending chains

Cba=bat> - =b"a" > . ab=>ba’b>...=b"a"* b > ..e,

no two elements belonging to different chains are comparable, and Eg is a sub-
semigroup of S. Both L, and L, are left. ideals and the partition induced is the
maximal matrix decompésitioh of S ([4]). Since L, is not regular, S is ndt a matrix
‘of inverse semigroups. L, is the subsemigroup of the bicyclic semigroup generated
by p, =a, p,=0b obtained by omitting the #-class of the identity; L2 is the blcycllc
semigroup generated by p,=a?b, q,=>b.

That S is not a matrix of bisimple inverse semigroups with identity can also
be (more easily) deduced from our results. For suppose it is; then by 2. 3, 3.10,
and 3.2, S~.#(D; I, A; P), where D=D" is a bisimple inverse semigroup. Since
E is a semigroup, by 5. 6 we must have Eg= T X B, where T=T" is a semilattice v
and B is a rectangular band. Since Ej consists of two chains, we must have |B| =2,
and the set {ba, ab} must be either a left or a right zero semigroup. However,
(ba)(ab) =ba*b ¢ {ba, ab}.

Using the theory developed in the previous section, whenever the structure
of a class of bisimple inverse semigroups with identity is ‘described by means of
some construction involving the group of units, the structure of 0-bisimple semi-
groups which are O-matrices of these semigroups is readily available. For example,
if S is a O-bisimple (or, equivalently, regular; 3. 11) semigroup which is a 0-matrix
of bisimple w-semigroups introduced by REILLY [6], then S=.#4°(D;I; A, P),
where D is a bisimple w-semigroup. In fact, S can be represented as the set
(GXNXNXIXAYUO, where G is a group, N is the set of nonnegative integers,
with multiplication

(g, m,n,i,2)(h,p, q, j, 1) = (§eP~"qz;0" P~Tho" " m+p—r,n+q—r,i, 1)

9%
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if g,;#0, otherwise equal to zero, where @ =(g,,) is a regular A X /-matrix over

 G°, a is'a fixed endomorphism of G, o is the ¢- th iterate of a, with a° the identity
transformation, and r=min {n, p}. S can also be characterized by using 5.1
(for special cases, see 5.5, 5.6, and 5. 7).

The case of a matrix of semigroups (or an r-composition, section 2) as treated.
in section 3, serves the same purpose as described above for bisimple inverse semi-
groups with identity, for a much larger class of semigroups (composable semi-
groups, see examples in section 2). ’
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