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1. Introduction and summary 

The Rees theorem asserts that a semigroup S is completely 0-simple if and only 
if S is isomorphic to a regular Rees matrix semigroup Jt°(G\ I, A-;P) over a group 
with zero G° ( 3 . 5 , [ 1 ] ; see also the original paper of REES [5]). As with the Rees 
matrix semigroups over a group with zero, we can construct a semigroup 
Ji°(D\ I, A ; P) starting with any semigroup D instead of a group. A natural way 
of generalizing the Rees theorem consists on solving the following problem: to give 
an abstract characterization of semigroups J/°(D; I, A; P), where D is taken in 
a class of semigroups containing the class of groups. The purpose of this paper 
is to give several solutions of this problem, with some restrictions on P, using the 
notion of a 0-matrix decomposition of a semigroup [3]. 

We say that a semigroup S has a 0-matrix decomposition if S has a zero 0 and 
there exists a congruence g on S such that (a) 0 is a g-class and (b) S/P is a rectangular 
O-band (i.e., a completely 0-simple semigroup with trivial subgroups). In such 
a case, ABAQA or 0 for all ^-classes A, B: If all the ^-classes which are subsemi-
groups of S belong to a class 'ST of semigroups, we say that S is a 0-matrix of semi-
groups of type . In case S has no zero, obvious modifications of the preceding 
definitions yield the concepts of a matrix decomposition and a matrix of semi-
groups of type ST. Using this terminology and separating the cases with and without 
zero, we obtain the following weakened versions of the Rees theorem: 

(i) A semigroup S is a matrix of groups if and only if S = J/(G; / , A; P), 
where G is a group (Theorem 12, [4]). 

(ii) A semigroup 5 is a 0-matrix of groups such that the classes of the correspond-
ing congruence g satisfy ABA = A or 0, if and only if SsiJK°(G; I, "A; P), where 
G is a group (4. 5 [3]). 

In view of this situation, for the case without zero, we introduce the class of 
composable semigroups (2. 1), which, e.g., contains the class of bisimple semigroups 
with identity (2. 3). For the case with zero, we introduce a special kind of matrix 
decomposition, the Rees 0-composition (3. 3). Our main results are: 
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(1) A semigroup S is a matrix of composable semigroups if and only if 
S s •///(£>; I, A; P), where D is a composable semigroup and P is a AX /-matrix 
over G, the group of units of D (3. 10). 

(2) A semigroup S is a Rees 0-composition if and only if SsiJ/°(D ; I, A ; P) 
where D is a semigroup with identity and P is a regular Ax /-matrix over G°, 
G being the group of units of D (3. 4). 

(3) We give an abstract characterization of J/°(D; I, A; P) when D is a bi-. 
simple inverse semigroup with identity, P is a regular AX /-matrix over G, and 
G is the group of units of D (5. 1). This characterization uses properties of the 
partially ordered set of idempotents and the fact that principal right [left] ideals 
form a semilattice under intersection. 

In section 2, we study right [left] composable semigroups. Using the notion 
of an /--composition of semigroups (2. 4), introduced by YOSHIDA [8], we show in 
2. 5 that any r-composition of right composable semigroups is isomorphic to DXR, 
where D is right composable and R is a right zero semigroup. Our main results (1) 
and (2) are established in section 3. We also prove that the class of composable 
semigroups is the largest class V with the property that every matrix of semigroups 
of type is a Rees composition (3. 9). Section 4 is devoted to 0-restricted homo-
morphisms of semigroups Ji°{T>\ I, A; P) discussed above; they can be described 
in essentially the same manner as those of a Rees matrix semigroup over a group 
with zero (4. 1, 4.2). We also characterize Rees matrix semigroups which can be 
expressed as products of some special semigroups (4. 3). The abstract characterization 
described in (3) above is given in section 5. It is of interest to note that 5. 1 makes 
it possible to construct certain 0-bisimple regular semigroups from bisimple inverse 
semigroups with identity. The characterization given in 5'. 1 simplifies if we assume 
that the idempotents form a subsemigroup. We obtain, e.g., the structure of any 
bisimple semigroup whose idempotents form a subsemigroup isomorphic to the 
Cartesian product of a semilattice with identity and a rectangular band (5; 6). In 
Section 6, we conclude by giving an example of a bisimple regular semigroup whose 
set of idempotents does not satisfy the conditions of the version of 5. 1 without 
zero. 

Recently STEINFELD [7] gave an abstract characterization of matrix semigroups 
Jl\D\ / , A; P) which are locally regular (i.e. the entries of P are not necessarily 
taken in G°, where G is the group of units of D, but certain entries of P have 
invertibility properties). Our results concern the instance in which the entries of 
P are in G° and widely supplement those of Steinfeld in this case. 

Except for the concepts defined in the paper, we follow the notation and termi-
nology of CLIFFORD and PRESTON [1]. In section 3 and 5, we use a number of concepts 
introduced and results proved in [3]; however, the knowledge of [3] is not indispens-
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able. In order to avoid repetition, instead of " S is a semigroup with identity [zero]" 
we write S=S1 [ S = 5°]. If [ 5 = S U ] , then 1 [0] denotes the identity [zero] 
of S unless stated otherwise. 

2. Gomposable semigroups 

D e f i n i t i o n 2 .1 . A semigroup S=S1 is called right [left] composable if 
for any ad S, axa = xa [axa = ax] for all x£ S implies a = 1. A semigroup is called 
composable if it is both right and left composable. 

The reason for this terminology as well as the importance of such semigroups 
will become clear later (2. 5). We consider now some properties and examples of 
these semigroups. 

P r o p o s i t i o n 2. 2. A semigroup S is [right] composable if and only if S = S! 

and the identity transformation on S is the only inner [right] translation of S which 
is also a homomorphism. 

P r o o f . The bracketted part follows, directly from the equivalence of the 
statements: (i) Qa is a homomorphism, (ii) (xa)(ya) = (xy)a for all x,y£S, 
(iii) aya = ya for all ydS, when S=S1. 

P r o p o s i t i o n 2: 3. Any bisimple semigroup S=S1 is composable. 

P r o o f . Let a£S and suppose that axa = xa for all x£S. Since S is bisimple, 
there is z£ S such that a<£z and z0l\; a<£z implies za = z since a2 =a. If z' is an 
inverse of z, then z^fz'z, which implies z'z = z'za. Since axa—^gi for all x£S, 
we obtain z'z = z'za = z/aza = z'az. On the other hand, 1 implies zz' = l , which 
together with z'z = z'az yields 

1 = zz' = z(z'z)z' = z(z'tfz)z' = (zz')a(zz') = 1 al = a. 

Hence S is right composable; analogously S is also left composable. 

E x a m p l e 1.*) Let S be a left group which is not a group. Then S 1 is right 
composable. Since every idempotent e of S is a right identity of S, we have exe = ex 
for all S1; hence S1 is not left composable. 

E x a m p l e 2. Let S—S1 and let S have a minimal two-sided completely 
simple ideal K which is neither a left nor a right group. Further suppose that 1 is 
the only idempotent of S not contained in K. Then S is composable. For if axa = xa 

*) The referee points out that the right composable semigroups are precisely those semigroups 
with identity containing no proper left ideals with identity (the verification is left to the reader). 
Hence any left simple semigroup with identity, or a semigroup 5 1 where S is a left simple semigroup 
without identity, is right composable. 
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for every x£ S and some a £ S, then a1 = a and thus either a= 1 or a £ K. The latter 
possibility is excluded since axa = xa for every x£K implies aSix for every x£K, 
which in turn implies that A" is a right group, contradicting the hypothesis. Thus 
S is right composable; by symmetry S is also left composable. 

E x a m p l e 3. L e t S = S 1 be the union of groups such that no ^-class of 5 dif-
ferent from the ^-class containing the identity is a left or a right group. Similar 
reasoning as in the previous example shows that S is composable. 

D e f i n i t i o n 2 .4 (cf. [8]). A semigroup S is said to be an r-composition 
[l-composition] of semigroups {D})kiA if S= \J Dk, £>;. f l £>„ = • if X ^ n , and each 
Dk is a left [right] ideal of S. 

Note that if S is an /--composition of semigroups D- , the equivalence relation 
induced on S is a congruence q such that S/q is a right zero semigroup, and con-
versely, every such congruence induces an /--composition of S. Furthermore, for 
a given family of pairwise disjoint semigroups, there may exist no /--composition 
(see [8]). The importance of the class of right composable semigroups stems from 
the next two theorems. 

T h e o r e m 2. 5. Let S be an r-composition of right composable semigroups 
D; , X£ A, with identities Xk. Then the set RA = 6/1} is a right zero semigroup, 
all D) are isomorphic, and 5=Z)X X.RA, where D\ is any of the semigroups Dk. 

P r o o f . For any X, FI£A and x^D^, we get xXk£Dk so that xXk = XkxXk; 
since also x=Xflx, we obtain X kX ̂ xX kX tl = xX kX ̂  for every x^D^. Since 1^1 
and is right^eo'mposable, it follows that 1 ;1 = This proves that RA is a right 
zero semigroup. Fix any index, say l£ / l , . and define <p by x(p = (xX1, 1^) if 
A straightforward calculation shows that <p is an isomorphism of S onto Dt X RA. 
(This is a special case of Theorem 14, [4].) It is now clear that all Dk are isomorphic. 

Consider the following conditions on a class of semigroups: 
(A) Every semigroup in has an identity. 
(B) # is closed under isomorphisms. 
(C) If a semigroup S is an /--composition of semigroups Ck in <6, X 6 A, 

then i?/1 = {lA|l^ is the identity of Ck,X£Aj is a subsemigroup of S (and thus, by 
the proof of 2. 5, Sz=Cl X RA, where Cl is any of the semigroups Ck and RA is a 
right zero semigroup). 

T h e o r e m 2. 6. Let be a class of semigroups satisfying (A), (B), (C). Then 
every semigroup in is right composable. 

P r o o f . Let and suppose that exe = xe for some e£C and all x£C. 
Let a be an isomorphism of C onto a semigroup D disjoint from C. In S = CUZ> 
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define multiplication as follows: 

xy if x,y£C or x,y£D, 
x*y = - [(xe)a]y if • x€C,y£D, 

(xa _ 1 )ey if x ^ . D , y £ C 

(multiplication in C and i ) is denoted by juxtaposition). A simple calculation shows 
that this multiplication is associative. Hence S is an /--composition of C and D. 
By (B), Ddtf and thus by (C), the identities l c and \ D of C and D, respectively, form 
a right zero semigroup. Hence 

ea = [ ( l c e ) a ] l D = 1 C * 1 D = 1D , 

which, implies that e=lc. Consequently C is right composable. 

C o r o l l a r y 2. 7. The class of right composable semigroups is the largest class 
of semigroups satisfying (A), (B), (C). 

3. The main theorem 

Recall that a. rectangular 0-band is a regular Rees matrix semigroup over a one 
element group, and that a congruence 5 on a semigroup S is called an /-matrix 
congruence if S/Q is a rectangular 0-band and / is the complete inverse image of 0. 
The classes of q which are complete inverse images of nonzero idempotents in 
S/Q are called nonzero classes of Q, the others are zero classes. We are interested 
here solely in the case when S1 has.a zero and 1=0; in such a case, Q is called a 
0-matrix congruence on S. These concepts were introduced and studied in [3] (see 
particularly section 1). 

D e f i n i t i o n 3. 1. Let ^ be a class of semigroups. A semigroup S is said to be 
a 0-matrix of semigroups of type f€ if S= S° and there is a 0-matrix congruence 
901 on S whose nonzero classes are in 

P r o p o s i t i o n 3. 2. If S=S° is a semigroup having a 0-matrix congruence 
9)! all of whose nonzero classes have an identity, then 9Ji is the finest 0-matrix congruence 
on S. 

P r o o f . Let 90? be as in the statement of the proposition, and $(0) be the 
finest 0-matrix congruence on S (2. 6, [3]). If A is a nonzero class of 9Ji, then a = $ (0 )^ 
is a matrix congruence (i.e., A/A is a rectangular band), and since A has an identity, 
A. must be the universal relation. Hence A is a class of $(0). Conversely, if B is a non-
zero class of $(0), it must be contained in a nonzero class A of SDi and thus B = A, 
i.e., B is a class of 931. It follows that 5)1 and i>(0) have the same nonzero classes 
which by 2. 2, [2], implies = $(0). 
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D e f i n i t i o n 3.3. A semigroup S is called a Rees O-composition if S=S° 
and there is a 0-matrix congruence 5)1 on S whose classes, denoted by Sa (i £ /, X £ A), 
satisfy the condition 

(D) for every 5B-class I a , there exists an element x a £ E u with the property 
that for every / £ / , A: 

XuZjK = ^ip. or 0 and Sjf,xlx = EJX or 0. 
R e m a r k s , i) More precisely, we should speak of a „Rees O-composition 

relative to 5)1"; however, in 3. 5 we will prove that every nonzero class of 5)1 has 
an identity, which by 3. 2 will imply uniqueness of SOI. 

ii) Note that Z a I J f l 7 i 0 if and only if I J X is a nonzero class (p. 80, [3]) so 
that by (D), xaEJfl = Iifl if and only if IjX is a nonzero class; analogously for 

iii) A 0-matrix of semigroups of some type need not be a Rees O-composition; 
e.g., a 0-matrix of groups is in general an ideal extension of a completely 0-simple 
semigroup. 

D e f i n i t i o n 3.4. Let D = DL be a semigroup with the group of units G 
(i.e., G is the Jf-class of 1), and let P be a regular A X /-matrix over G° (i.e., in each 
row and each column of P there is at least one nonzero entry). By ,///°(D; / , A ; P) 
denote the set of all elements (a; i, X), with a£D° (D with zero adjoined even if 
D already has a zero), z £ /, X£ A (the elements (0; /, X) are identified with a single 
element 0, the zero of Jf°(D; I, A; P)) together with the multiplication 

. (a; i, X)(b;j, n) = (apXib; i, v). 

Then ,///°(D; I, A; P) is a semigroup which we call the Rees matrix semigroup 
(over D°). The congruence SB defined by («; /, Xy))i(b; j, [i)<=>i=j, A = /<, and 
05B0 is called the associated congruence. 

If Z) is a group, D = G and our terminology and notation agree with that used 
in [1] except that we consider only a regular sandwich matrix P. We are. now ready 
to state our main result. 

T h e o r e m 3. 4. A semigroup S is a Rees O-composition if and only if S is iso-
morphic to a Rees matrix semigroup JI°{D; / , A; P), where D = Dl. 

P r o o f . Sufficiency. Let Q=J/°(D; / , A; P) where D=Dl. Note first that 
the associated congruence 5B on Q is a 0-matrix congruence; its classes different 
from 0 are the sets Ea = {(a; i, X)\a£D}, i0,X^A. Let xu = (l; i, A); since 5B 
is a 0-matrix congruence,- xuSJltQ £;„U0 for any j£l, n£A. If xaEJlt?£0, then 
xa SJflQ r i (1 and pXj7±0. Consequently, for any (y; i, /() 6 Eifi, we obtain 

(y; i, n) =. (1; i, X) (px/ y ; / / ) . € xa ZJtl, 

whence xaZJlt = The other half of condition (D) is established similarly. 
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Necessity. The proof is broken into several lemmas in which S is a Rees 
O-composition, and Zu are the classes of the congruence induced. 

L e m m a 3. 5. Every nonzero class Za has an identity (denoted by \u). 

P r o o f . Let Za be a nonzero class; then xaZu = Хах{!Л =• (by (D)). 
There is t£Za such that xa = xat and for every у6 y = uxa for some u£ Za. 
Hence yt = uxat = uxa=y, i.e., t is a right identity of Za. Dually, Za also has 
a left identity which implies that 1,; = t is the identity of Za. 

L e m m a 3. 6. If у £Za, then у = \lf,y=y\j; whenever Zifl and Zare nonzero 
classes. 

P r o o f . Since Zift is a nonzero class, xiflZa = Za by (D). For any 
we obtain y = xifluiov some u£Za, so that lilly=lillxiliu = x,llu = y. The equality 
y = y l j * i s established analogously. 

As a consequence of 3. 6, we have 

1 itl^iS = 1 5 Ь я ^ я = 1|Я 

provided that Zif,, Zid, Za, and ZjX are nonzero classes. We will use this without 
express mention.. 

L e m m a 3. 7. Let 

61! = {x £ S\x0t 1 iv, xSC 1 k). for some i, к £ / , v, X £ A} U 0; 

then 5, is a completely 0-simple subsemigroup of S, and 5 , intersects every class 
of m. 

P r o o f . Let and j ' C l ^ O S , . If xy = 0, then л - у б ^ . Suppose 
x y ^ O . We have x0llh„ xJSfl tA, у01 \JS, y£?lmil for some k, m£l, v,8£A. Con-
sequently 

jS 1 jX = jX = X^kX 1 j>. = x l k ? = x . 

So we have xljd<%x; thus x&liv implies х\]дШь. Since 01 is a left congruence, 
•ymjS implies xy0tx\JS, and hence One shows similarly that xy$£lm„, 
which proves that xyd S , . Thus is a subsemigroup of S. 

Let Za be any class and Ziu, Г,;. be nonzero classes. Then by (D), xaZjll = Zlfl 

whence x u i = l , , , for some t£ZJtl; this together with xa=liltxu (3.6) implies 
Dually, we obtain x a ^ \ j X , and thus x u £ П S j , which proves the 

last statement of the lemma. Further, if Za is a nonzero class, then S1 =Ga, 
the group of units of Zu. For obviously Zu П 5X while the opposite inclusion 
holds since jc€ П ^ implies x0t\itl, x3?\j} for some this together 
with 1 ; я ^1, д , 1,;JS?1jV implies хЖ\а. It then follows that the restriction of 9Л to 
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is a 0-matrix congruence whose nonzero classes are groups. By 3. 6, every element 
of Sy has a left (and a right) identity, and thus 4. 1 and 4. 5 of [3] imply that S t 

is completely 0-simple. 
Let Ha = Iuns1 and choose any nonzero class I u ; then Hu is the group 

of units of Z n . For each idI,XdA, select ridHland qxdHu¡ and define P 
as the / IX/-matr ix P = (pXi) over Hh by 

_\<hri i f I ^ H n , 
P x i ~ \ 0 otherwise. 

L e m m a 3. 8. Every nonzero element of S is uniquely representable in the form 
rflq- with adZn, id J, Xd A and the mapping <P defined by (a; '/, X)<P —rfiq^, 0<P = 0 , 
is an isomorphism of ,y//°(Zu; / , A; P) onto S. 

P r o o f . For XdA, there exists / £ / such that ZiX is a nonzero class. Hence 
qx has a unique inverse q'x in RiuC\Liit since HiX is a group and Sy is completely 
0-simple. Thus 1 tlqx = qx and qxq'x= I n - Now 9H = 9 i n £ , where 9?[fi] is a 0-left 
[0-right] zero equivalence on 5 (1:7 and 1. 10, [3]). Let C„ id I, and rx,X£A, 
denote the 9? and £ classes of S, respectively, different from 0. For every x d r i , 
by 3.6, we obtain xqkq\ = x\n=x, and analogously, for every y£Tx, yqxqx=y. 
The mappings x x q x { x £ T , ) and y^yq'x ( y d a r e mutually inverse C,-class 
preserving one-one mappings of r 1 onto r x and of Fx onto r t , respectively. Using 

and r j , one similarly establishes one-one rA-class preserving correspondences 
between C\ and C ; . It follows that the mappings x-*rixqx (xdZu) and y-+r[yqx 

(y d ZiX) are one-one inverse mappings. Since every nonzero element of S belongs 
to some ZiX, this proves the first part of the lemma and also that is one-one and 
onto. The proof that 0 is a homomorphism is the same as for the corresponding 
part of the Rees theorem in [1], pages 93 and 94. 

This completes the proof of 3. 4. 
Recall that a matrix congruence q on a semigroup S is a congruence such that 

S/Q is a rectangular band (see, e.g., [4]). If we adjoin a zero to S and extend Q to 
5° by letting OgO, we get a 0-matrix congruence. Definitions 3. 1 and. 3. 3 then carry 
over to this case if we then remove the zero. We thus obtain a matrix of semigroups 

. of type (<S and a Rees composition JL(£>; / , A; P). The next theorem shows that 
for the case of a matrix of semigroups, the class of composable semigroups is the 
best in a certain sense. 

T h e o r e m 3. 9. Let % be a class of semigroups closed under isomorphisms. 
Then every semigroup in has an identity and every matrix of semigroups of type 
(6 is a Rees composition if and only if ^ is contained in the class of composable semi-
groups. 
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P r o o f . Necessity. Let S be an /--composition of semigroups CA in X€A'. 
By hypothesis and 3. 5, S^J((D\I, A; P) with D = DK Since every Q and 
D have identities, 3 .2 implies that, by identifying S with Jt(T)\I, A\P), the 
congruences induced by the /--composition and by the Rees composition coincide. 
Hence we may set / = {1}, A = A'.If 1A is the identity of Gx, we have 1A = CPXi1 J U^)» 
it follows that the set RA{1JA6 A} is a subsemigroup of S. We have proved that 

satisfies condition (C) (preceding 2. 6); since satisfies (A) and (B) by hypothesis, 
2. 6 implies that every semigroup in # is right composable. A dual proof shows 
that every semigroup in # is also left composable. 

Sufficiency. Let iS be a matrix of composable semigroups Za with identity 
liA, i £ l , X £ A . To establish condition (D) in this case, it suffices to show that 

„ = Z- and ZJf,\iX = ZJX for all i,j£l,X,y.£A. The set C ;= U ZiX is an 
XiA 

/•-composition of semigroups ZiX which are (right) composable; 2. 5 then implies 
1 = 1 .>; dually, we have lulJX = liX. Hence 

1 <N = l i / . l in ~ ( 1 iA 1 J-a) 11/J = l i / . ( l J / . 1 / ( i ) £ 1 i>.£ J>> 

whence for all x ^ Z i f l , 
x = ' in a. x = jii • 

Consequently Z i ^ l i X Z j t l ; ^ opposite inclusion holds since Z ^ Z ^ Q Zifl. Thus 
1 iXZjlt=ZiX; the equality ZJtlla=ZJX is proved symmetrically. Therefore S is a 
Rees composition. . 

C o r o l l a r y 3. 10. A semigroup S is a matrix of composable semigroups if and 
only if S s Jl(D; I, A; P), where D is composable. 

It appears to be much more difficult to obtain a characterization of a 0-rriatrix 
of semigroups of type ST without additional restrictions. The next theorem, which 
generalizes 4. 5, [3], points in this direction. 

T h e o r e m 3. 11. Let S be a 0-matrix of bisimple semigroups with identity. 
Then the following conditions on S are equivalent: 

a ) S is regular. 
b) S is 0-bisimple. 
c) S is a Rees 0-composition. 

In such a case, Sa= Ji°(D; I, A; P), where D — D1 is bisimple. 

P r o o f . Denote the classes of the 0-matrix congruence (see 3. 2) by Za, i£lt 

X^A, and if is a nonzero class, let 1;A denote its identity. Recall the notation 
C ; = I \ Z a , r x = \JZa. 

A 6 A i i l 

a)=*b). I f j c e ZiX, then by regularity of S, x = xyx for some y £ Z „. It follows 
that e=j>xisanidempotentof ZJX and xS£e. Since ZjX is then a bisimple semigroup, 
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we have eS!\JX, and thus x@lJ}. If Zk> is any nonzero class, 2. 3 and 2. 5 imply 
1 J A1 FCA

 =

 lJX and 1 k>\j>. — U;.> i-e-> Ij/.^h;.- Thus x@>\k> which shows that; any two 
•elements of T, are ^-equivalent. By symmetry we obtain that any two elements 
of C; are also ^-equivalent. Since these statements hold for any /', ), it follows that 
S is O-bisimple. 

b)^-c). Consider any ZiX and any nonzero classes Ziv and ZkX._ Since S is 
O-bisimple, there exists S such that 1 udtx and xJSflkX. It follows that x£ Za f l . 
Let xa be any element of H 5 , and suppose that xuZJfl ^ 0 ; then xiXZJflQ Zifl. 
Let y € Z , u . Since 5 is O-bisimple and contains nonzero idempotents, S is regular 
and thus . y = ey for some idempotent Hence Z i s a nonzero class and thus 
xiX!M\i9, which implies 1 ie = xuz for some z, and xu = 1 igxi;. By symmetry, we 
have xa = xix\„x for some n£l, which together with implies x u = x ; ; l j k . 
•Consequently 

y = ey = 1 ,-„ (ey) = 1 igy = (xaz)y = (xwljX)zy = xa(lj;zy) 6xaZjlt. , 

Therefore Zt^xaZjll and the equality holds. The proof of Zjflxu=ZJX, if Zifl is a 
nonzero class, is dual. Therefore (D) holds and S is a Rees O-composition. g 

c)=>a). By 3. 4, S = Jt°(D\ I, A; P) with D = D\ and by the uniqueness of 
induced congruences (3/2), D is bisimple. Item a) then follows by a straightforward 
computation in Ji°(D; I, A; P) using regularity of D. 

4. Homomorphisms of Rees matrix semigroups 

A homomorphism <p of a semigroup S=S° into a semigroup T=T° is said 
to be 0-restricted if aq>=0oa = 0. A homomorphic image of a Rees matrix semi-
group need not be a Rees matrix semigroup; however, if (p is a O-restricted homo-
morphism of a Rees matrix semigroup S onto S*, then S* is also a Rees matrix 
semigroup. The next theorem describes all O-restricted homomorphisms of a Rees 
matrix semigroup into another; it generalizes a result of M U N N (3. 11, [1]). Recall 
that for a semigroup D, D° denotes the semigroup obtained by adjoining a zero 
to D (even if D already has a zero). 

T h e o r e m 4.1 . Let S= J/°(D; I, A; P), S*= J/°(D*; /*, A*; P*), where 
D and D* are semigroups with identities 1 and 1*, respectively. Let to be a O-restricted 
homomorphism of D° into (D*)°. Let i-*ut be a mapping of I into the Si-class of 
1 a>, X-*vx be a mapping of A into the Si-class of Ira, and <P, i¡j be mappings of I into 
I* and A into A*, respectively, such that 

< 0 P?.i<o = vxp%,ioUi 
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for all iÇ,/, A ÇA. For each element (a; i, A) € S, define 

(2) (a;i,Â)0 = [Ui(aœ)vÀ;i0,Â^: 

Then 9 is a 0-restricted homomorphism of S into S*. Conversely, every Orestricted 
homomorphism of S into S* can be obtained in this fashion. 

P r o o f . In the direct part, the proof that 9 is a homomorphism is the same 
as in 3. 11, [1], and is omitted. It is clear that 9 is Ô-restricted. 

For the converse, the proof of 3. 11, [1], is modified as follows. The mappings 
4> and i¡J. are defined as there (substituting and -classes by 91 and £-classes, 
respectively; see the proof of 3. 8). We select a nonzero class I u of the associated 
congruence 9JÏ of S", and denote its identity by l u . Then 1 ^ 0 is a nonzero idem-
potent so that the class of 9JÎ* (the associated congruence of S*) is nonzero, whence 
/'iV.kp^O- Tl>e equation 

(3) (pïïx-,1,1)0 =[p*i\0(xm);l$,IM 

defines a homomorphism of Z) into D*. For every iÇl, define w; by 

<4) (1 ; 1)0 = [h,;M>, m 

and for every A ÇA, define v} by 

< 5 ) (j>hi;hX)0 = [pïï\*vl;l$,ty]. 

Since (1 ; /, \ ) ^ ( p T i ; 1, 1), by (3) and (4), we obtain 

which implies u ^ X m . Similarly ( p i ^ ; 1, 1 ) â f ( p i i l 1, A) implies, by. (3) and 
<5), 

IphSoV;.-, I<P, m»\p*ïS<>{ 1 « ) ; 1 * , HI 

which implies p*^ \0V^p*^ \ 0 ( \ co ) whence v /A Ioj . Writing (a; i, A)6 S in the form 

(I ; /, IX^r i 1 «; 1, 1) (PTi1 

and applying 9, we obtain (2). From (2), we have 

(1 ; i, A)2 9 = [u;{pXiio) v; i<P, # ] , 

[(1;/,A)0J2 = [Uiilco^pt^Uiilà^; 1<M^] 
and thus 

(6) Ui (pum)u; . -= Ui( \œ)v; .p^ , i0 i ' i ( lco)v À . 

Since Ui^Clco and v;â$\oj, we have «¿(loi) = w-i/,- = \oj, (1 co)V) =v; , vÀv- = lœ for 
some u'i, v\ ÇD. Taking into account ui(\co) = ub(\w)v> =v) and multiplying (6) 
on the left by «• and on thé right by v\, we obtain (1). 

To state the next corollary, using the notation of 4. 1, we define a left invertible 
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I* X /-matrix U over (Z>*)° as a matrix which has exactly one nonzero entry in each 
row and in each column, this entry being in the if-class of 1*. A right invertible 
A X /l*-matrix V is defined dually. The proof of the following corollary is essentially 
the same as the proof of 3. 12, [1]. 

C o r o l l a r y 4 . 2 . Two Rees matrix semigroups J/°(D; I, A ; P) and 
Ji°(D*; /*, A*; P*) are isomorphic if and only if there exists an isomorphism co of 
D° onto (D*)°, a left invertible I*Xl-matrix U over (D*)° and aright invertible A X A*-
matrix V over (D*)° such that Pco=VP*U. 

We now consider the special cases, of Rees matrix semigroups which can be 
conveniently expressed as products of certain semigroups. Let A and B be semi-
groups, where B has a zero 0. By A X °B denote the Rees quotient A X BjA X 0 
(A XB is the Cartesian product of A and B). Let P be a AX /-matrix over a group 
with zero G°. We say that P satisfies condition (M) if every nonzero product of 
the form . 

- i - i - I - I 
PXliiPXyhPXlizPXzil ••• Pxn-,i„-1PX„-U„PX„i„Px„i1 

is eqtial to 1, the identity of G (p. 97, [3]). Recall the definition of Sy (3. 7). 

T h e o r e m 4 .3 . Let S=J/°(D,I,A\P) and let G be the group of units of 
D = Dl. Let P be the AXl-matrix with entries 

M if Pxr/ 0 
PU ~ \0 if Pm = 0. 

Let B = „//°(1; / , /1; P), where 1 denotes a one element group. Then 
Sx = J/°(G; / , A; P) and the following statements are equivalent: 

a) S = DX°B; b) S1^GX°B; c) P satisfies (M). 

P r o o f . The first statement follows easily from the proof of 3. 7; b) and c) 
are equivalent by 4. 13, [3] ((a)<=>(e)). Since S^ = J/°(G; / , A; P), it follows easily 
that a) implies b). Suppose that c) holds. By 4. 13 and 4.10 of [3], there exists a sub-
semigroup F of St intersecting every Jf-class Ha of ^ in exactly one element; 
denote it by ea. If HiX is a group, e;A is an idempotent and thus ea = (pxi

1; i, X). 
If for (x; i, A) £ S, (x; /, k)ejX ^ 0, then p; j ^ 0 and thus ejX = (px/; j, X). Consequently 
(x; i, ?.)eJX = (x; i, A). Symmetrically, if eilx(x; i, X)^0, then eitl(x; i, X) = (x; i, X). 
Applying 4. 8, [3], we obtain a). 

C o r o l l a r y 4. 4. Let S= J(°(D\ I, A; P). If the group of units of D is trivial, 
then S=DX°B, where,B is as in 4. 3. 

P r o o f . If the group of units of D is trivial, 4. 3 implies that whence 
S=DX°B again by 4, 3. 
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5. Rees matrix semigroups over a bisimple inverse semigroup with identity 

The principal object of this section is to give an abstract characterization of 
•such a semigroup using certain properties of its set of idempotents. From this we 
then derive simple characterizations of several classes of semigroups. The set Es 

of idempotents of a semigroup S is now considered as a partially ordered set under 
the usual order e 3/<=>e = ef=fe. If we write Es = C, where C is a semigroup, 
it means that E$ is a subsemigroup of S and is isomorphic to C. 

T h e o r e m 5. 1. Let S be a 0-bisimple semigroup. Then 5=s J/°(D] I, A; P), 
where D = Dl is a bisimple inverse semigroup if and only if S satisfies: 

a) for all a, b, c£S, abc = 0=>ab = 0 or bc = 0; 
b) there exist order isomorphisms (p and ift of Es onto EA, 

where A = TX °B, T= T1 is a semilattice, B is a rectangular 0-band, such that for all 

0 ef=fo(e(p)(f<p)=fq>, 
ii) ef=et>(e\ft){f\li)=e\li, 

iii) if eq> = (x, a) and e\p = (y, b), then a = b; 
c) for all e, f e Es, 
i) e S n f S ^ O = > e S r i f S = e fS , 

' ii) Ser)Sf7±0^Sef)Sf=Sef. 
In such a case, T^ED, B^ ._//°(l; I, A; P), where P is as in 4. 3. 

P r o o f . Necessity. For convenience we identify S with J/0(D\ I, A; P). 
Item a) follows from the fact that the associated congruence 351 is a 0-matrix 
congruence (1. 6, [3]). Let T=ED, B=Jl\\; I, A; P), and A = Tx°B. It is easy 
to see that 

(1) Es = {(*; /, 1)| pu * 0, xPux = x) U 0. 

On Es define the mappings q> and i// by: 

(x;i,X)q> = (xpu,(l;i,X)) if and 0cp = 0, 

(x\i,X)\ft = {pkix,(\\i,Xj) x^O, and 0^ = 0. 
Note that 

(2) Ea = {(e, (1; /, X))\e £ T,pXi 0} U 0. 

Using (1) and (2), it is straightforward to verify that (p and ift satisfy all the conditions 
in b). We prove only that c) i) holds; c) ii) is treated analogously. Thus let e = (x; i, X), 

(yiJ> be idempotents of S such that e S f l / S V O . Then 

(x; i, X)(z; k, v)=(y;j, m, <5)^0 • 
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for some (z; k, v), (w; m, §)£S and hence i=j. Since e,f£Es, (1) yields 0, 
plli=pilj7i 0, which by commutativity of idempotents in D implies 

* P u y = ( x p ; d ( y P » d P » i l = ( y P n d i x p ^ P n i 1 • 
Consequently 

ef = (x; i, /1)0; /, n) = (xpuy; /, u) = O ; /, n)(xpup-1; /, /i) 

which implies ef(ieSC\fS. Conversely, if x£eSP\fS, then x = ex—fx = efx^efS~ 
Therefore e S f ) f S = efS. 

Sufficiency. We will freely use the terminology and results of [3]. First note 
that S is regular (O-bisimple containing a nonzero idempotent). Since S is 0-bisimple,. 
for a^O, there is c£S such that aS = cS, Sc = Sb. It follows aSb = cSb = 
= cSc^0 and 0 is a prime ideal of S, which together with a) implies that 0 is a matrix 
ideal of 5 (p. 74, [3]). By 1. 6, [3], S has a 0-matrix congruence; let 9Jt be the finest 
such. Then S)i = a Pi t, where aob-oa = b = 0 or there exist aY,a2, •••, a„£ S such tha t 

(3) a S X O J a ^ X O I ••• |iZ„SX0|Z>S'\0 

(| means "intersects") and r is defined symmetrically using left ideals (2. 6, [3])-
We will show that each nonzero class of 9JI is a bisimple inverse semigroup with, 
identity. 

If B^ Ji°(l; I, A ; Q), then A s J/°(T; /, A; Q). We identify A with 
J/°(T; I, A; Q). 

Suppose that for e,f£Es, eSPi/S^O. By c) i), eSC\fS = efS which implies 
f ( e f ) = ef=e(ef). Thus ef6Es so that by b) i), we obtain 

(f(p)[(ef)cpl=(ef)<p = (e<p)[(ef)<p]^ 0. 

Hence if ecp=(t; i, X) and f<p = (u;j, ¡.i), then Now, if e,f£Es, e^0, eafr 

then by (3) 
e S ' \ 0 | e 1 S ' \ 0 | ••• | e „ S \ 0 | / S \ 0 

for some e1, e2, • ••, en£Es since iz;S' = e;5' for some e^E^ by regularity of iS1. 
Letting again e<p = (t; i, X) and f<p = (u: j, u), the preceding observation implies 
i=j. Dually, if exf e\j/ = (v;i, X),f\j/ = (w;j, p), then 

^ Conversely, if eq>=(t;i,X) and f<p=(u: i, ¡i), then (e<p) [(<?<?)(fcp)] = 
= (e<?){f<P) and (fq>)[{ecp)(ftp)] = (e<p)(f<p), which by b) i) implies 

e[(e<p) (/<?)]<?-1 = (f<p)](p~l=f(ecp)(f<p)\<p-\ 
i.e.,' eSHfS^O. Dually etp = (v; i, = (vv; j, X) implies Se DSf^O. 
Consequently 
(4) eafoe(p = (t;i,X) and fq> = (u;i,n), 

(5) exfoe^ ={v\i, X) and f\jj =(w\j,X). 
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Using (4) and (5) we now show that the classes of 9Ji different from 0 can be; 
indexed by the set AXI. Let C^O be a c-class; then C contains an ^2-class, and 
since S is regular, C also contains an idempotent e. If eq> = (t; i, X), write C = C,. 
By (4), the index i is independent of the choice of the idempotent in C. If C, = Cj ,. 
then cleatly i=j. Further, for any /£ / , there is an idempotent (/; i, k)£A for some: 
k€.A. Since (p is onto, there is e£Es such that eq> = (t; /, X). But then the er-class. 
containing e has index i. We have proved that / can be used as an index set for the 
<T-classes distinct from 0. Similarly, the set of r-classes f distinct from 0 can be 
indexed by A. Consequently, the 9Ji-classes distinct from 0 can be written as ZiX — 
= C ; P i r x with k(i A. 

If ZiX is a nonzero 9Jl-class and a£ ZiX, then ZiX. For b an inverse of a2,. 
we obtain e = aba£Es, whence ecp = (t;i,X) is an idempotent of A and ,qXi9^ 0. 
Conversely, if qXi^0, for any t£T, (t;i,X)£EA and thus (/; /, = e£C ; . . 
Hence e(p = (t; i, X) and by b) iii), eip = (u; i, X) so that e £ rx. Thus e f ZiX which, 
is then a nonzero 9Jl-class. 

For the remainder of the proof let ZiX be a nonzero 9J?-class. Let aZZiX-,: 
then a has an inverse a'^Zjtl for some and aa',a'a are idempotents. 
Since aa' £ Zi/: and a'a £ ZjX, we have (aa')cp = (m; /, ¡j) and (a'a)cp = (n; j, X) for 
some m,n£T. In A, (n;i,k) and (m;i,X) are nonzero idempotents. Letting. f= 
= (n;/ , / l)i / i - 1 and g = (m; i, we obtain 

[(*'<#](#) = (n; j, X) (n; /, X) = (jt\ j, k) = (a'a)^, 

which by b) ii) implies (a'a)f=a'a, so that af=a. Analogously, using b) i), we 
derive ga = a. Thus a = aa'a = (af)a(ga) = a(fa'g)a, where fa'g£ZiX. Therefore-
ZiX is regular. 

If a, b£ ZiX, there exists c£S such that aS — cS, Sb — Sc, S being O-bisimple. 
Clearly ZiX. Letting a', b', c' be any inverses in ZiX of a, b, c, respectively, wer 
obtain a = cc'a, c=.aa'c which proves aZiX = cZiX, and c = cb'b, b = be'e which 
proves ZiXc = Zlxb. Hence ZiX is bisimple. 

We show next that the idempotents of ZiX commute. Thus let e, f£EsC\ ZiX. 
Since, e,f f ZiX, we have eaf exf, which by(4)and (5) yields e<p = (t; i,X),f(p = (u; i, 
eij/=(v;j, v), f\p=(w; k, v) for some t, u, v,w£T, i,j, k£l, k, n, v£A. By b) iii),. 
i=j = k, k= fi = v. Thus ecp, fcp, eijj,f\jj commute. Let z£ZiX be an inverse-of e f i 
for g=fze, we have g£EsPi ZiX and ge=g. It follows that eg£Es and g(eg) = g, 
which by b) ii) implies (gi/s)[(eg)i//] =g4>- Similarly (eg)g = eg implies [(eg)i//](gi//) = 
=(eg)tp. Since eg, g£ ZiX, (eg)\ji and gij/ commute and thus (eg)\J/ =g\j/. Consequently 
eg = g, i.e., efze=fze. Hence ef = efzef=fzef so that fef = ef and ef£Es. By 
symmetry, we conclude that efe=fe, whence fe£ Es. Further, fef =(Je)(ef) = ef 
implies [(Je)(p][(ef)<p] = (ef)(p and efe = ( e f ) ( f e ) =fe implies [(ef)cp][(fe)<p]=(fe)(p 
by b) i). Since ife)(p and {ef)q> commute, we obtain (ef)q> = (Je)cp, whence ef=fe 
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From the above, we also see that (1; /, k)(p ~1 is a left identity of Es fl ZiX • 
Hence for a € ZiX and its inverse a~l £ ZiX (unique), we obtain 

(1; /', A)(p-1 a = [(1; /, X)tp~1]aa~1a = a'a = a. 

Analogously (1;/ , k)ij/~i is a right identity of ZiX. Therefore ZiX has an identity. 
We have proved that every nonzero 9Ji-class is a bisimple inverse semigroup 

with identity. By 3. 11, S is a Rees O-composition, and since every nonzero 9Ji-class 
has an identity, by 3. 2, 9JI must be the congruence associated to 5. Therefore 
S^ Jt°(D\I, A; P), where D = Dl is a bisimple inverse semigroup. For 
•qXiA 0, (p\EsC\Za is a semigroup isomorphism of Es fl Zu onto TiX = {(?; /, A)| t&T}. 
Thus 

ED^EsC\ZiX^TiX^T. 

It was shown above that quA O-o Za is a nonzero SH-class. Hence Q = P. This 
•completes the proof. 

R e m a r k 5. 2. In the last part of the proof of necessity, we have in fact shown 
that eS f l / S Q efS always holds. A simple computation then shows that eSC\fS= 
=efS in c) i) can be substituted by any one of the following expressions: (a) efSQf S, 

<(b) e f t f S , (c) ef=fef. . 
In order to express conveniently the corollaries of 5. 1, we now introduce 

the notion of a sum of rectangular bands. 

P r o p o s i t i o n 5.3. Let C = C° be a semigroup, | C | > 1 ; then the following 
•conditions are equivalent: 

a) C is a band and for all a, b, c£C, abAO, bcA0=>-abc = acA0~, 
b) C is an orthogonal sum of semigroups Bx, where Bx are pairwise disjoint 

,,rectangular bands (5. 11, [3]; i.e., C is the union of its subsemigroups Bx and 0, and 
BxBfi=0 if a A P ); 

c) C=EB for some rectangular 0-band B. 

Such a semigroup C will be called a sum of rectangular bands. 

P r o o f . a)=>b). For a AO, bAO, let: axboab AO. Then r is an equivalence 
relation wfibse classes Bx are rectangular bands, and C is evidently an orthogonal 

-sum of £0 . 
b)=>c). We may put Ba =Ji{\; Ix, Ax; Px), where the sets Ix (respectively 

Ax) are pairwise disjoint. Let Ix, A = U / l a ; let Q = (qXi) be the A X/-matrix 
a a 

• defined by: for i £ Ix, k £ Ae 

f l if a•=/?, 
^ = l 0 if a A p , 

.and set B =J/°(I;/,/!; Q). Clearly B is a rectangular 0-band and C^EB. 
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c)=>a). Let B be a rectangular 0-band and suppose that EB is a subsemigroup 
of B. Letting C = EB and using the hypothesis that EB is a semigroup, we see 
without difficulty that C satisfies a). 

D e f i n i t i o n 5.4. Let P be a Ax /-matrix over a group with zero G° and 
identity 1. P is said to satisfy condition (TV) if for all i,j£l, K n^A; 

Pm* 0> Pxj ^ 0, P„j ¿0=> pu'pxj P;/ pfli = 1. 

The statement of 5. 1 simplifies considerably if we suppose that the idempotents 
of S form a subsemigroup, or that S has no zero, or that the associated congruence • 
is a Brandt congruence (3. 2, [3]). Also, using 4. 3, we obtain certain other character-
izations of these semigroups; 5: 1 thus has the following corollaries. 

C o r o l l a r y 5. 5. The following statements are equivalent for any semigroup S: 
a) S is 0-bisimple and ES=TX°C, where T=Tl is a semilattice and C is 

a sum of rectangular bands; 
b) S=Jl°(D-, / , A; P), where D = Dl is a bisimple inverse semigroup and 

Es is a semigroup; 
c) S^J/°(D; / , A; P), where D is as in b) and P satisfies (N); 
d) S = DX°B, where D is as in b) and B is a rectangular 0-band whose idem-

potents form a subsemigroup. 

P r o o f . a)=>b). Let B as in the proof of 5. 3, b)=>c), and let A = TX°B. Then 
EB=C so that Es^TX°C^TX°Eb^Ea. Since B is a rectangular 0-band, B 
satisfies 5.1 a). It follows that in turn A, EA, ES, S satisfy 5. 1 a); the last implication 
holds since S is regular. If 6 is a semigroup isomorphism of ES onto EA, then letting 
ip = \]/ = Qt all conditions in 5. 1 b) are trivially satisfied. Let e,f£ES and suppose 
ESHFS^O. Then ex=fy^0 for some x, yd S. Let x ' be an inverse of x and w be 
an inverse of yx'. Using the fact that idempotents of S form a subsemigroup, we 
obtain 

/(yx'w) = e(xx')u> = e(xx')e(xx')w = e(xx')f(yx'w) ^ 0, 

which implies eEsC)fEs^0. We identify Es with TX°C and write e = (a,u), 
f=(b,v), so that (a, u)(s, t) = (b, v)(p, for some (s, t), (p, q)eTX°C. It 
follows that as = bp, ut = vq^ 0. Since C is a sum of rectangular bands, we have 
u, t,v,q£ Bx for some rectangular band Bx. From ut = vq = uvq it then follows 
uv = u(vqv)=(uvqv) = vqv£vC. In T, trivially ab£bT, so that e f £ f E s Q f S . Thus 
5 .2 (b) holds and hence also 5. 1 c) i); c) ii) is verified analogously. By 5. 1, b) holds. 

b)=> c). If pki 0, pkJ ^ 0, P l l J ^ 0, then 

(pit1; i, (/>;/, j, /0 = (p»il; U n) 

9 A 
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since the product on the left is a nonzero idempotent. Hence Pl i
lPxjPnj l=PlIi1 

and (N) holds. 
c)=>-d). It is easy to see that ( N ) implies (M). Thus by 4. 3, S^DX°B, 

Sj s GX°B, where D, B, G are as in 4. 3. Moreover, =Jt°(G; I, A; P), where 
P satisfies (N). From the proof of b)=>c), it follows directly that ESt is a semigroup 
and since S ^ G X ° B , EB also is a semigroup. 

d)=>a). We identify S with DX°B. Since D is bisimple and B is 0-bisimple, 
it follows easily that S is 0-bisimple. Evidently ES = EDX°EB, where EB is a semi-
lattice with identity and EB is a sum of rectangular bands by 5. 3. 

C o r o l l a r y 5. 6. The following statements are equivalent for any semigroup S: 
a) S is bisimple and ES^TXB, where T=Ti is a semi lattice and B is a 

rectangular band; 
b) S=Jl(D\ I, A; P), where D = Dl is a bisimple inverse semigroup and Es 

is a semigroup) 
c) SsiJl(D\ /, A; P), where D is as in b) and P satisfies (N); 
d) S=DXB, where D is as in b) and B is a rectangular band. 

Recall that an inverse rectangular 0-band is called a Brandt 0-band (3. 2, [3]). 
A semigroup K which is a sum of rectangular bands each of which contains only 
one element is characterized by the fact that K has 0 and at least one more element, 
and for any a,b£K: 

(a if a = b; 

call such a semigroup a Kronecker semigroup. 

C o r o l l a r y 5. 7. The following statements are equivalent for any semigroup S: 
a) 5 is 0-bisimple and £s= TX where T= Tl is a semilattice and K is 

a Kronecker semigroup; 
b) S^i J/°(D\ I, A; P), where D = D1 is a bisimple inverse semigroup and 

Es is a semilattice; 
c) I, / ; A); where D is as in b) and A is the Ixl-unit matrix-, 
d) S~ D X °B, where D is as in b) and B is a Brandt 0-band. 

The proof of 5. 6 and 5. 7 follows easily f rom 5. 5 and is omitted. Note that 
further characterizations of semigroups appearing in these corollaries can be given 
using the results of the previous section, i.e., using the notions of a Rees 0-composi-
tion and of a matrix of semigroups. 
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6. Example and conclusions 

The following example shows that a bisimple regular semigroup need not be 
a matrix of bisimple inverse semigroups. Let S be the semigroup generated by 
a and b subject to the relations a = aba, b = bab = ab2. The elements of S can be 
written in an array: 

a a2 ••• am ' ••• ab a2b ••• amb •'•• 
ba ba2 ••• bet" ••• ,b ba2b ••• befb. ••• 

b"a bna2 ••• b"am ••• if b"a2b ••• b"amb — 

~ ' " V 
LJ L2 

The ^-classes constitute the rows and the jSf-classes the columns of this array. 
Hence S is bisimple and regular. ES consists of two descending chains 

ba>b2a2> — >bmam> •••, ab>ba2b> ... >bmam+1b— > •••, 

no two elements belonging to different chains are comparable, and ES is a sub-
semigroup of S. Both L1 and L2 are left, ideals and the partition induced is the 
maximal matrix decomposition of S ([4]). Since L¡ is not regular, S is not á matrix 
of inverse semigroups. L 1 is the subsemigroup of the bicyclic semigroup generated 
by Pi =a,p2 =b obtained by omitting the if-class of the identity; L2 is the bicyclic 
semigroup generated by p2 = a2b, q2=b. 

That S is not a matrix of bisimple inverse semigroups with identity can also 
be (more easily) deduced from our results. For suppose it is; then by 2. 3, 3.10, 
and 3. 2, S^JI(D\ / , A; P), where Z)=Z)1 is a bisimple inverse semigroup. Since 
ES is a semigroup, by 5. 6 we must have ES^ TXB, where T= T1 is a semilattice 
and B is a rectangular band. Since ES consists of two chains, we must have = 2 , 
and the set {ba, ab} must be either a left or a right zero semigroup. However, 
(ba)(ab) = ba2bi{ba, ab). 

Using the theory developed in the previous section, whenever the structure 
of a class of bisimple inverse semigroups with identity is described by means of 
some construction involving the group of units, the structure of 0-bisimple semi-
groups which are 0-matrices of these semigroups is readily available. For example, 
if S is a 0-bisimple (or, equivalently, regular; 3. 11) semigroup which is a 0-matrix 
of bisimple cu-semigroups introduced by REILLY [6], then S^J/°(D; I; A, P), 
where D is a bisimple »-semigroup. In fact, S can be represented as the set 
(GXNXNXIX A)[J0, where G is a group, N is the set of nonnegative integers, 
with multiplication 

(g,m,n,i,X)(h,p,q,j,[i) = (g<xp rqXjan+p rhan r,m+p-r,n + q-r,i,n) 
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if qXj A 0, otherwise equal to zero, where Q = (qu) is a regular A X /-matrix over 
G°, a is a fixed endomorphism of G, a' is the Mh iterate of a, with a° the identity 
transformation, and r = min{«, p}. S can also be characterized by using 5 . 1 
(for special cases, see 5. 5, 5. 6, and 5. 7). 

The case of a matrix of semigroups (or an /--composition, section 2) as treated, 
in section 3, serves the same purpose as described above for bisimple inverse semi-
groups with identity, for a much larger class of semigroups (composable semi-
groups, see examples in section 2). 
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