Some algorithms for the representation of natural numbers

By I. KATALI in Budapest

1. Let 1 =a; < a, <--- be a sequence of natural numbers. Let further o denote
" -the set {a,}.

Every natural number can be represented in the form
.1 . . n= ”i‘+"'+aiv'

where a;;€.4, a;, %aizz =gq;,, and q;, denotes the greatest element of o/ which
does not exceed n and, in general a;, denotes the greatest element of o/ which does
not exceed n— (a,1+ Ha,_ ) k= 2 , V). ‘

Let a(n) denote the length of this representatlon ie. a(n)=v,(0)=0. ‘

In this paper we study the distribution of the values o(n) for some special
set 7. In the sections 2 and 3 we shall study the cases when the differences of the'
consecutive elements of o/ have a limiting distribution. In the section 4 we investigate
the case when & conisists of the square numbers.

2.L ¢t
Q.D—2.2)  di=an—ai=1,2,..); Alx)= 31,
2.3 axy=31  (=1,2,..).

o ~ g Gt
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[x] ’
Q249 : T(x) = 2a()  (k=0,1,2,..),
. .n=0

N
CH26)  SWuy= e o=y SK).
. . n=0 '
We shall prove

Theorem 1. If n~'A(n)=a(>0) for n'=1,2, -, N, then n~Ty(n)=1/«
for n=1,2, -, N. ' ’ : :
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Let us now suppose that the limits
Q2.7—(2.8) }iﬂlox“A(x) = ¢(=0), lim x",lg,‘(x) =g ((=12.))

exist and the relation

@9 Sle=1

- . o =1

holds. - .

‘ It is known that (2.9) is equivalent to’

(2.10) - fim x~! 3 ¢,(x)~0 (y=> ).
o : X oo =y .

Theorem 2. Under the assumptions (2. 7); (2. 8), (2.9) the following assertions
hold: :

a) The sequence of the characteristic functions ¢y(u) tends to a limit function’
@) as N oo, uniformly in u, and the relation

2.11) | 0@ = ¢ 3 011 (loy -
holds. o - o
- Furthermore the limits '
.3(2' 12) o )&Lniﬁ_}_—l ngv 1 =1 (=12,..).
. : a(n)=1 . :
exist and »
| Z'“Tl =1
. 1=1
b) We have -
(2.13) o mx~ 1T (x) =1+ > (’v‘) 2 T,(I-1)e,
S X v=1\V/i=1

for k=1,2, -_--,.the sum on the right hand side of (2.13) being cor;vergent;

~ 3. For the proof of Theorem 1 we use induction on n. Since 1 € o, 50 .Tl(l)/ 1=1/a
evidently holds. Suppose now, that m~'Ty(m)=1/a for m=1,..,n—1, where
1 <n=N. Hence we deduce that n~!T;(n)=1/a. Indeed we have

T =Sam=3 3 am+ 3 am),

m=n J=2aj-1=m<ay ay=m=n

where a,=n<a,,,. Since : ' )

. . 4dj—|—1 ’
2> amy=d;_,+ ~§) a(v) =d;_+T,(d;-,—1)

aj-1=m<a;
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so we get

Gn - T =nt 3T ~D+Ti—a)=
. j=2 .
=t 3 T,@=Des@,- )+ Ti(n=a).

If n'.lTl(n)émnélfll}lm“T,(m), then n~1Ty(n)=1/a evidently holds. Let us
now suppose that _ o '
" n T, (n) = ’lr;la)é m=1T, (m).

Then from (3. 1) it follows that .

T, () 1 [ PO
=1+ n(n)'7{j;;(aj+1_aj"l)+(”-av)}=

= 1+ 00 L gy = 14+ T [’1_ é_@l]

n

and consequently T"fn) . A’(ln) =1, ie T‘n(n) ——:? holds.

We begin the proof of Theorem 2. Let a,=N<a,.,.
a) We have

v .
. S(N, u) — eiua(0)+ 2 2 eiua(n)_'_ 2 eiue(n) —

j=2aj—1=n<ay ay=n<N .
=1+e% 3 S(d;_,u)+e"S(N—a,,u) =
i=2 .

S(d

| |
= 1o 32020 ) gy (@r-) + €SN~ a,, ).

X~ 00

Since the limit lim x~ 1A(x)—c exists, so d;=o0(a;) (i~ ), and consequent]y
|S(N -y, u)l/N —»0 Hence .it follows that

1 g+l

T '"dicod () 28] ‘)+ .

| oy = Tl
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Let now ¢(u) be defined by the relation (2. 11). Then

|%@<w»4wwm2%loﬁfﬁ)@me§
= dgd(a\'—l)
_2d 2 m——d@d +0(l).

From (2. 8), (2. 9) it follows that the last sum tends to zero as N—»oo independently

from u.
From (2 11) it follows that ¢(u) is a characteristic function. Smce @x@) and -
consequently ¢(u) are periodic functions mod 2r, so ¢@(u) has a Fourier expansion

<p(u) > b,

n=—co

Using the uniform convergence of x(u) to go(u) we have
2 ) .
f (p(u)e—zludu = llm—~ f (pN(u)evtludu _

1
Iéﬂcmnghl—r, for l_-l 2,

- = - a(m) =1

(V) for10—1—2
2n=2&=mm=

Furt'h_erm.ore -
" b) We have
Ti(x) = ZOC"(") = Z Z (0‘(])"'1)"

=xj=0

'. where the dash means that for a; fx<a,+1 we sum over those Jj for Wthh] =x—aq,.
Hence it follows that : o
di—1 ’ ] oo - - ’
T.(x)= 2 2 [ ]a"(j)= 2( ] 2>’ T(d—1)~ Z( ]Z"Tv(lfl)ez(X)-
- a;=xj=0. v .ov=0\V ) aisx =o\V)i=1 .
-The fulfilment of the relation (2._ 13) would follow from the boundedness of
~ the sums T, (/I (I=1,2,---;v=1, -, k) by (2. 10) immediately. The boundedness_
of Ti(x)/x follows from Theorem 1. The proof of the general case is similar and so
1t can be omitted.

4. Let o be the set of square numbers Introduce the notation log2 x= log log b
where the base of the logarithm is 2. .

It is easy to prove that o ‘
@n RS a(n) =log, n+5.
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Indeed, if _ ,
CAlx) = msax-oc(n),

' then from the inequality n—[yn]’ =2Vn it follows that

A(x) =1+A4(2Vx)."

Iterating this inequality k times we have
A() Sh+AQUH+ 4T = kg A(dxh),

: Let k be the smallest integer for which x¥*=2, i.e. k_[log2 x]+ 1. Since A(8)=4
we have :
A(x) =log, x+ 5.
Set
T.(x)= Z a*(n) and Ak(x) Z Jou () — log, x[*.

Theorem 3. We have
“.2) ' Ty(x)= x(log2 x)k+ O(x(log, x)*~ l)

“.3) | 4,(x)=0(x),
where the constants in the O terms depend on k only.

Proof. Tt is evident that. (4. 2) follows from (4. 3). For the proof of (4. 3)
we use induction on k. The relation holds for £ =0. Let now suppose. that (4. 3)
holds for k=0, 1, ---, K—1. Then we deduce the inequality (4. 3) for k=K.

‘We have '

4x(N) = 2 > |oc(n)—log2 NK = 2 Z lof(])‘*‘l_lngNV\ 2 B

v2=N \25n<(v+

vS}/N
Using the inequality o _ . ]
v ‘ - K. K S 1K K—1(p|
_ la+b"=lal .+1—21' 7 |lel 18]
and consequently that S - '
. : . K 1
€0+ 1~ log, NI¥ = o) —log; 2%+ 37 |ix(—fog, 2015~ tog ~E2L log 2
_ = og V—
we obtain ‘ :
. (K logVN |
= A (2v)+ Z[I]AK"(zv) log og/
I=1 L.

log2v |°
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Using our assumption that 4,(2v)<2v for k=K—1 we get A

4x(N) = Z' @) +0(2),

v= N
where -
log YN log YN K
21<<V5Nv log log 2v l l log v ||

YN VNE

_ Dividing the interval of summation'[l, VN] into subintervals of type 37710 o7 |

we easily obtain the inequality

| ‘ 21«2’5}’—[ { log VN llog.l/N]K}<< lo];,N '

- Hence .
N
Ax(N) = Ac2v)+ 0O
4.4 ) Ir( ) véZ’ﬁ x(2v) [logN]
follows. o - :

Introduce now the notation -
A(N)=e(N )N

“We prove that ¢(N) is bounded hence the inequality (4. 3) follows for k K, andl
this will finish the proof of our theorem
Let

b=

24- ISmszl

o(m) G=1,2..).
From (4.4) - ' :

sMy =1 S e(2W)2v+cflog N
N véﬁ

follows with a suitable constant ¢. Hence

<
B = 12,2_1'_’(2.31 5 Buyr = Igﬁ_xzﬁ,'l‘—l

Define the non-decreasing sequence of positive numbers y,, ys, -+ as follows:
Let o o ' '

4.5 ya=vs= max(ﬂr,ﬂz)‘l‘_' i Yu = Yaus = max 71+"" (I 3,. )
Clearly, B;=y;forj=4. Soitis enough to prove that Vi is bounded Let

B(x) = 2'v;

JS’C

From (4. 5) it follows that

B(2x)=2B(x) + 2)%,,1 +clog x.
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Furthermore from (4. 1) we can easﬂy see that a(N )<<(log2N )" Hence ﬂ <(log )X,
and so

_ y[,]<< Bra + log x<(log x)X
follows. .'

Set o ( - (log x)

B (x)

Then (p(2x) = @(X)+¢, . So the sequence

» o™ (m=1,2,--) is bounded Hence B(x)<cx follows for every x. Since {y,,} is .
non-decreasing we have.

o= et Ba o,
: _ l /A
i.e. y, is bounded. '
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