On the operator equation S*X7T=X and related ‘topics

By R. G. DOUGLAS in Ann Arbor (Michigan, U.S.A.)

1. If U, is the unilateral shift of multiplicity one, then BRowN and HALMOS
showed in [1] that theidentity U% XU, =X characterizes the class of Toeplitz operators.
In this paper we determine the class of solutions to S*X7T=X for arbitrary
" contractions S and T on Hilbert space. We show firstin § 2 that we can reduce to the

case of isometries and then in § 3 we determine the solutions for such. The form the
latter. solution takes is the same as for. the case of the unilateral shift, namely, the
class of solutions consists of the compressions of the intertwining operators bet-
ween their unitary extensions. In § 4 we investigate when intertwining maps exist =
between unitary operators. In §5 we investigate the inequalities T*°X7T=X and |
- T*XT =X for a contraction T and Hermitian operators X. We show first that we
can reduce a solution of either to a “pure” positive solution of the latter. These we
study. with the aid of a construction of Sz.-NAGY and Foias [9] and a recent result
they proved on the intertwining maps for contractions [10]. As corollaries we
obtain results analogous to those obtained in §§ 2 and 3. We also obtain a result
due to PutnNAM [8] and certain facts about hyponormal operators.
In § 6 we investigate these same equations in the presence of various hypotheses
“of ‘compactness. As corollaries we obtain a lemma of DyE [2], a generalization
of the result that the only compact Toeplitz operator is 0, and a further proof of
the result that a compact hyponormal operator is normal. In the last section we
briefly explore the form our results take when 7 is identified as the Cayley transform
of an accretive operator.

2. We make use of some of the more elementary aspects of the theory for
contractions due to Sz.-NAGY and Foras [9] and begin by introducing a few of their
ideas. _

Let T be a contraction on the complex Hilbert space $. From the inequality
© T (I—T*T)T"= 0 it follows that the sequence {T*"7"} is monotonically decreasing
and hence converges strongly to a positive contraction. If we denote the unique
positive square root of this contraction by Ay, then A, is 0 if and only if the sequence
{T"} converges to O in the strong operator topology. Moreover, since T*AZT A2
we see that AT is a solution to the equation T*XT=X. h

42‘
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Let M, denote the closure of the range of AT and define V; by VTATx ArTx
on the range of Ay. From the identity

Wrdrx|? = 47 Tx|? = (T* A7 Tx, x) = (43 x, x) = | 4rx|)?

it follows that ¥y is well defined and can be uniquely extended to an isometry on
M, which we also denote by V. If by abuse of language we allow 4; to denote
operators from M, to $ and from $ to My as well as an operatot ‘from $ to 9,
then the identities VypA;=A;T and A rV§=T*A; can be seen to hold. This con-
vention will be extremely useful and should cause no confusion.

If S is a contraction on $ and 7T is a contraction on &, we denote by &(S, T)
the collection of operators X in £(8K, 9), the space of bounded. -operators. from
K to 9, satisfying the equatlon S*XT=X. It is easy to verify that &(S, T) is a sub-
space of £(8K, H), which is closed in the weak operator topology. In the special
" case S=T, the subspace &(T, T) (=) is closed under the adjoint operatiori SO

that it'is'spanned by its Hermitian elements. (We shall see that it is also spanned
by its positive elements.)

In the following theorem we :show how to reduce the solution of the equation
 S*XT=X to that of ViYV,=Y.. :

Theorem 1. Let S be a contraction on $ and T be a contraction on K. Then
S(S, T)=AsS(Vs, Vy)Ar. Moreover, every X in &(S, T) can be represen(ed in
the form X = ASYAT with Y in S(Vg, V) such that ||Y|| =1 X].

Proof. Let X be a contraction in £(K, 9) so that S*XT=X. Then S*XX*S>
=S*XTT*X*S=XX* so that by induction we obtain SMXX*S = XX* for all a.
Thus S*'S*= XX* for all » and from the definition of Ag it follows that A42= XX*.
Hence there exists a contraction C, from M to $ such that X* = C, 45 and, taking
adjoints, a contraction C (=C%) from $ to Mg so that X = 4,C. Substituting this
. in our equation we obtain AGVECT=S*A;CT=AsC. Since the range of both
V¥ and C is contained in Mg and Ay is one-to-one on Mg, we obtain VFCT=C.
" Repeating our previous argument we have T*C*CT=T*C*VViCT=C*C from
which it follows as before that A% =C*C. Hence there exists a contraction ¥ from
My to H so that C=YA;. Substituting we have VYV d, =ViY4, T=ViCT=
=C=YA;, and hence V¥YV; =Y. Thus, the operatot X can be written X = A YA,
" with Y in &(Vs, Vy), so we have shown &(S, T) is contained in A;S(Vy, Vi)Ar.
To prove the converse suppose that Y is in &(Vg, V). Then we find that
S*AYA;T=AVEYVyAr=AsYA7 so-that X=AsYA; is in (S, 7). Moreover -
since we have shown that if X' is a contraction, then Y can be taken to be a contraction,
we have then for a general X in &(S, T) that Y can be represented in the form
X#ASYAT with Y in &(Vg, V;) and such that | Y|| = || X). This completes the
proof that &(S,7) is equal to AsS(Vs, Vi)Ar.
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From this it follows that if either Ay or Ay is 0, then &(S, T)=(0). The ques- -
_tion of necessary and sufficient conditions for &(S, T)#(0) must wait for a de- .
‘tailed study of the case of isometries. We can at this point determme the situation
in case S=T.

Corollary 2. 1.- Let T be a contraction on 9. Then S(T, T) is (0) if and only
if Ar=0. f ’

Proof. From the theorem we have that Ar=0implies S(7, T)=(0). If A3 50,
then since 0 A% is in &(T, T) it follows that S(7, T)#(0).

3. For a Hitbert space D we let Hy denote the space of functioné f‘from the._ '
non negative integers Z*-to D so that . ZH F(@)||? <o, The space Hy is a Hilbert
space with respect to pointwise addltlon and scalar multiplication and the inner
V product . &)= Z(f(n) g(n)). The unilateral shift U, is defined on HD so that

0 (n=0) '
U n ={, . , for [ in H. The operator U, is an isometry and
( +f)() f(i—1) (n=0) J D P + y
its adjoint, the backward shift, satisfies (U% f)(n)=f(n+ 1) for fin Hy. The sequence
{U3"} converges strongly to 0. The minimal unitary extension U of U, is the bilateral
shift defined on Ly, where Ly is the space of functions f from the integets Z to
D so that Z’” I|f(n)||2<o$ and U is defined (Uf)(n)=f(n—1) for f in L33 It is

easﬂy verified that U is unitary and if we identify H,D as a subspace of Ly in the

obvious way, then U, = U|Hy, '

A result due to voN NEUMANN [6] states that every isometry V on 55 is of the
form V=U,®V, on §=H & H,, where U, is the unilateral shift on Hy and
V, is a unitary operator on $,. Then W=U@V, on K=L,®H, is a unitary
extension of V so that the smallest reducing subspace for W containing $ is K.
This extension is unique to an isomorphism (cf. [3] or [9]). Let P denote the projection
of & onto . As in the case of A; we find it convenient to allow P to denote operators
from § to K and K to $H-as well as from K to K. i

The following theorem reduces the solution of- the equation ViXV,=X for
isometries ¥; and V, to the case of unitaries. In case V; =V, a proof could be given
based on a resuit of LeBow (5, p. 68]. The following proof is based in part on a proof
due to BROwN and HArmos [1].

Theorem 2. For i=1,2, let 'V, be an isometry on H; with minimal unitary
extension W; on R; andlet P; be the projection of R; onto $;: Then &(Vy, V,)=
=P,G(W,, W,)P,. Moreover, any X in &V, V,) can be represented in the form
X=P,YP, with a Y in &(W,, W,) such that | Y| =|X].
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Proof. If B is an operator from K, to R, so that W}{BW,=B, then
ViP,BP,V,=P,W}iP,BP,W,P,=P,W}BW,P,=P,BP, where the identities
- PWTP =P, W} and P,W,P,=W,P, follow from the fact that §, and $, are
invariant subspaces for W, and W,, respectively. Thus P, L S( W1 s WG)P2 is contained
in &V, V,). Note that ||P,BP,|| =|B|.

' Conversely, suppose C is in &(V;, V,); we want to deﬁne B from K], to K],
. so that C=P,BP, and W, BW, = B. The operator B will be obtained as the strong
limit of the sequence {B,}, where B,=W}"P,CP,W} .

An elementary computation shows for i=1,2, that P, ,=W"PW?! is the
projection of K; onto W9, and that the sequence {P;,}, is monotonically
increasing and converges strongly to the identity on K;. S '

Observe now that since |B,]|=|W}"P,CP,W3| =||C|, the sequence in uni-
formly bounded. Moreover, for n=m=0 we have -

Py B, Py, = WP WIWI"P CP, WS WSm P WY =
= Wi P, W mCW3 " P, Wy = WimP V" CVy P, W =
=Wi"P,CP,W} =B, '

© so that P, ,B,P, , is independent of n so long as n is greater than m. Thus for
x in P, &, and yin P 8, we have '

Nim (B,x, y) = lim (Py, mB,.Pz m*, ) = (BnX, y).

"Thus, lim (B,x, y) exists for x in the dense subset U PR, of &, and for y
in. the dense subset | Pl,,,,Rl of K,. Since the sequence is uniformly bounded,

we have that the sequence {B,} converges weakly to an operator B in (K, ]),).
That P,BP,=C and W{CW,=C are obvious. Thus we have completed the proof
that &(V;, V;) is equal to P,&(W,, W,)P,.

In the preceding argument if we notice that we also have B,=P ,BP, ,,
then using the fact that the sequences {P; ,} and {P, ,} converge strongly to the
identity operators on &, and &,, respectively, we see that the sequence {B,} con-
verges strongly to B, hence || B} =||C||. From this it follows that any C in &(V;, V)
can be represented in the form C=P; BP2 with a B in &(W,, W,) such that
Bl =HCil.

4. We next study the 'space S(W,, W) for unitary operators W, and W,
defined on the spaces &, and K,, respectively. We begin with a lemma which is
a mild generalization of a result due to PuTNaM [7]. We state the result for normal
operators which necessitates the use of the Putnam—Fuglede Theorem. The same
result for unitary operators has an elementary proof.
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Lemma 4.1. Let M and N be normal operators on the spaces © and R,
.respectively, and let B an operator in L(9, ) satisfying BM =NB. If M denotes.
the orthogonal complement in $ of the kernel of B and M denotes the closure in &
of the range of B, then M reduces M, N reduces N, and M I is unitarily equivalent
to N|‘R

. Proof Let B=PU be the polar decomposition for B with U a partial isometry

in £(9, K) and P a positive operator on K so that the range of U is equal to 9.
Since BM =NB, the Putnam—Fuglede Theorem [8] implies BM*=N*B. These
two equatlons imply that 9 reduces N. Taking adjoints we have M*B*=B*N*
and MB*=B*N which imply that 9 reduces M.

Substituting we obtain .P2N=BB*N=BMB*= NBB* NP? so that P?
commutes with N. Hence_ the positive square root of P2 commutes with N so that
PUM = NPU=PNU. This latter identity implies UM =NU in view of the fact

that the range of both UM and NU are contained in R on which P is one-to-one.
It now follows that MM and N |9 are unitarily equivalent with the isometry UM
with range 9t effecting this equivalence.

Returning to the situation of W, and W, unitary on &, and &, what we would
like to do is to describe the space &(W,, W,) more or less explicity. To do this,
however, would take us too far afield. We content ourselves with determining
when G(W,, W,)=(0). Let E(§) and F(5) be the spectral measures for W, and
W, , respectively (cf. [3]). The unitary operators W, and W, are said to be relatively
singular if the measures u(d) = (E(d)x, x) and v((S) (F(8)y,y) are relatlvely smgular
for vectors x in &, and y in ;.

Theorem 3. Iffor i=1,2, W,isaunitary operator on K, rhen C(Wl, W, = (0) '
if and only if W, and W2 are relatively singular.

Proof. Suppose Bisin S(W,, W2) and ‘JJl and M are deﬁned as in the lemma.
Then the operators W, |9 and W,[9N are unitarily equivalent. If U is an isometry
from 9t onto N effecting this equivalence ard x is any vector in M, then the measures
(E@®)x, x) and (F(8)Ux, Ux) are identical. If B>0, then 9 (0), so we can choose
x#0. Thus, .G(Wl, W,) #(0) implies that W, and W, are not relatively singular.

If W, and W, are not relatively singular, then there exists vectors x in & -
and y in &, so that the measures u(8)=(E(J)x, x) and vw(8)=(F(d)y, y) are not
relatively singular. Let 9, and 9N, be the cyclic reducing subspaces generated 'by :
x and y for the operators W, and W,. It follows from the multiplicity theory for

normal operators (cf. [3]) that there exist vectors x, in M, and y, in N, so that '

the measures. uqy(8) =(E(8)xo, xo) and vy(6)=(F(8)yo, yo) are mutually absolutely
continuous. Thus the unitary operators W, |9, and W,|N,, are unitarily equivalent.
Let ¥ be an isometry from 9, onto N, so that (W, M) =V (W, [N, )V. If we



24 . R. G. Douglas

define the operator B.in £(&,, &) so that Bw=Vw for w in M, and Bw=0 for
w orthogonal to 9, then B is in &(W,, W,). Thus the proof is complete.

Implicit in the proofs of lemma 4.1 and the preceding theorem is a recipe
for constructing the elements of €(W,, W,). We will not elaborate on this.

5. We now consider- the operator inequalitieé T*XT=X and T*XT=X for
a given contraction 7 and unknown Hermitian operator X. We show first that .we
can restrict our attention to the first inequality and consider only positive solutions.
Before stating this result we introduce the following terminology. A positive
* operator Q satisfying 7*QT = Q is said to be a pure solution if the sequence {7*"QT"}
converges strongly to 0 and we let Q; denote the set of pure positive solutions
to T*QT=0Q. ' '

Theorem 4. Let T be a contraction on $ and H (or K) be a Hermitian operator
on H so that T"HT = H (T*KT=K). Then there exist Hermitian operators R and
Q so that H=R—Q (K=R+Q), T*RT= R, TQT*<Q and Qis pure Maoreover,
this decomposmon is umque

Proof. Sinee setting H = — K reduces the second case to the first we consider
‘only the case of a Hermitian H so that T*HT = H. Then the sequence {T*"HT"}
is a bounded monotonically increasing sequence of Hermitian operators. Thus
it converges strongly to a Hermitian operator R. It is clear that- 7*R7T = R. Setting
Q = R— H we see that Q is positive and T*QT = T*RT—T*HT = R—T*HT =
=R—H = Q or T*QT=Q. Moreover, since T*"QT" = R— T*"HT" we see that
Q is pure. Lastly; suppose.H = R,—0Q, with T*R,T=R,, T*Q, T=Q, and
+.Qy is pure. Then R, —R = T™(R, — R)T" = T*(Q —Q,)T" and since the latter
sequence ‘converges strongly to 0 we have R, =R and-Q, =0.

This result reduces the solution of the inequalities T*XT=X and T*XT=X
to the study of the pure positive solutions to the latier inequality. This we shail
do in two steps. Firstly, we characterize the pure positive solutions for T*QT'=Q
-using a construction due to Sz.-NAGY and Foias [9, p. 199] who used it for the
case in which Tis a co-isometry. This will reduce the study of this inequality to that
of a commutation identity. Secondly, we make use of a recent result [10] of the
same authors to study the obtained commutation identity.

Theorem 5. Let T be a contraction on 9. A positive operator Q on S:) is a pure
solution to T*QT=Q if and only if there exists a unilateral shift U on a space Ha
and an operator C from $ to Hy so that Q=C*C and CT=U*C.

Proof. Suppose Q is a pure solution and set RZ':Q—T*QT. Then
Q= 3 T*(Q—T*QT)T"= 3 T*"R®T", where the sum convérges in the strong
n=0 T . .

n=0 -



Operator equation 25

topology. We let D be the closure of the range of R and consider U% on Hy. For '
“x in_$ the function f defined on Z* so that f(n)_: RT™x is in Hg since

gllf(n)lll - 2 (T* R2T"x, x) = Q" x|1.

n=0

Moreover, the map from $ to Hy defined by Cx =f is bounded, (C*Cx, x)=
=lCx)2=]f12=Q"?x|>=(Qx, x) so that Q=C*C and (CTx)(n)=RT""'x=
={UF(Cx)}(n) so that CT=U*C. Thus the result is proved one way.

If U} is the backward shift on some Hy and C is an operator from $ to Hy,
so that CT=U*C, then T*C*CT=C*U,U%C=C*C so that Q=C*C satisfies.
" T*QT=Q. Further,  T*QT"=C*U" U*"C and the latter sequence converges
strongly to 0 since {U3}"} does.

We next state a recent resuft due to Sz.-NAGY and Foias [10] which determmes.
the operators satisfying the conclusion of Theorem 5. Recall that for a contraction
T on 9, there exists a unique co-isometry V* on a space f&, containing § so that
$ is an invariant subspace for V* T=V*9, and the smallest reducing subspace
for V'* contammg $ is K, ; V is the minimal isometric difation of 7* (cf. [9, p. 11]).
«Call V* the canonical co-isometry of 7. The minimal unitary extension ¥ on K
of V is the minimal unitary dilation for T*, that is, if P denotes the projection of
! onto 9, then T™*"=PW"|$ for all positive n and the smallest reducing subspace
for W containing 9 is K. R

The theorem of - Sz.-NAGY and FOIAs [10] can be stated (by taking adjoints) -
as follows.

Theorem 6. For i=1,2, let T; be a contraction on $; wirlz canonical
co-isometry VF on K,. An operator C in £(9,, 9,) satisfies CT, = C if and
only if there exists an operator D in 8(8;,, &,.) so that DV¥=V3iD and C=D|H
Moreover, D can be chosen such that |D| =|CJ.

Let us remark the following. Suppose T is an isometry in' $ and let W denote:

its minimal unitary extension in . Minimality means that
) ' . : K=VW—9. .
. 0 -

From T"=W"$ we have T =PgW*|$ (n=0); thus W* is an isometric:
(in fact, unitary) dilation of T*. Moreover, (1) shows that W* is the minimal isometric:
dilation of T*. Thus W is the canonical co-isometry of 7T, as asserted.

Applying Theorem 6 of Sz.-NAGY and Folas to the case of isometric T} and T2
we get the following

Corollary 5.1. Fori=1,2, let V; be an isometry on 9; with minimal unitary
extension W; on K,. An operator C in ¥$9,,9,) satisfies V,C=CV, if and only
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if there exists B in 2(R,, K)) satisfying WIB BW, and C=B|9,. Moreover

B can be chosen such that- |B|| =|Cl|.
This result also follows from Theorem 2.
" As corollaries to Theorems 5 and 6 we obtain results analogous with those of
§.2 and 3.

Corollary 5.2. Let T be a contraction on © with canonical co-isometry V*

on K, and let P¢ be the projection of ], on . Then Qp=PEQyP3. Moreover,
every X in Qp can be represented in the form PZYPZ with Y in Qu« such that
IXi=1xy. - '

Proof. If O is in Q4 then
T*P{QP3T = PyVQV* Py = Py QP;

so that P Qy+P¢ is contained in Q. .

If Q is in Qy, then from Theorem 5 it follows that there exists a backward
shift U on Hy and an operator C in £(9, Hy) so that CT=U% C and Q = C*C.
From Theorem 6 of Sz.-NaGy and Foiag (case T;=UJ}) we obtain an operator
D in &(K,, Hy) so that DV*=U%D and C=D|%. Thus again using Theorem 5
we have D*D isin Qy+. Moreover, Q=C*C=P} D*DPs and the proof is complete.

Corollary 5.3. Let T be a contraction on $ with mmlmal unitary dilation
‘W on K and let Pg denote the projection of & onto . Then Qr=PgQuPg. More-

over, every X in Qr can be represented in the form Pg,ZPg with Z in QW such that -

X =1z

Proof. If ¥*is the canonical co-isometry on K then by the preceding corollary
Qr=P;QP{. If D satisfyes DV*=U%D, then VD*=D*U, so that from
“Corollary 5.1 it follows that there exists E in £(Lp, R) so that D*=E|Hy and
EU=W*E. Thus we have D*D=P%E*P%-.and W*EP%E*WzEUP%U*E*§
=EPy E* so that EPy E* isin Qp and Qp is seen to be contained in PgR, Pg.
: Conversely, if Q isin 9y, and if R denotes the projection of & onto K., then

VRQRV*=RW*RQRWR=RW*QWR=RQOR so that RQR is in Q.. Using
the preceding corollary we have PgyQPg =P RORPg is in Qy and the proof is
complete.

- Implicit in the preceding proof is a characterization of the operators in’ QW
for a unitary operator W. We state it without further proof.

Corollary 5.4. Let W be a unitary operator on K. Then Q is in Qy if and
only if there exists a Hilbert space ® and an operator E in &(K, Ly) so that EW = UE
and Q=E*PgE. :
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We illustrate how the preceding results can be applied to obtain a result due
to PutNaM [8, Theorem 2. 3. 2]. Before stating it we need to recall the following.
If Wis a unitary operator on & with spectral measure E(J), then W is said to be
absolutely continuous [singular] if the measure u(8)=(E(d)x, x) is absolutely con-
tinuous [singular] for each vector x in K. If W is a unitary operator on Ri then
] = K, @K, where K, and K, are reducing subspaces for W so that W|K,
is absolutely continuous while W|[8, is singular. The ‘operator WS, is said to be
the absolute continuous part of W. (See[3] for details and proofs.).

Coro'l’lary 5.5. Let W be a unitary operdtor on  and Q be a pure positive
. solution'to W*QW = Q. Then the range of Q is contained in the absolutely continuous
part of W. :

Proof. From the preceding theorem it follows that there exists a backward
shift U, on some Hy and an operator C from  to Hy so that Q=C*C and CW=
=U*C. Thus there exists by Corollary 5. 1 an operator D from $ to Ly so that -
D=C*Hy and W*D=DU. Moreover, since Q=C*C, the. closure of the range.
of Q is equal to the closure of the range of C* which in turn is equal to the closure
of DHy. Thus our problem is reduced to showing that DHy is contained in the
absolutely. continuous part of W. ' '

Using lemma 4. 1 we have that W restricted to the closure of the range of D
is unitarily equivalent to U restricted to the orthogonal complement of the kernel
of D. The latter unitary operator is a part of the bilateral shift and so must be
- absolutely continuous: (We can compute the spectral measure in this case.) Thus
DH, is contained in the absolutely continuous part of W and the proof is complete.

Corollary 5. 6. Let W be a singular unitary operator on $ and H be a Hermitian
operator on $ so that W*HW =H. Then W commutes with H.

Proof. From Theorem 4 we have that H = R— Q where R commutes with
H and Q is a pure positive solution to W*QW =Q. From the preceding corollary
we have the range of Q is contained in the absolutely continnous part of W which
in this case has been assumed to be (0). Thus Q =0 and the proof is complete.

Recall that an operator 7 on § is said to be hyponormal if T#T=TT* and
completely non normal if for no subspace M reducing T is 7|9 normal.

Corollary 5. 7. If T is an invertible completely non normal hyponormal operator
on 9 with polar decomposition T=PU, then U is absolutely continuous.

Proof. Since T is invertible, the operator U is unitary and U*P?U =
=T*T=TT*= P2 Thus from Theorem 4 it follows that P2= R~ (Q, whete R
and Q are positive, U commutes with R and Q is a pure solution to U*QU=0Q.
Thus from the preéeding corollary it follows that the range of Q is contained in the
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absolutely continuous part of U. If E'is the spectral projection for U onto the
singular part of U, then EP?=ER—~EQ = ER = RE = P?E. Thus T|EH=
=(EPEY(EUE)|EH, where EPE is positive, EUE is unitary and EPE commutes
with EUE. Thus T|ES is normal implying by hypothesis that E=0 and the proof is
complete. ' :

This is related to the result that every compact hyponormal operator i1s normal
(cf. [4]). We offer a proof of this result in § 6. .

We conclude this section with a further remark concernmg the inequality -
T*XT= X for positive operators X. In Theorem 1 we showed that solutions for. the
equation T*X7=X could be obtained from solutions to ViXVr=X where Vr
is the 1sometry associated .with the contraction 7. This isometry is only part of the
minimal unitary dilation for 7 to which we reduced the study of T*X7T'=X. It is
therefore of interest that the study of 7*XT= X can be reduced to that of VEXViZX.

For. T a contraction let Py denote the class of positive operators P so that
T*PT=P.

Theorem 7. Let T be a contraction on and Ay and Vi as in Theorem 1.
Then Pyp=(0) if and only if Ar=0 and PBr=A; By, Ar. Moreover, every X in
By can be represented in the form A YAy with Y in ‘BVT such that | X [I =|Y].

The proof is the same as that of Theorem 1.

6. We now obtain some special results in the presence of a compactness . -
hypothesis. Before we can state our result we need a lemma concerning the subspace
1, spanned by the eigenvectors of a contraction which belong to an eigenvalue
of modulus one. See [9, pp. 8—9] for the proof. ‘

Lemma 6. 1. If T'is a contraction on , then lIT reduces T and T is a unitary
operator with pure point spectrum. :
Our main result in thlS section is the followmg

" Theorem 8. Let T be a contraction on 9. IfQisa compact positive operator
in Py, then Q is in Sy. Further, if A is a compact operator in 6T, then A and A*
commute with T, W reduces A and AUz =0.

Proof. Suppose @ is positive, compact, and so that T*QT>Q Letd, =4,>-
be the non zero eigenvalues of Q, and let 31, 3,, -+ be the corresponding eigen-
spaces. Each of these eigenspaces is finite dimensional and, denoting by P, the
(orthogonal) projection of $ onto J,, we have :

Qx— /1Px for all x¢#%.

"

We shall prer that each 3, reduces 7, and that TIS,, is unitary. We do this
“by. induction on #. Suppose this is true for all n less than some m(=1) (for m=1
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this hypothesis being void). For x in S, 7x satisfies then the condition of being
orthogonal to each 3, with »n <m (this condition being void if m=1); so we have

LuTxI? = (QTx, Tx) = (T*QTx, x) = (0x, x) = A, lx|2.
Since T is a contraction, this implies || Tx|=]x] and (QTx, Tx) =2, Tx|?: Thus

TS,,,‘C 3., and T,,=T|3,, is an isometry. However, since J,, is finite dimensional
it follows that T, is unitary. Then so is T}, which is equal to P, T*|3J,,. So we have

o~

for x in 3, - . .
lx]l = 1 Twxl = 1P, T*x|| = IT*x]| = |x],

. and this implies P, T*x= T*x. Hence T*3,< 3, so that J,, reduces 7.

, So we have shown that each 3, (n=1, 2, ---) reduces 7 to a unitary operator. -
It follows for an 'arbityary xin 9 - :

T*P,Ix=T*TPx=Px  (n=1,2, ),
~and hence :
T*QTx = Zl,,T*P,,Tx’ = >4, P.x = Ox.

Thus Q isin &¢.° ’ " '

Consider now a compact operator A in S;. :

If T*AT=A4, taking adjoints we obtain T*4*T'=A" so that if 4 = H+1K
are the real and 1magmary parts of A, then T*HT=H and T*KT=K. Thus the
proof can be reduced to the case of a Hermitian operator.

If H is Hermitian, then there exists a reducmg subspace ‘ﬁ for H so that

=H|® and H, = — H|NL are positive operators. Substituting we obtain the
equation T*H,T—T*H,T = H,— H,, where T*H;T=0 and T*H,T=0.

If R denotes the projection of § onto 9N, then

(TRY*H ,(TR) = (TR)*H(TR)—(TR)*H,(TR) = RH, R— RHyR = H,

so that (TR)*H,(TR)=H,. Since H, is positive and compact it follows from the
above that ;g reduces H, and H,|Wiz=0. If x is in Uy, then for some e we
have TRx=e%x so that |x|=|TRx|=|Rx| =|x]. Thus Rx=x which implies
Tx=e®x and x is in ;. Hence W pc Uy so that U, reduces H, and H, |3 =0.
Consideration of the identity 7*(— H)T = (— H) yields the corresponding
results for H,. Thus Uy reduces H and H|UF =0. Moreover, since TT*|U is the
identity on U,  we obtain HT= TT*HT=TH and T*H T*HTT*= HT*. This
completes the proof.
A lemma of DyYE [2, lemma 3. l] is an immedlate corollary to Theorem 8.
 The result of BRowN and HaLMos concerning compact Toeplitz operators [1]
admits the following generalization '

Corollary 6. 1. If T is a contraction on $ with no etgenvalues of modulus
one and A is a compact operator in Sy, then A=0., :
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The followmg corollary is well known (cf. [4])

Corollary 6.2. If T is a compact. hyponormal operator, rhen T is normal.

Proof. If T=QV is the polar decomposition for 7, then Q is positive and
compact. Further, V*Q2¥ = Q2. Theorem 8 now applies to conclude V*Q?V = Q2
so that T*T=7T" and T is normal. :

Corollary 6. 3. If T is a contraction on 9 so that Ay is compact then A; is
a finite dimensional projection and T ]ATSj is unitary.

Proof. From the definition of Ay it follows that T*A42T=A42 Thus 'by"
Theorem 8- we see that T|A2$ is unitary so that for x in § we obtain ||42x|| =
= lrrr})“ T Arx)|? =] Asx|. Since Ay is a positive contraction we obtain’ A_T_AT..

Therefore Ay is a compéct projection which implies it is finite dimensional.

We next state a couple of miscéllaneous corollaries. Recall that for operators.
V and W defined on  and K, W is said to be a quasi-affine transform of V is there:
exists a quasi-affinity S in 2($, K), that is, an S with dense range and no null.
space, so that VS=SW (cf. [9]). ‘

Corollary 6. 4. If the contraction K on 9 is the quasi-affine transform of the
isometry V on 9, where SK=VS, and SK is compact, then K and V are unitary and.
unitarily equivalent. ‘

" Proof. Since SKK*S* is positive and compact and V*SKK*S*V= -
=V*VSS*V*V=88*= SKK*S*, we can apply Theorem 8 to conclude that.
S(I— KK*)S*=0. Since S and S* have no null space we conclude that K* is an.
isometry. Lastly, since V'S=SK has no null space, neither can K which implies.
K is unitary. Thus SK has dense range which implies V is unitary. An appllcatron
of Lemma 4. 1 completes the proof. :

We now remark that the precedmg corollary contains two different results
Firstly, in order for a compact contraction to be the quasi-affine transform of an
isometry, .the underlying space must be finite dimensional. Secondly, in order
for a contraction to be the quasi-affine transform of an isometry with-a compact.
operator implementing this equivalence, both the contraction’ and the isometry
must be unitary. :

Corollary 6.5. Let S and T be contractions on & and A be a Hermitian

compact operator on $ so'that S*AT =A.If M= A%, then S| =V,and T M=V,
are unitary, Vi=V,, and V| and V, commute with A9R.

Proof. From S*AT=4 it follows that S*A2S=S*ATT*AS=A? so that
it follows from Theorem 8 that .S commutes with 42 and 9 C Ug. Similarly, con-
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sideration of the identity T*AS A leads to the fact that 7 commutes. wnh ‘A% and
M U=, The result now follows.

7. We conclude w1th a few remarks. In this paper we have been con51der1ng
the equation S*X7=X and the inequalitics 7*X7T=X and T*XT=X for
contractions S and 7. The assumption that § and T be contractions is cruc1al for
results of this nature to hold. ’

If T is a contraction on § not having 1 as an elgenvalue then the Cayley
transform A4 = (I+T)(I—T)~! of T can be defined. The set of operators obtained
in this manner is the class of maximal accretive operators (cf. [9]). Recall that a
densely defined operator A4 on $ is said to be accretive if Re (4x, x)=0 for x in
the domain of A4, and maximal accretive if no proper extension of A4 is accretive.

If S and T are contractions on § and K with Cayley transforms 4 and B,
then for X in &(8K, §) the equation S*XT=X holds if and only .if B*X = — X4.
Thus this equation is amenable to the technique of §§ 2 and 3 for accretive operators
A and B. The inequalities T*XT=z=X and T*XT=X for X Hermitian become

A*X+XA=0 and A*X+XA4=0 and can be solved with the results of § 5. The
results of the rest of the paper have similar interpretations in terms of accretive
operators.

Further, these results have extensions to one parameter semi-groups of contrac-
tions and indeed to other commutative semi-groups of contractions, but we will
not pursue them.

Lastly, we conclude with an example. Recall that if N is a normal operator
on & and $ is an invariant subspace for N, then the operator T'=N|9 is said to
be subnormal. If the smallest reducing subspace for N containing $ is &, then N
is said to be the minimal normal extension of T. This is unique to an isomorphism
(cf. [4]). In case N is unitary, then T is an isometry and an isometry is subnormal
by our previous remarks.

Corollary 5. 1-can be interpreted as stating that all “commuting maps’ between
isometries “lift”” to their minimal normal extensions. We want to show that this
is not true for subnormal operators in general. We first prove the following lemma.

Lemma 7. 1. Fori=1,2, let T; be a subnormal operator on ©; having minimal
normal extension N; on ;. Let A be a quasi-affinity in 2(9,, 9,) so that T,A=AT;.
Then a necessary condition that there exist B in &(8,, &,) so that N,B=BN, and
A=B|H, is for N, and N, to be unitarily equivalent. -

Proof. Suppose such an operator B exists. Then as in the proof of lemma 3. 1,
the closure 9 of the range of B reduces N,. If P denotes the projection of &, onto
K, ©N, then for a dense set of x in §, there exists y in H, so that Ay=x and we
have Px=PAy= PBy=0. Thus ©, is contained in N which contradicts the mini-
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mality of N, unless W= K,. Similarly, the closure of the range of B* must be 8.
From lemma 4. 1 it follows that N, and N, are unitarily equivalent.

Corollary 7.2. There exist subnormal operators Ty, on ©, and T, on $,
with minimal normal extensions N, on 8; and N, on Rz , respectively, and an operator
A in (9, D,) satisfving AT, = T,A for which there is no B in Q(K,, K,) satisfying
BN,=N,B and A=B|&,.

Proof. There is an example in [4] due to SARAsON of similar subnormal
operators T, on $, and 7T, on $, so that their minimal normal extensions N; on
K, and N, on K, are not unitarily equivalent. If 4 is the invertible operator so that-
T,A=AT,, then if follows from the preceding lemma that there exists no B in
'-Q(Rl, K],) satlsfymg NZB BN, and A=B|H,. :
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