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Let § be a separable, infinite dimensional, complex Hilbert space, and let 
JS?(§) denote the algebra of all bounded, linear operators on § . In [2], H A L M O S 

initiated the study of the class of quasitriangular operators on § . These operators 
may be defined as follows. Let 0 denote the directed set consisting of all finite 
dimensional (orthogonal) projections in i ? ( § ) under the usual ordering (P = Q 
if and only if (Px, x)^(Qx, x) for all For a fixed A ££?(%>), the map 
P — \\PAP — AP\\ is a net on SP, and A is quasitriangular provided 

lim 'mf^PAP — AP^ = 0. 

(The definition of quasitriangularity given in [2] is actually somewhat different. 
That the above is an equivalent definition is [2, Theorem 2].) Among the quasi-
triangular operators are the operators of the form X + C where A is a scalar and 
C is a compact operator. In this note we call such operators A + C thin operators. 
Among the quasitriangular operators are also the operators A that satisfy 

(H) lim IIP/1P —/4P|| = 0. 

H A L M O S has conjectured that an operator has property ( H ) if and only if it is thin. 
The purpose of this note to prove that conjecture. 

To accomplish this, we first obtain an interesting characterization of the //-
function of B R O W N and P E A R C Y [1] in terms of the nets P — \\PAP — AP\\. Recall 
that the //-function is defined on SC(§>) by the equation 

t](A) = lim [ sup \\Ax — (Ax, x)x| |] . 
PZ& x6( l -P)S 

11*11 = 1 

T h e o r e m 1. For every A£ J5f(§), 

i](A*) = lim sup \\PAP — AP\\. 
Pi» 

P r o o f . It clearly suffices to prove that 

ri(A) = l i m s u p | | / M ( l - P ) | | 
Pi» 
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for every A £ Jf(§>), since then 

rj(A*) = l imsup ||Py4*(l — P)|| = lim sup ||(1 -P)AP\\. 

Thus let A <E .£?($) be fixed, and let 

l imsup 11^ (1 -^ )11 = a. 
Pi» 

Let also e > 0 and P o £0> be given. Then, by definition, there exists P s u c h 
that P^PQ and 1 ^ , 4 ( 1 - P J H > a - e . It follows that there is a unit vector 
, y € ( l - P i ) 5 such that \\PiA(\-Pi)y\\^a.-e. Since Ay can be written as Ay = 
= [Ay-(Ay, y)y] + (Ay, y)y and Pty = 0, we have 

\\Ay~(Ay, y)y\\ ^\\P,Ay\\ - P , ) j | | 

Since t](A) can be written as 

r/(A) = lim sup[ sup \\Ax-(Ax,x)x\\], 
P i . ® x i ( l - P ) % 

11*11 = i 

we have shown that tj(A)^a. 
To complete the proof, we show that a^>i(A). Let <5 > 0 and a finite dimensional 

projection P2 be given. It suffices to exhibit a finite dimensional projection Q^P2 

and a unit vector z in the range of 1 — Q such that \\QA(l — Q)z\\ >q(A) — 6-
To find such a projection Q and such a vector z, we proceed as follows. The 
definition of t\(A) guarantees that there exists a projection P3 6 0> such that for every 
finite dimensional projection P s P 3 , there exists a unit vector xp in the range of 
(1 — P) such that \\Axp — (Axp, xp)xp\\> rj(A) — S. Choose P 4 s P 2 , P 3 , and let 
z( = xPA) be a unit vector in the range of (1 — P4) such that \\Az — (Az, z)z|| > r](A) — 5. 
Finally, let Q be the finite dimensional projection that is the supremum of P 4 and the 
one dimensional projection whose range is Az — (Az,z)z. Since z is perpendicular to 
the range of P 4 and also to the vector Az — (Az, z)z, z is perpendicular to the range 
of Q. In other words, z is a unit vector in the range of 1 — Q, and the inequality 

|| QA{ 1 - Q)z\\ = || QAz\\ = || Q[Az - (Az, z)z] + Q(Az, z)z|| = | \ A z - (Az, z)z|| > n(A) - 5 

completes the proof. 

T h e o r e m 2. An operator A £¿£(9j) has property (H) if and only, if A is thin. 

P r o o f . Clearly A is thin if and only if A* is thin, and according to [1, Theorem 1], 
A* is thin if and only if ij(A*) — 0. Finally, f rom Theorem 1 we see that rj(A*)=0 
if and only if 

lim sup ||(1 —P)AP l| = 0, 

or, what is the same thing, if and only if A has property (H) . 
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We conclude this note by observing that the problem treated above makes 
sense in any von Neumann algebra. To be specific, let si be any von Neumann 
algebra, let J be any uniformly closed ideal in si, and let 3P denote the directed 
set of projections in J. It is not hard to see that every operator of the form A =A + J, 
where satisfies 

Mm^PAP—AP\\ = 0. 
PÎP 

Is the converse true? 
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