Square extensions of finite rings

By L. C. A. VAN LEEUWEN in Chicago (Illinois, U.S.A.)*)

Let R and S be rings. We say that a ring T is an extension of S by R if S is an ideal in T and T/S is isomorphic to R. Let us call an extension T of S by R a square extension, if $S = T^2$, where T^2 is the ideal in T generated by all products of elements of T. Now T/T^2 is a zero-ring, so in order that there exist a square extension of S by R, R must be a zero-ring. Henceforth we assume that R is a zero-ring and moreover that R is a finite ring. On the other hand, if S^2 is the ideal in S generated by all products of elements in S, then S/S^2 is a zero-ring. We assume that S/S^2 is also finite. Our problem is to find necessary and sufficient conditions for the existence of a square extension of S by R. We shall reduce this problem to the case in which the additive group of S is a finite abelian elementary p-group and S is a zero-ring. In Theorem 4 we get the result that there does not exist a split square extension of S by R (Theorem 5). Finally we determine all rings of order 8, which may occur either as a square extension of a ring of order 4 or as a square extension of a ring of order 2.

First we note that the ideal S^2 of S is an ideal not only in S, but also in every extension of S, since S^2 is a characteristic subring of S.

Theorem 1. T is a square extension of S by R if and only if T/S^2 is a square extension of S/S^2 by R.

Proof. From the isomorphism $T/S \cong T/S^2/S/S^2$ it follows that T is an extension of S by R if and only if T/S^2 is an extension of S/S^2 by R. Now suppose $T^2 = S$, then $(T/S^2)^2 = T^2/S^2 = S/S^2$. Conversely, if $S/S^2 = (T/S^2)^2$, then $S/S^2 = T^2/S^2$ and hence $S = T^2$. This theorem reduces the problem to the case in which S is a finite zero-ring.

If S = (0), then every extension T of S by R is a square extension because R is a zero-ring. Therefore, we assume that S is a non-trivial finite zero-ring. At this

*) This research has been supported by the National Science Foundation (GP-6539).

point we want to summarize the theory of extensions of S by R, where R and S are finite zero-rings. Let T be an extension of S by R, so that $T/S \cong R$. Let $\varphi: T \to R$ be the epimorphism whose kernel is S. An element \bar{u} of T is called a *representative* of $u \in R$ if $\varphi(\bar{u}) = u$. Let $(z_1, ..., z_l)$ be a basis of the additive group R^+ of R and let m_i be the order of z_i . An *l*-tuple $(\bar{z}_1, ..., \bar{z}_l)$ is called a *representative set* of the basis if each \bar{z}_i is a representative of z_i . As the products $\bar{z}_i a$, $a\bar{z}_i (a \in S)$ are all in S, the mappings $a \to \bar{z}_i a$, $a \to a\bar{z}_i$ are endomorphisms of S^+ , which will be denoted by $\eta_l(z_i)$ and $\eta_r(z_i)$ resp. Thus $\eta_l(z_i)a = \bar{z}_i a$ and $a\eta_r(z_i) = a\bar{z}_i$.

It is clear that if we choose another representative of $z_i \in R$, for instance \overline{z}'_i , then $\overline{z}'_i a = \overline{z}_i a$ and $a\overline{z}'_i = a\overline{z}_i$, as $\overline{z}'_i = \overline{z}_i \pmod{S}$ and S is a zero-ring. Hence the induced endomorphisms are completely determined by the element $z_i \in R$. So we get a set of 2l endomorphisms of S⁺ and we divide them into pairs: $(\eta_i(z_1), \eta_r(z_1)), (\eta_i(z_2), \eta_r(z_2)),$..., $(\eta_i(z_i), \eta_r(z_i))$. Each of these pairs is a double homothetism of S, since S is a zero-ring and the endomorphisms $\eta_i(z_i)$ and $\eta_r(z_i)$ are commuting. As T is an associative ring these double homothetisms are pairwise related (cf. [2]). Now we consider the mapping: $z_i \rightarrow \eta(z_i) = (\eta_i(z_i), \eta_r(z_i))$, which associates with each $z_i \in R$ the corresponding double homothetism of S and we extend η by linearity. We claim that η is a homomorphism of R into a maximal ring D of related double homothetisms of S. First we remark that if \bar{z}_i and \bar{z}_j are arbitrary representatives in T then $\overline{z}_i \overline{z}_j \in S$, as $\varphi(\overline{z}_i \overline{z}_j) = \varphi(\overline{z}_i)\varphi(\overline{z}_j) = z_i z_j = 0$. Hence $\overline{z}_i(\overline{z}_i a) =$ $= \eta_l(z_i)(\eta_l(z_i)a) = 0$ for all $a \in S$. This implies $\eta_l(z_i)\eta_l(z_i) =$ zero-endomorphism for all $z_i, z_i \in R$. In the same way it can be shown that $\eta_r(z_i)\eta_r(z_j) = \text{zero-endo-}$ morphism for all $z_i, z_j \in R$. As the product of the double homothetisms $(\eta_l(z_i), \eta_r(z_i))(\eta_l(z_i), \eta_r(z_i)) = (\eta_1(z_i)\eta_l(z_i), \eta_r(z_i)\eta_r(z_i)) = (0, 0)$ in D, it follows that the mapping η maps R homomorphically into a ring D; the homomorphic image $\eta(R)$ is a zero-subring of a maximal ring of related double homothetisms of S. As we saw earlier each product $\overline{z}_i \overline{z}_i \in S$; we define $\overline{z}_i \overline{z}_i = \{z_i, z_i\}$ for all i, jwith $1 \le i \le l$, $1 \le j \le l$; the elements $\{z_i, z_j\}$ are called a multiplicative factor set. Finally we know that $m_i \bar{z}_i \in S$, as $\varphi(m_i \bar{z}_i) = m_i z_i = 0$. So we get another set of elements $m_i \bar{z}_i = b_i$ in S.

It is easy to check that the homomorphism η , the multiplicative factor set $\{z_i, z_i\}$ and the set $\{b_i\}$ have the following properties:

- (1) $\{z_i, 0\} = \{0, z_j\} = 0$, if 0 is a representative of $0 \in \mathbb{R}$.
- (2) $\eta_l(z_i)\{z_j, z_k\} = \{z_i, z_j\}\eta_r(z_k),$
- (3) $(b_i)\eta_r(z_j) = m_i\{z_i, z_j\},\$

(4) $\eta_i(z_j)(b_i) = m_i\{z_j, z_i\}$, for all $z_i, z_j, z_k \in R, b_i \in S, m_i$ as integers.

Hence given an extension T of S by R, T determines with the representative set $(\bar{z}_1, ..., \bar{z}_l)$ a homomorphism η of R into a maximal ring of related double homothetisms of S, a multiplicative factor set $\{z_i, z_k\}$ and a set $\{b_i\}$ $(b_i \in S)$, such that the properties (1)—(4) are satisfied.

Conversely, assume that R and S are given finite zero-rings and that $\eta: R \to D$ is a given homomorphism of R into a maximal ring D of related double homothetisms of S. Let the functions $\{z_i, z_j\}$ of $R \times R$ into S and the set $\{b_i\}$ $(b_i \in S)$ be given for all i, j with $1 \le i \le l, 1 \le j \le l$, such that (1)—(4) hold. Consider the set of all symbols $\sum_{i=1}^{l} n_i \overline{z}_i + s, 0 \le n_i < m_i, s \in S$. Define equality by: $\sum_{i=1}^{l} n_i \overline{z}_i + s = \sum_{i=1}^{l} u_i \overline{z}_i + v$ if and only if $n_i = u_i$ for all i and s = v. Define addition by: $\left(\sum_{i=1}^{l} n_i \overline{z}_i + s\right) + \left(\sum_{i=1}^{l} u_i \overline{z}_i + v\right) = \sum_{i=1}^{i} (n_i + u_i)\overline{z}_i + s + v$, where $m_i \overline{z}_i = b_i$ and the sum is reduced mod $m_i \overline{z}_i$. Define multiplication by:

multiplication by:

$$\left(\sum_{i=1}^{l} n_i \bar{z}_i + s\right) \left(\sum_{i=1}^{l} u_i \bar{z}_i + v\right) = \sum_{i=1}^{l} \sum_{j=1}^{l} n_i u_j \{z_i, z_j\} + \sum_{i=1}^{l} n_i (\eta_i(z_i) v) + \sum_{j=1}^{l} u_j (s\eta_r(z_j)).$$

It is easy to check that the set T of all symbols $\sum_{i=1}^{l} n_i \overline{z}_i + s$ with the addition and multiplication just defined is a ring. Now $T^2 \subseteq S$, hence S is an ideal in T and $T/S \cong R$ under $\sum_{i=1}^{l} n_i \overline{z}_i + S \rightarrow \sum_{i=1}^{l} n_i z_i$. Further $\overline{z}_i v = \eta_l(z_i) v \in S$, $v \overline{z}_i = v \eta_r(z_i) \in S$ for all $v \in S$, hence the double homothetisms $\eta(z_i) = (\eta_l(z_i), \eta_r(z_i))$ of S are induced by inner double homothetisms $(\overline{z}_{i_i}, \overline{z}_{i_r})$ of T. So T is an extension of S by R which, with the representative set \overline{z}_i , induces the given homomorphism η . Since $\overline{z}_i \overline{z}_j = \{z_i, z_j\}$ for all i, j and $m_i \overline{z}_i = b_i$ for all i, T has, with the same representative set \overline{z}_i , the multiplicative factor set $\{z_i, z_i\}$ and the additive set $\{b_i\}$.

We call an extension T of S by R combined with the homomorphism $\eta: R \rightarrow D$, where D is some maximal ring of related double homothetisms of S, an η -extension of S by R.

Let T be any η -extension of S by R which has, for the representative set \overline{z}_i , the multiplicative factor set $\{z_i, z_j\}$ and the additive set $\{b_i\}$. Another representative set of T/S may be: $\overline{z}'_1, \overline{z}'_2, ..., \overline{z}'_i$, where $\overline{z}'_i = \overline{z}_i + \psi_{z_i}, \psi_{z_i} \in S$ for i = 1, ..., l. Then $\overline{z}'_i \overline{z}'_j = (\overline{z}_i + \psi_{z_i})(\overline{z}_j + \psi_{z_i}) = \{z_i, z_j\} + \eta_l(z_l)(\psi_{z_l}) + (\psi_{z_l})\eta_r(z_j)$ and $m_i \overline{z}'_i = m_i(\overline{z}_i + \psi_{z_l}) =$ $= b_i + m_i \psi_{z_i}$. Hence the new factor sets are

(5)
$$\{z_i, z_j\}' = \{z_i, z_j\} + \eta_i(z_i)(\psi_{z_j}) + (\psi_{z_i})\eta_r(z_j)$$

and

$$b_i = b_i + m_i \psi$$

We shall call two factor sets $\{z_i, z_j\}, \{b_i\}$ and $\{z_i, z_j\}', \{b_i\}'$ equivalent if there exists a mapping $\psi: R \to S(\psi_0 = 0)$ such that (5) and (6) hold. Hence any two factor sets corresponding to the same η -extension of S by R are equivalent.

On the other hand, we shall call two η -extensions T and T' of S by R equivalent (and write $T \sim T'$) if there exists an isomorphism $\alpha: T \rightarrow T'$ such that α is the identity on S and $\varphi = \alpha \varphi'$, where $\varphi: T \rightarrow R$ and $\varphi': T' \rightarrow R$ are the epimorphisms whose kernels are S. With these definitions we get the result: Let T_1 and T_2 be two η extensions of S by R. Then $T_1 \sim T_2$ if and only if, for some choice of representative sets in T_1 resp. T_2 , the corresponding factor sets $\{z_i, z_j\}_1, \{b_i\}_1, \text{ resp. } \{z_i, z_j\}_2, \{b_i\}_2$ are equivalent. More explicitly, if T_k , with representative set $\{\bar{z}_i\}_k$, has the factor set $\{z_i, z_j\}_k, \{b_i\}_k$ (k = 1, 2), then the isomorphism $\alpha: T_1 \rightarrow T_2$ is given by $\left(\sum_{i=1}^{l} n_i(\bar{z}_i)_1 + s\right) \alpha = \sum_{i=1}^{l} n_i(\bar{z}_i)_2 + s + \sum_{i=1}^{l} n_i \psi_{z_i}$, where $\psi: R \rightarrow S$ $(\psi_0=0)$ is a mapping such that (5) and (6) hold for ψ and the factor sets. The proof is straightforward.

An η -extension T of S by R is said to be a *splitting extension* over S if and only if, for some choice of representative set, all $\{z_i, z_j\}$ are 0 and all b_i are 0. Also, $T = S \oplus R$ (ringtheoretical direct sum) if and only if T is a 0-extension of S by $R (\eta = 0)$ and, for some choice of representative set, all $\{z_i, z_j\}$ are 0 and all b_i are 0. The direct sum extension is a zero-ring, since R and S are supposed to be zero-rings.

Let T be an η -extension of S by R. A subring K of S is an ideal in T if and only if K is invariant under the double homothetisms of S, which occur as images in $\eta: R \rightarrow D$. Now the $\eta(z_i) = (\eta_i(z_i), \eta_i(z_i))$ are double homothetisms of K and T/Kis an η^* -extension of S/K by R. If $\eta: R \to D$ is such that $\eta(z_i) = (\eta_i(z_i), \eta_i(z_i))$ then η^* : $R \rightarrow D^*$, where D^* is a maximal ring of related double homothetisms of S/K, is defined by $\eta^*(z_i) = (\eta^*_i(z_i), \eta^*_r(z_i))$, where $\eta^*_i(z_i)(s+K) = \eta_i(z_i)s + K$ and $(s+K)\eta_r^*(z_i) = s\eta_r(z_i) + K$. Since K is invariant in $\eta(R)$, this definition does not depend on the particular choice of a representative s in s + K. It is easy to show that $\eta^*(z_i) = (\eta^*_i(z_i), \eta^*_r(z_i))$ is a double homothetism of S/K and that any two of such double homothetisms are related. It can be shown also that η^* is a homomorphic mapping. Hence η^* : $R \rightarrow D^*$ is a homomorphism of R into a maximal ring of related double homothetisms of S/K. If T has the representative set \overline{z}_i , i=1, ..., l, then a representative set of T/K is the set $\overline{z}_i + K$, i=1, ..., l. We have $(\bar{z}_i + K)(\bar{z}_j + K) = \{z_i, z_j\} + K$ and $m_i(\bar{z}_i + K) = b_i + K$, hence the corresponding factor sets are $\{z_i, z_j\} + K$ and $b_i + K$ for all i, j with $1 \le i, j \le l$ Moreover $(\bar{z}_i + K)(s + K) = \eta_i(z_i)s + K = \eta_i^*(z_i)(s + K)$ and $(s + K)(\bar{z}_i + K) = s\eta_i(z_i) + K = \eta_i^*(z_i)(s + K)$ $=(s+K)\eta_r^*(z_i)$, hence η^* is induced by inner double homothetisms of T/K.

The following lemma is obvious now; in fact the proof is similar to that of Theorem 1.

Lemma 1. If T is an η -square extension of S by R then, for each subring K of S invariant under the double homothetisms in $\eta(R)$, T/K is an η^* -square extension of S/K by R.

Lemma 2. Suppose that $S = S_1 \oplus S_2$ (direct sum) and the orders q_1 , and q_2 of S_1 resp. S_2 are relatively prime. If there exist η' resp. η'' -square extensions of S_1 resp. S_2 by R, then there exists an $(\eta' + \eta'')$ -square extension of S by R.

Proof. Let $\{z_i, z_i\}', b'_i$ resp. $\{z_i, z_i\}'', b''_i$ be factor sets is S_1 resp. S_2 for an η' -resp. η'' -extension of S_1 resp. S_2 by R. Here $\eta': R \rightarrow D_1$ is a homomorphism of R into a maximal ring of related double homothetisms of S_1 and $\eta'': R \rightarrow D_2$ is a homomorphism of R into a maximal ring of related double homothetisms of S_2 . Extend the double homothetisms $\eta'(z_i) = (\eta'_i(z_i), \eta'_r(z_i))$ of S_1 by letting them act trivially on S_2 . Then define $\eta'_i(z_i)(s_1 + s_2) = \eta'_i(z_i)s_1$ and $(s_1 + s_2)\eta'_i(z_i) =$ $=s_1\eta'_r(z_i)$ for all $(\eta'_l(z_i), \eta'_r(z_i))$ in $\eta'(R)$ and all $s_1 \in S_1$ and all $s_2 \in S_2$. Similarly, extend the double homothetisms $\eta''(z_i) = (\eta_i''(z_i), \eta_i''(z_i))$ of S_2 by letting them act trivially on S_1 . Then define $\eta_l'(z_i)(s_1 + s_2) = \eta_l'(z_i)s_2$ and $(s_1 + s_2)\eta_r''(z_i) = s_2\eta_r''(z_i)$ for all $(\eta_i''(z_i), \eta_r''(z_i))$ in $\eta''(R)$ and all $s_1 \in S_1$ and all $s_2 \in S_2$. It is easy to show now that both the extended $\eta'(z_i)$ and the extended $\eta''(z_i)$ are double homothetisms of S. Moreover the double homothetisms $\eta'(z_i)$ and $\eta''(z_i)$ of S are related double homothetisms. It follows that the sum $\eta'(z_i) + \eta''(z_i)$ is again a double homothetism of S, ([1]). We define now: $\eta' + \eta''(z_i) = \eta'(z_i) + \eta''(z_i)$ for all $z_i \in R$ and extend $\eta' + \eta''$ by linearity. Thus $\eta' + \eta''(z_i)$ is that double homothetism of S which is the sum of $\eta'(z_i)$ and $\eta''(z_i)$. More explicitly: $\eta' + \eta''(z_i) = (\eta'_i(z_i) + \eta''_i(z_i), \eta'_r(z_i) + \eta''_r(z_i))$ where $(\eta'_{l}(z_{i}) + \eta''_{l}(z_{i}))(s_{1} + s_{2}) = \eta'_{l}(z_{i})(s_{1} + s_{2}) + \eta''_{l}(z_{i})(s_{1} + s_{2}) = \eta'_{l}(z_{i})s_{1} + \eta''_{l}(z_{i})s_{2}$ for all $s_1 \in S_1$ and all $s_2 \in S_2$ and a similar formula holds for $\eta'_r(z_i) + \eta''_r(z_i)$. Then $\eta' + \eta''$: $R \rightarrow D$ is a homomorphic mapping of R into a maximal ring D of related double homothetisms of S, as the extended η' and η'' are homomorphisms of R into D. Here we may take $D = D_1 \oplus D_2$. In order to construct an $\eta' + \eta''$ -square extension of S by R, we use the sets $\{z_i, z_j\}' + \{z_i, z_j\}'', b'_i + b''_i$ in S as factor sets. As $\{z_i, z_i\}'$, b'_i with η' and $\{z_i, z_i\}''$, b''_i with η'' both satisfy the conditions (1)-(4), it follows that $\{z_i, z_i\}' + \{z_i, z_i\}''$, $b'_i + b''_i$ together with $\eta' + \eta''$ satisfy the conditions (1)-(4). Hence we have obtained an $\eta' + \eta''$ -extension T of $S = S_1 \oplus S_2$ by R. Now we have to prove that $T^2 = S$. First we remark that S_2 is mapped into itself under $\eta' + \eta''$. As T is an $\eta' + \eta''$ -extension of S by R it follows that T/S_2 is an η^* extension of S/S_2 by R, (Lemma 1). The corresponding factor set is $\{z_i, z_j\}' + S_2$, $b'_i + S_2$. Now since $\{z_i, z_i\}'$, b'_i corresponds to an η' -square extension of S_1 by R, it follows that T/S_2 is a square extension of S/S_2 by R. So $(T/S_2)^2 = S/S_2$ and in the same way $(T/S_1)^2 = S/S_1$. As T is an $\eta' + \eta''$ -extension of S by R with the factor set $\{z_i, z_j\}' + \{z_i, z_j\}'', b'_i + b''_i$, it is clear that $T^2 \subseteq S$. So we have to prove $S \subseteq T^2$. From $(T/S_2)^2 = S/S_2 = S_1$ it follows that, if s_1 is a given element of S_1 , there exists an element $a \in T^2$ such that $s_1 \equiv a \pmod{S_2}$. From $(T/S_1)^2 =$ $=S/S_1=S_2$ it follows that, if s_2 is a given element of S_2 , there exists an element $b \in T^2$ such that $s_2 \equiv b \pmod{S_1}$. Then $q_2s_1 \equiv q_2a \pmod{q_2S_2} = 0$, so $q_2s_1 \in T^2$.

As the order of s_1 is relatively prime to q_2 it follows that $s_1 \in T^2$. Similarly $q_1s_2 \equiv \equiv q_1 b \pmod{q_1 S_1 = 0}$, so $q_1s_2 \in T^2$. As the order of s_2 is relatively prime to q_1 it follows that $s_2 \in T^2$. From $s_1 \in T^2$, $s_2 \in T^2$ for all $s_1 \in S_1$, $s_2 \in S_2$ it follows that $S_1 + S_2 = S \subseteq T^2$. Then $T^2 = S$ and T is an $\eta' + \eta''$ -square extension of S by R. We apply the lemmas 1 and 2 in the following theorem:

Theorem 2. Let R and S be finite zero-rings. There exists a square extension T of S by R if and only if, for each p_i -Sylow subgroup A_i of S (p_i a prime), there exists a square extension of A_i by R.

Proof. Let $S = A_1 \oplus ... \oplus A_k$, where the p_i -Sylow subgroup A_i has the order $p_i^{\alpha_i}$ i = 1, ..., k. Now the orders $p_1^{\alpha_1}, p_2^{\alpha_2}, ..., p_k^{\alpha_k}$ are relatively prime. Thus, if there exist square extensions of $A_1, A_2, ..., A_k$ by R, then there exists a square extension T of S by R by the preceding Lemma 2.

Conversely let us suppose that T is a square extension of S by R. Now the A_i are characteristic subrings of S, i.e. they are invariant under all double homothetisms of S. Hence the direct sum $A_1 \oplus ... \oplus A_{i-1} \oplus A_{i+1} \oplus ... \oplus A_k$ is a characteristic subring of S. Therefore $T/A_1 \oplus ... \oplus A_{i-1} \oplus A_{i+1} \oplus ... \oplus A_k$ is a square extension of $S/A_1 \oplus ... \oplus A_{i-1} \oplus A_{i+1} \oplus ... \oplus A_k = A_i$ by R (Lemma 1). This theorem reduces the problem to the case in which S^+ is a finite abelian p-group.

Theorem 3. Let S^+ be a finite abelian p-group, and S a zero-ring. Let R be a finite zero-ring. T is a square extension of S by R if and only if T|pS is a square extension of S|pS by R.

Proof. First we remark that pS is a characteristic subring of S, for if $\alpha = (\alpha_1, \alpha_2)$ is an arbitrary double homothetism of S, then $\alpha_1(ps) = p\alpha_1(s)$ and $(ps)\alpha_2 = p(s)\alpha_2$ for all $s \in S$. Hence T is a square extension of S by R implies T/pS is a square extension of S/pS by R (Lemma 1). Conversely, suppose T/pS is a square extension of S/pS by R. Then $T/pS/S/pS \cong T/S \cong R$ and T is an extension of S by R. From $(T/pS)^2 = S/pS$ it follows that, if b is a given element in T^2 , there exists an element $s \in S$ such that $b \equiv s \pmod{pS}$. Thus $T^2 \subseteq S$. Conversely, if s is a given element in S, there exists an element $a \in T^2$ such that $s \equiv a \pmod{pS}$. Then $ps = a_0 + p^2s_1$, where $a_0 = pa \in T^2$ and $s_1 \in S$, $p^2s_1 = a_1 + p^3s_2$, where $a_1 \in T^2$, $s_2 \in S$, ..., $p^{k-1}s_{k-2} =$ $= a_{k-2} + p^k s_{k-1} = a_{k-2} \in T^2$, if we assume that $p^k S = 0$. Tracing back we find $ps \in T^2$ and as s is an arbitrary element in S we have $pS \subseteq T^2$. But this implies $(T/pS)^2 = T^2/pS = S/pS$, hence $S = T^2$. T is a square extension of S by R. We note that $S^+/(pS)^+$ is an elementary abelian p-group and therefore we have reduced the problem to the case where S^+ is an elementary abelian p-group of finite rank.

Let $\eta: R \to D$ be a fixed homomorphism of R into a maximal ring of related double homothetisms of S. We consider the set $S_{\eta(r)}$ of all elements of the form $\eta_i(r)s, s'\eta_r(r)$, where $\eta(r) = (\eta_i(r), \eta_r(r))$ is a fixed element of $\eta(R)$ and s is a variable

element in S, s' is a variable element in S, independent of s. Then let S* be the subring of S, generated by all $S_{\eta(r)}$ for $r \in R$, which is denoted by $S^* = \langle S_{\eta(r)} \rangle$. Finally, if T is an extension of S by R, then M will denote the multiplicative factor set for some choice of representative set in T, i.e. $M = (\{z_i, z_j\}, 1 \le i \le l, 1 \le j \le l)$. Now we can prove:

Lemma 3. T is a square η -extension of S by R if and only if S is generated by M and S^{*}: $S = \langle M, S^* \rangle$.

Proof. It is sufficient to show that, given an η -extension T of S by R, $\langle M, S^* \rangle = T^2$. Let us assume that this has been proved. Then if T is a square η -extension of S by R we get $T^2 = S = \langle M, S^* \rangle$. Conversely, if $S = \langle M, S^* \rangle$ for some η -extension T of S by R, then, as $\langle M, S^* \rangle = T^2$, we get $T^2 = S$ and T is a square η -extension of S by R. Now we are going to prove that $T^2 = \langle M, S^* \rangle$ for a given η -extension T of S by R. For the multiplication in T we have:

$$\left(\sum_{i=1}^{l} n_i \bar{z}_i + s\right) \cdot \left(\sum_{j=1}^{l} u_j \bar{z}_j + v\right) = \sum_{i=1}^{l} \sum_{j=1}^{l} n_i u_j \{z_i, z_j\} + \sum_{i=1}^{l} n_i (\eta_l(z_i)v) + \sum_{j=1}^{l} u_j (s\eta_r(z_j))$$

where $(\bar{z}_1, ..., \bar{z}_l)$ is a representative set of the basis $(z_1, ..., z_l)$ in R, $s, v \in S$ and n_i, u_j are integers for $1 \leq i \leq l, 1 \leq j \leq l$. Thus $T^2 \subseteq \langle M, S^* \rangle$. Now the generators of $\langle M, S^* \rangle$ are the elements $\{z_i, z_j\}$ of M and all elements of the form $\eta_l(z_l)v, s\eta_r(z_j)$ where $z_i, z_j \in (z_1, ..., z_l)$ in R and $v, s \in S$. As $\{z_i, z_j\} = \bar{z}_i \bar{z}_j, \eta_l(z_l)v = \bar{z}_i v$ and $s\eta_r(z_j) = s\bar{z}_j$ it follows that all generators of $\langle M, S^* \rangle$ belong to T^2 , hence $\langle M, S^* \rangle \subseteq T^2$. Then $\langle M, S^* \rangle = T^2$.

Next we investigate the η -extensions of S by R which are splitting extensions over S. First we consider the case where S^+ is an elementary abelian p-group of rank 1. We prove:

Lemma 4. Let $S^+ = (0, a, ..., (p-1)a)$ be an elementary abelian p-group of rank 1. S is a zero-ring, i.e. $a^2 = 0$. Let R^+ be the direct sum of l cyclic groups (z_i) of order m_i , i = 1, ..., l. R is a zero-ring, i.e. $z_i z_j = 0$ for all i, j with $1 \le i \le l$, $1 \le j \le l$. Then there does not exist a splitting square η -extension T of S by R, whatever η may be.

Proof. Let T be an η -extension of S by R with representative set $(\bar{z}_1, ..., \bar{z}_l)$. Addition and multiplication in T are performed according to: $\left(\sum_{i=1}^l n_i \bar{z}_i + sa\right) + \left(\sum_{i=1}^l u_i \bar{z}_i + va\right) = \sum_{i=1}^l (n_i + u_i) \bar{z}_i + (s + v)a$, with $n_i + u_i$ reduced mod $m_i(i = 1, ..., l)$ and s + v reduced mod p; $\left(\sum_{i=1}^l n_i \bar{z}_i + sa\right) \left(\sum_{i=1}^l u_i \bar{z}_i + va\right) = \sum_{i=1}^l n_i v(\eta_i(z_i)a) + \sum_{j=1}^l u_j s(a\eta_r(z_j))$, if we assume that T is a splitting extension over S. But then

 $0 = a(\bar{z}_1^2) = (a\bar{z}_1)\bar{z}_1 = (a\eta_r(z_1))\eta_r(z_1)$, which implies that $a\eta_r(z_1) = 0$. So we get $a\eta_r(z_i) = 0$ for all z_i with i = 1, ..., l. Similarly $\eta_l(z_i)a = 0$ for all z_i with i = 1, ..., l. Hence T is a zero-ring and $T^2 \neq S$, as $S \neq (0)$. In this case there exists no splitting square η -extension T of S by R.

Theorem 4. Let R and S be finite zero-rings. Let $\eta: R \rightarrow D$ be an arbitrary homomorphism of R into a maximal ring of related double homothetism of S. Then there does not exist an η -square extension T of S by R, such that T splits over S.

Proof. It is sufficient to show that there does not exist an η -square extension T of S by R, such that T splits over S for the case that S^+ is an elementary abelian *p*-group of finite rank. Let us assume that this has been proved. First let S^+ a finite abelian p-group, not elementary, S a zero-ring and R a finite zero-ring. Then $pS \ (\neq 0, \neq S)$ is a characteristic subring of S. Suppose T is an η -square extension of S by R which splits over S. Then, by Lemma 1, T/pS is an η^* -square extension of S/pS by R and from the results preceding Lemma 1, it is easy to see that T/pSsplits over S/pS. But S/pS is an elementary abelian p-group, hence by assumption there does not exist an n^* -square extension of S/pS which splits over S/pS. So we get that there does not exist an η -square extension T of S by R which splits over S in case S^+ is a finite abelian p-group and R and S are finite zero-rings. Next let S⁺ be an arbitrary finite abelian group and S a zero-ring. Let $S^+ = A_1 \oplus ... \oplus A_k$, where the p_i -Sylow subgroup A_i has the order $p_i^{\alpha_i}$, i = 1, ..., k, and the p_i are primes. Suppose T is an η -square extension of S by R, which splits over S. Then, again by Lemma 1, $T/A_1 \oplus \ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_k$ is an η^* -square extension of $S/A_1 \oplus \ldots \oplus A_k$ $\dots \oplus A_{i-1} \oplus A_{i+1} \oplus \dots \oplus A_k = A_i$ by R, which splits over A_i , $1 \le i \le k$. But A_i^+ is a finite abelian p_i -group, hence there does not exist an η^* -square extension T of A_i by R which splits over A_i . This contradiction implies that there does not exist an η -square extension T of S by R which splits over S, if R and S are finite zerorings.

Now S^+ is supposed to be an elementary abelian *p*-group of finite rank and we are going to prove that there does not exist an η -square extension *T* of *S* by *R* which splits over *S* whatever η may be. For a split extension, for some choice of representative set, $\{z_i, z_j\}=0$ and $b_i=0$ for all *i* and $j, 1 \le i \le l, 1 \le j \le l$. Hence *T* is an η -square extension of *S* by *R* which splits over *S* if and only if $S=S^*=$ $=\langle S_{\eta(r)}|r \in R \rangle$ (Lemma 3). Now suppose that *T* is an η -square extension of *S* by *R* which splits over *S*. Since $S=S^* \ne 0, \eta(R) \ne 0$, where $\eta(R)$ is the image of *R* in the homomorphical mapping $\eta: R \rightarrow D$. Since *R* is generated by the $z_i, 1 \le i \le l$, it is clear that $\eta(R)$ is generated by the pairs $(A_i, B_i), 1 \le i \le l$, where $A_i = \eta_l(z_i)$, $B_i = \eta_r(z_i)$, such that $\eta(z_i) = (\eta_l(z_i), \eta_r(z_i))$ is the double homothetism of *S* corresponding to $z_i \in R$. The 2*l* endomorphisms A_i, B_i have the properties:

(i) $A_iA_k = 0, B_jB_i = 0$ for all i, j, k, t with $i \le i, k, j, t \le l$; (ii) $A_iB_j = B_jA_i$ for all i, j with $1 \le i, j \le l$.

In particular both the A_i and B_j are nilpotent endomorphisms such that $A_i^2 = 0$ and $B_i^2 = 0$ for all i, j with $1 \le i, j \le 1$. Since $\eta(R) \ne 0$, at least one of these endomorphisms is $\neq 0$, say $A_1 \neq 0$. Now consider the set $A_1 S = \{A_1 s | s \in S\}$. Then A_1S is a subring of S, as $A_1s_1 + A_1s_2 = A_1(s_1 + s_2)$ and $(A_1s_1)(A_1s_2) = 0$. Moreover A_1S is invariant under $A_1, ..., A_l; B_1, ..., B_l$, as $A_i(A_1S) = 0$ (i), $B_i(A_1S) = 0$ $=A_1(B_iS)\subseteq A_1S$ for all A_i, B_i (ii) with $1 \leq i, j \leq l$. This means A_1S is a subring of S invariant under the double homothetisms of $\eta(R)$. Further $A_1 S \neq 0$, as $A_1 \neq 0$ and $A_1 S \neq S$. If $A_1 S = S$ then $A_1 S = A_1 (A_1 S') = 0$ for every $s \in S$ (i) and this would imply $A_1 = 0$ which is a contradiction. By Lemma 1, as T is an η -square extension of by R, T/A_1 S is an η^* -square extension of S/A_1 S by R, where η^* is induced by η . In fact, η^* : $R \rightarrow D^*$, D^* a maximal ring of related double homothetisms of S/A_1S , $\eta^*(z_i) = (\eta^*_i(z_i), \eta^*_r(z_i)),$ where, by definition, $\eta^*_i(z_i)(s + A_1S) =$ is such that $= \eta_i(z_i)s + A_1S \text{ and } (s + A_1S)\eta_r^*(z_i) = s\eta_r(z_i) + A_1S. \text{ Since } S = S^* = \langle S_{\eta(r)} | r \in R \rangle,$ it follows from the definition of $\eta_i^*(z_i)$, that $S/A_1S = (S/A_1S)^* = \langle S/A_1S_{n^*(r)} | r \in R \rangle$. Hence T/A_1S is an η^* -square extension of S/A_1S by R, which splits over S/A_1S . As $A_1 S \neq 0$, and $A_1 S \neq S$, the dimension of $S/A_1 S$ is less than r and greater than 0, if we consider S^+ as an r-dimensional vector space over the prime Galois field F = GF(p). By Lemma 4, there does not exist an η -square extension T of S by R, which splits over S, in case S^+ has dimension 1. So, by induction on the dimension of S, it follows that there does not exist an η -square extension T of S by R which splits over S whatever η may be. This completes the proof of Theorem 4.

Next we investigate the existence of 0-square extensions of S by R i.e. extensions where the homomorphism $\eta: R \rightarrow D$ is the zero-homomorphism. Here we get the result:

Theorem 5. Let S be a zero-ring and S⁺ an elementary abelian p-group of finite rank r. Let R be a finite zero-ring, where $R^+ = \sum_{i=1}^{l} \bigoplus z_i$, $O(z_i) = m_i$, $1 \le i \le l$. Then there exists a 0-square extension T of S by R if and only if the following conditions are satisfied: (i) $l^2 \ge r$; (ii) if $(n-1)^2 < r \le n^2$ for some n with $1 \le n \le l$, then $p|m_i$ for at least n integers $m_i(1 \le i \le l)$.

Proof. Let T be a 0-square extension of S by R. Then $T^2 = S$ and S is generated by M, for some choice of representative set (Lemma 3). As S has rank r, the number of generators of S in M is greater than or equal to r. Since $O(M) = l^2$, it follows that $l^2 \ge r$. As $\eta(R) = 0$ we must have $m_i\{z_i, z_j\} = 0$ and $m_i\{z_j, z_i\} = 0$ for a fixed z_i and all z_j , $1 \le j \le l$ ((3) and (4)). But if $\{z_i, z_j\} \ne 0$ then it has order p, hence $p|m_i$ if $\{z_j, z_i\} \ne 0$ for any z_j . Likewise if $\{z_j, z_i\} \ne 0$ for any z_j then $p|m_i$. The question is now: how many different elements $z_i (\in R)$ have the property that either $\{z_i, z_j\} \ne 0$ or $\{z_j, z_i\} \neq 0$ for at least one $z_j (\in R)$? Now let $(n-1)^2 < r \le n^2$ for some *n* with $1 \le n \le l$, and let *B* be a basis of *S* in *M*. Since $(n-1)^2 < r = O(B)$, there are more than $(n-1)^2$ elements $\{z_i, z_j\}$ in *M* $(1 \le i \le l, 1 \le j \le l)$ which are not equal to 0, i.e. the elements of the basis *B*. It is clear now that the minimal number of *different* $z_i (\in R)$ which occur either as a first or as a second component in at least one element in *B* is *n*. Hence $p|m_i$ for at least *n* integers m_i $(1 \le i \le l)$.

Conversely suppose the conditions (i) and (ii) are satisfied. We define functions $\{z_i, z_i\}$ of $R \times R$ into S for the basic elements of R in the following way. First let $\{z_i, 0\} = \{0, z_j\} = 0$ for all z_i, z_j with $1 \le i \le l$ and $1 \le j \le l$. We know $r \le l^2$, hence we may suppose that $(n-1)^2 < r \le n^2$ for some n with $1 \le n \le l$. We denote $r = (n-1)^2 + v$, where $1 \le v \le 2n-1$. Now S has rank r and let (s_1, \ldots, s_r) be a basis of S. From (ii) we infer that there are n integers, say $m_1, ..., m_n$, such that $p|m_i$ for all *i* with $1 \le i \le n$. Then set $\{z_1, z_1\} = s_1, \{z_1, z_2\} = s_2, ..., \{z_1, z_{n-1}\} =$ $=s_{n-1}, \{z_2, z_1\} = s_n, \dots, \{z_2, z_{n-1}\} = s_{2n-2}, \dots, \{z_{n-1}, z_1\} = s_{n^2-3n+3}, \dots, \{z_{n-1}, z_{n-1}\} = s_{n^2-3n+3}, \dots, \{z_{n-1}, z_{n-1}\} = s_{n-1}, \{z_1, z_1\} = s_{n-1}, \{z_2, z_1\} = s_{n-1}, \{z_1, z_1\}$ $=s_{(n-1)^2}$ and set $\{z_i, z_n\}$ and/or $\{z_n, z_i\}$ equal to $s_{(n-1)^2+1}, ..., s_r$ for v functions $\{z_i, z_n\}$ and/or $\{z_n, z_i\}$ with $1 \le i \le n$. Then set all other $\{z_i, z_i\} = 0$. It is clear now that S is generated by the set of all $\{z_i, z_i\}$ with $1 \le i \le n$ and $1 \le j \le n$. If we put $\eta(R) = 0$ then the conditions (1)-(4) are satisfied for the functions $\{z_i, z_i\}$ $(1 \le i \le l, 1 \le j \le l)$ and an arbitrary set $b_i \in S$ $(1 \le i \le l)$. Hence T is an 0-extension of S by R, if we define T as the set of all symbols $\sum_{i=1}^{l} n_i \bar{z}_i + s$ ($s \in S, n_i$ integers) with the addition and multiplication: $\left(\sum_{i=1}^{l} n_i \bar{z}_i + s\right) + \left(\sum_{i=1}^{l} u_i \bar{z}_i + v\right) =$ $= \sum_{i=1}^{l} (n_i + z_i) \bar{z}_i + s + v, \text{ where } m_i \bar{z}_i = b_i (\in S) \text{ for } 1 \le i \le l, \ \left(\sum_{i=1}^{l} n_i \bar{z}_i + s \right) \left(\sum_{i=1}^{l} u_i \bar{z}_i + v \right) = 0$ $=\sum_{i=1}^{l}\sum_{j=1}^{l}n_{i}u_{j}\{z_{i}, z_{j}\}$. As $S=\langle M\rangle$, it follows that T is a 0-square extension of S

by R, which completes the proof of Theorem 5.

Now we determine the rings T which may occur as a square extension of a ring S of order 2 by a ring R of order 4. Both S and R are supposed to be zero-rings. Let $S^+ = (0, a)$ with 2a = 0 and $a^2 = 0$. Let $R^+ = (z_1) \oplus (z_2)$ be the direct sum of two cyclic groups (z_1) and (z_2) both of order 2 and $z_1^2 = z_1 z_2 = z_2 z_1 = z_2^2 = 0$. Now the endomorphism ring of S^+ consists of the zero-endomorphism and the identity mapping. Hence in this case we must have $\eta(R) = 0$, so that there are only 0-square extensions of S by R possible. As the conditions of Theorem 5 are satisfied there exist 0-square extensions of S by R. There are 2 cases: (i) $2\overline{z_1} = 2\overline{z_2} = 0$, which means $b_1 = b_2 = 0$ in S. (ii) at least one of b_1 and $b_2 \neq 0$.

(i) In this case the elements a, \bar{z}_1 and \bar{z}_2 all have order 2 and we get $T^+ = = (a) \oplus (\bar{z}_1) \oplus (\bar{z}_2)$ is of typus (2, 2, 2). As $\eta(R) = 0$, $a\bar{z}_1 = a\bar{z}_2 = \bar{z}_1 a = \bar{z}_2 a = 0$. If $\{z_1, z_1\}, \{z_1, z_2\}, \{z_2, z_1\}$ and $\{z_2, z_2\}$ are 0, then $T^2 = (0)$ which contradicts

that $T^2 = S$.	Hence we must have at least one of the four elements {	$\{z_1, z_1\}, \{z_1, z_2\}$
$\{z_2, z_1\}$ and	$\{z_2, z_2\}$ equal to a. We get 15 different rings T with	multiplications:

	а	\overline{z}_1	\overline{z}_2			a	\bar{z}_1	\bar{z}_2			a	\bar{z}_1	\vec{z}_2
a	0	0	0		а	0	0	0		а	0	0	0
\bar{z}_1	0	0	0		\bar{z}_1	0	а	0		\overline{z}_1	0	а	a
\bar{z}_2	0	0	a		\overline{z}_2	0	0	0		\overline{z}_2	0	a	a
	а	\overline{z}_1	\overline{z}_2			a	\overline{z}_1	\overline{z}_2			a	\overline{z}_1	\overline{z}_2
a	0	0	0		а	0	Q	0		a	0	0	0
\overline{z}_1	0	0	a		\overline{z}_1	0	a	0		\overline{z}_1	0	a	a
\bar{z}_2	0	а	а		\overline{z}_2	0	0	а		\overline{z}_2	0	a	0
·'			_				=	_			"	=	=
	a	z_1	<i>z</i> ₂				<u>z</u> 1	<i>z</i> ₂				^z 1	22
а	0	0	0		а	0	0	0		a	0	0	0
\bar{z}_1	0	а	0		\overline{z}_1	0	а	а		\bar{z}_1	0	0	0
\vec{z}_2	0	а	а		\overline{z}_2	0	0	а		\vec{z}_2	0	a	0
											=		
	a	<i>z</i> ₁	<i>z</i> ₂		• • • • • • •		z_1	<i>z</i> ₂					² 2
a	0	0	0		a	0	0	0		а	0	0	0
\vec{z}_1	0	0	0		\overline{z}_1	0	0	а		\overline{z}_1	0	0	а
\bar{z}_2	0	a	а		\overline{z}_2	0	0	0		\overline{z}_2	0	0	а
	a	\vec{z}_1	\overline{Z}_2			a	\vec{z}_1	\overline{Z}_1			a	\overline{z}_1	\overline{z}_2
	0	0	0		a	0	0	0		а	0	0	0
$\overline{\vec{z}}_1$	0	a	0		\bar{z}_1	0	a	a		\vec{z}_1	0	0	а
\overline{z}_2	0	a	0		\vec{z}_2	0	0	0	,	\vec{z}_2	0	a	0

Thus we get 15 non-equivalent 0-square extensions T of S by R.

(ii) In this case at least one of the elements \bar{z}_1 and \bar{z}_2 is of order 4, and T^+ is of typus (2, 4), say $T^+ = (\bar{z}_1) \oplus (\bar{z}_2)$ where $O(\bar{z}_1) = 2$ and $O(\bar{z}_2) = 4$. For the multiplication in T one has again: $\bar{z}_1^2 = k_1 a, \bar{z}_1 \bar{z}_2 = k_2 a, \bar{z}_2 \bar{z}_1 = k_3 a, \bar{z}_2^2 = k_4$ a where

 $0 \le k_i \le 1, i = 1, 2, 3, 4$. Hence we get the same multiplication tables as in case (i), if we omit the first row and the first column. Thus we find 15 non-equivalent 0square extensions T of S by R. Next we suppose S to be a zero-ring of order 2 as above and $R^+=(z)$ a cyclic group of order 4. R is a zero-ring i.e. $z^2=0$. Again n(R) = 0 so there are only 0-square extensions of S by R possible and by Theorem 5 there are such extensions. As $\overline{z}^2 = 0$ or *a*, we get $\{z, z\} = 0$ or *a*. But if $\{z, z\} = 0$ then $T^2 = (0)$, contradiction. So we must have $\{z, z\} = a$. We have two possibilities for the addition according to $4\overline{z}=0$ or *a*, which means b=0 or *a*. If b=0, then $T^+ = (a) \oplus (\overline{z})$ is of typus (2, 4), if b = a, then $T^+ = (\overline{z})$ is a cyclic group of order 8. Thus we get 2 non-equivalent 0-square extensions T of S by R. Finally we want to discuss the rings T which may occur as a square extension of a ring S of order 4 by a ring R of order 2. Both R and S are supposed to be zero-rings. Let $S^+ = (a_1) \oplus$ $\oplus(a_2)$ be the direct sum of two cyclic groups (a_1) and (a_2) each of order 2 and $a_1^2 = a_1 a_2 = a_2 a_1 = a_2^2 = 0$. Let $R^+ = (0, z)$ with 2z = 0 and $z^2 = 0$. As the condition (i) of Theorem 5 is not satisfied in this case (l=1, r=2), there do not exist 0-square extensions of S by R now. The nilpotent endomorphisms in the endomorphismring of S⁺ are: $s_1: a_1 \rightarrow 0, a_2 \rightarrow 0; s_2: a_1 \rightarrow 0, a_2 \rightarrow a_1; s_3: a_1 \rightarrow a_2, a_2 \rightarrow 0; s_4: a_1 \rightarrow a_1 + a_2;$ $a_2 \rightarrow a_1 + a_2$. So the possible double homothetisms are (s_1, s_1) , (s_1, s_2) , (s_1, s_3) , $(s_1, s_4), (s_2, s_1), (s_2, s_2), (s_3, s_1), (s_3, s_3), (s_4, s_1)(s_4, s_4)$, which may occur as the element $(\eta_l(z), \eta_r(z))$ in $\eta(R)$. For $\overline{z}^2 = \{z, z\}$ as well as for $2\overline{z} = b$ we may choose 0, a_1 , a_2 or $a_1 + a_2$. But as $2\{z, z\} = 0$ we must have $(b)\eta_r(z) = \eta_1(z)(b) = 0$, ((3) and (4)). Then we distinguish the following cases:

(i) Let $b = a_1$. Then $(\eta_l(z), \eta_r(z)) = (s_2, s_2)$ for a square extension of S by R. As $S^* = \langle S_{\eta(r)} \rangle = (0, a_1)$ we must have $\{z, z\} = a_2$ or $a_1 + a_2$ for a square extension of S by R (Lemma 3). Since $\eta_l(z) = \eta_r(z) = s_2$ the condition (2) is satisfied. The additive group T^+ of a square extension T of S by R has the form: $T^+ = (\bar{z}) \oplus (a_2)$ where (\bar{z}) has order 4 and a_2 has order 2. So T^+ is of typus (2, 4). For the multiplication in T one has: $a_2^2 = 0$, $\bar{z}a_2 = s_2a_2 = a_1$; $a_2\bar{z} = a_2s_2 = a_1$ and $\bar{z}^2 = a_2$ or $a_1 + a_2$. Hence one gets 2 non-equivalent η -square extensions T of S by R.

(ii) Let $b = a_2$. Then we must take $(\eta_l(z), \eta_r(z)) = (s_3, s_3)$ for a square extension of S by R. As $S^* = \langle S_{\eta(r)} \rangle = (0, a_2)$ we must have $\{z, z\} = a_1$ or $a_1 + a_2$ (Lemma 3). Since $\eta_l(z) = \eta_r(z) = s_3$ the condition (2) is satisfied. The additive group T^+ of a square extension T of S by R has the form: $T^+ = (\overline{z}) \oplus (a_1)$ where (\overline{z}) has order 4 and a_1 has order 2. So T^+ is of typus (2, 4). For the multiplication in T one has: $a_1^2 = 0, \ \overline{z}a_1 = s_3a_1 = a_2, \ a_1\overline{z} = a_1s_3 = a_2$ and $\overline{z}^2 = a_1$ or $a_1 + a_2$. Hence one gets 2 non-equivalent η -square extensions T of S by R.

(iii) Let $b=a_1+a_2$. Now we must have $(\eta_l(z), \eta_r(z)) = (s_4, s_4)$ for a square extension of S by R. As $S^* = \langle S_{\eta(r)} \rangle = (0, a_1 + a_2)$ we must have $\{z, z\} = a_1$ or a_2 , (Lemma 3). Since $\eta_l(z) = \eta_r(z) = s_4$ the condition (2) is satisfied. The additive group T^+ of a square extension T of S by R has the form: $T^+ = (\bar{z}) \oplus (a_1)$, where (\bar{z})

has order 4 and a_1 has order 2. So T^+ is of typus (2, 4). For the multiplication in T one has: $a_1^2 = 0$, $\bar{z}a_1 = s_4a_1 = a_1 + a_2$, $a_1\bar{z} = a_1s_4 = a_1 + a_2$ and $\bar{z}^2 = a_1$ or a_2 . Hence one gets 2 non-equivalent η -square extensions T of S by R.

(iv) Let b=0. Then the conditions (3) and (4) are satisfied. For a square extension T of S by R we need only satisfy condition $(2): \eta_1(z)\{z, z\} = \{z, z\}\eta_r(z)$. We have again different cases:

(iv. a) Let $\{z, z\} = a_1$. Now we must have $(\eta_l(z), \eta_r(z)) = (s_3, s_3)$ or (s_4, s_4) . In both cases the condition (2) is satisfied. So we get 2 rings T each of which has an additive group $T^+ = (a_1) \oplus (a_2) \oplus (\overline{z})$ of typus (2, 2, 2). Hence there are 2 square extensions T of S by R, an η' -square extension where $\eta'(z) = (s_3, s_3)$ and an η'' -square extension where $\eta''(z) = (s_3, s_4)$.

(iv. b) Let $\{z, z\} = a_2$. Then we must have $(\eta_l(z), \eta_r(z)) = (s_2, s_2)$ or (s_4, s_4) . In both cases the condition (2) is satisfied. Thus we get 2 rings T each of which has an additive group $T^+ = (a_1) \oplus (a_2) \oplus (\overline{z})$ of typus (2, 2, 2). So there are 2 square extensions T of S by R, an η' -square extension for $\eta'(z) = (s_2, s_2)$ and an η'' -square extension for $\eta''(z) = (s_4, s_4)$.

(iv. c) Let $\{z, z\} = a_1 + a_2$. Here we must have $(\eta_l(z), \eta_r(z)) = (s_2, s_2)$ or (s_3, s_3) . In both cases the condition (2) is satisfied. Again we get 2 rings T each of which has as an additive group $T^+ = (a_1) \oplus (a_2) \oplus (\overline{z})$ of typus (2, 2, 2). Therefore we get 2 square extensions T of S by R, an η -square extension where $\eta(z) = (s_2, s_2)$ and an η' -square extension where $\eta'(z) = (s_3, s_3)$.

(iv. d) Let $\{z, z\} = 0$. Now we would get a square extension T of S by R which splits over S which is impossible by Theorem 4. Hence there do not exist square extensions in this case.

There is a second class of rings T which may occur as a square extension of a ring S of order 4 by a ring R of order 2. Now we put $S^+ = (a)$ is a cyclic group of order 4 and $a^2 = 0$ (S is a zero-ring). Again $R^+ = (0, z)$ with 2z = 0 and $z^2 = 0$. The nilpotent endomorphism in the endomorphismring of S^+ are: $s_1: a \to 0$, and $s_2: a \to 2a$. So the pairs (s_1, s_1) , (s_1, s_2) , (s_2, s_1) and (s_2, s_2) may occur as the element $(\eta_l(z), \eta_r(z))$ in $\eta(R)$. The elements $\overline{z}^2 = \{z, z\}$ and $2\overline{z} = b$ in an extension T of S by R must satisfy the conditions (3) and (4), i.e. $(b)\eta_r(z) = 2\{z, z\}$ and $\eta_l(z)(b) =$ $= 2\{z, z\}, (b \in S, \{z, z\} \in S)$. This implies that if b = 0 or b = 2a, then $\{z, z\} = 0$ or $\{z, z\} = 2a$. In either case $T^2 = (0)$ or $T^2 = (0, 2a)$ and $T \neq S$, so T is not a square extension of S by R. Hence we must have b = a or b = 3a. By the conditions (3) and (4) we get square extensions if we take $(\eta_l(z), \eta_r(z)) = (s_2, s_2)$ and $\{z, z\} = a$ or 3a, (cf. also Lemma 3). The condition (2) is satisfied.

(i) Let $\{z, z\} = a$ and b = a resp. b = 3a. Let T_1 be an η -extension of S by R with factor set $\{z, z\} = a$, b = a and let T_2 be an η -extension of S by R with factor set $\{z, z\}' = a, b' = 3a$. Then $T_1 \sim T_2$ as the conditions (5) and (6) are satisfied for $\psi_z = a$. Here $(\eta_1(z), \eta_r(z)) = (s_2, s_2)$ and T_1 and T_2 have the same additive group

L. C. A. van Leeuwen: Square extensions

 $T^+ = (\bar{z})$ which is a cyclic group of order 8. As $S = \langle M, S^* \rangle$ both for T_1 and T_2 , we get 2 equivalent η -square extensions of S by R (Lemma 3).

(ii) Let $\{z, z\}=3a$ and b=a resp. b=3a. In the same way as in case (i) we get 2 equivalent η -square extensions T_1 and T_2 of S by R, where T_1 resp. T_2 has the factor set (3a, a) resp. (3a, 3a). Both T_1 and T_2 have again the additive group $T^+ = (\bar{z})$ (cyclic of order 8).

Remark. Our results obtained in Theorems 1, 2 and 3 and Lemmas 1, 2 and 3 are quite analogous to the corresponding Theorems and Lemmas in the paper: H. ONISHI, Commutator extensions of finite groups *Mich. Math. J.*, **13** (1966), 119–126, if one replaces "commutator extension" by "square extension". In fact, the results of ONISHI for finite groups led us to consider the situation for finite rings.

Literature

 L. C. A. VAN LEEUWEN, Holomorphe von endlichen Ringen, Nederl. Akad. Wet. Proc., ser. A, 68 (1965), 632-645.

[2] L. RÉDEI, Algebra. I (Leipzig, 1959).

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS, U.S.A. AND INSTITUTE OF TECHNOLOGY DELFT, THE NETHERLANDS

(Received July 4, 1967)