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Let R and S be rings. We say that a ring T is an extension of S by R if S is 
an ideal in T and TjS is isomorphic to R. Let us call an extension T of S by R 
a square extension, if S = T2, where T2 is the ideal in T generated by all products 
of elements of T. Now TIT2 is a zero-ring, so in order that there exist a square extension 
of S by R, R must be a zero-ring. Henceforth we assume that R is a zero-ring and 
moreover that R is a finite ring. On the other hand, if S2 is the ideal in S generated 
by all products of elements in S, then S/S2 is a zero-ring. We assume that S/S2 

is also finite. Our problem is to find necessary and sufficient conditions for the 
existence of a square extension of S by R. We shall reduce this problem to the 
case in which the additive group of S is a finite abelian elementary /»-group and 
S is a zero-ring. In Theorem 4 we get the result that there does not exist a split 
square extension of S by R. Next we get a partial result on the existence of non-
split square extensions of S by R (Theorem 5). Finally we determine all rings of 
order 8, which may occur either as a square extension of a ring of order 4 or as 
a square extension of a ring of order 2. 

First we note that the ideal S2 of S is an ideal riot only in S, but also in every 
extension of S, since S2 is a characteristic subring of S. 

T h e o r e m 1. T is a square extension of S by R if and only if T/S2 is a square 
extension of SjS2 by R. 

P r o o f . From the isomorphism T/S^ T/S2/S/S2 it follows that Tis an extension 
of S by R if and only if TjS2 is an extension of S/S2 by R. Now suppose T2 = S, 
then (T/S2)2 = T2IS2 = SIS2. Conversely, if 5/ S2 =(T/ S2)2, then S/S2 =T2/S2 

and hence S — T2. This theorem reduces the problem to the case in which S is a 
finite zero-ring. 

If S = (0), then every extension T of S by R is a square extension because R 
is a zero-ring. Therefore, we assume that S is a non-trivial finite zero-ring. At this 
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point we want to summarize the theory of extensions of S by R, where R and S 
are finite zero-rings. Let T h e an extension of S by R, so that T/S^R. Let cp: T—R 
be the epimorphism whose kernel is S. An element u of T is called a representative 
of u<iR if <p(u) = u. Let ( z n ..., z,) be a basis of the additive group R+ of R and 
let mi be the order of z(. An /-tuple ( z , , . . . ,z ( ) is called a representative set of 
the basis if each zt is a representative of z f . As the products z ;a, az ; (a £ S) are all 
in S, the mappings a—z^a, a—aZi are endomorphisms of S'+ , which will be denoted 
by ih(zi) and rir(zd resp. Thus r\t(z?)a = zta and arjr(zd=azi-

It is clear that if we choose another representative of z ;£7?, for instance z-, 
then z\a =zta and az\ = azh as z- = z; (mod S) and S i s a zero-ring. Hence the induced 
endomorphisms are completely determined by the element zf £ R. So we get a set of 21 
endomorphisms of S+ and we divide them into pairs: (^¡(zj), qr(zt)), (r/,(z2), flr(z2)), 
..., (tji(z,), t]r(zi))- Each of these pairs is a double homothet ism of S, since S 
is a zero-ring and the endomorphisms ^¡(z,) and f?r(zi) a r e commuting. As T is an 
associative ring these double homothetisms are pairwise related (cf. [2]). Now we 
consider the mapp ing : z ; -»^(z,) = (^(zf), >/r(z;)), which associates with each 
Z i £ R the corresponding double homothetism of S and we extend q by linearity. 
We claim that t} is a homomorphism of R into a maximal ring D of related double 
homothetisms of S. First we remark that if z ; and Zj are arbitrary representatives 
in T then IiZjdS, as <p(zizj) = (p(z^(p(z}) = z^zj = 0, Hence z^zfi) = 
= r],(Zi)(r],(Zj)a) = 0 for all a 6 S. This implies rh(Zi)t]i(Zj) = zero-endomorphism 
for all z i ; Z j£R . In the same way it can be shown that f] r(Zi) lr( z j )= zero-endo-
morphism for all z ; , Z j£R . As the product of the double homothetisms 
(>7i0;)> >1r(zi))(>1i(zj), 1r(Zj)) = (hizdhizj), riXz^Xzj)) = (0, 0) in D, it follows 
that the mapping q maps R homomorphically into a ring D; the homomorphic 
image >i(R) is a zero-subring of a maximal ring of related double homothetisms 
of S. As we saw earlier each product z^zj £ S; we define zlzj = {zi, zj) for all i, j 
with 1 S / S / , 1 =,/' = /; the elements {z„ Zj} are called a multiplicative factor set. 
Finally we know that w ^ G S , as (p(mizl)=mizi = 0. So we get another set of 
elements mizi=bi in S. 

It is easy to check that the homomorphism rj, the multiplicative factor set 
{zh Zj} and the set {¿¡} have the following properties: 

(1) {z„ 0} ={0, zj} = 0, if 0 is a representative of Oei?. 
(2) >1i(zd{zj, zk) = {zh Zj}i]r(zk), 
(3) (bi)riAzj)=mi{zi,zJ}, 
(4) r]l(zj)(bi)-ml{zJ, Z(}, for all zh zj; zk£R, b^ S, m; as integers. 
Hence given an extension T of S by R, T determines with the representative 

set (z l s . . . . ,z , ) a homomorphism 77 of R into a maximal ring of related double 
homothetisms of S, a multiplicative factor set {zb zk} and a set {6;} (bt £ S), such 
that the properties (1)—(4) are satisfied. 
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Conversely, assume that R and S are given finite zero-rings and that t]: R — D is a 
given homomorphism of R into a; maximal ring D of related double homothetisms 
of S. Let the functions {zh Zj} of RXR into S and the set {¿>,} (b^S) be given 
for all i,j with l s / s / , 1 Sj^.l, such that (1)—(4) hold. Consider the set of all 

i i i 
symbols 2 n^i + s, s£ S. Define equality by: 2 "¡¿¡ + 3 — 2 uizi + v 

;>= i ;= i >"= I 

if and only if rti = Ui for all ¡'and s = v. Define addition by: ^2 "¡Z; + s t<iZj + u j = 
i 

= 2 (ni + ui)Zi + s + v> where mizi = bi and the sum is reduced mod /m,z,-. Define 
i=l 

multiplication by: 

(' - Y( ' - ' ' ' ' 

2 «; z,+j \ \ 2 u-i z-+v = 2 2 "i ui izi, zJ} + 2 ni (ii(zdv) + 2 us (sir(Zj))-
¡=i M i = i ¡ = i j = i ¡=i i 

( 

It is easy to check that the set T of all symbols 2 nizi + s with the addition and 
i= 1 

multiplication just defined is a ring. Now T2<^S, hence S is an ideal in T and 
i i 

T/S^R under 2nizi+S~* 2'hzi- Further ztv = ^¡(z^v £ S, vz{ = v>jr(Zi) 6 S for 
¡=i ¡=i 

all v£ S, hence the double homothetisms t](z^) = (r]l{z^, rjr(z¡)) S are induced 
by inner double homothetisms (zlt, z,v) of T. So T i s an extension of S by R which, 
with, the representative set z ; , induces the given homomorphism /7. Since z tZj = 
— {zh Zj\ for all /', j and = bt for all /, T has, with the same representative 
set z ;, the multiplicative factor set {zh z,} and the additive set 

We call an extension T of S by R combined with the homomorphism /7: R-+D, 
where D is some maximal ring of related double homothetisms of S, an ^-extension 
of S by R. 

Let T be any ^-extension of S by R which has, for the representative set zh 

the multiplicative factor set {z;, z,} and the additive set {¿¡}. Another representative 
set of T/S may be: z\, z'2, . . . ,z[ , where z'i = zi + \pZl, 1/^.€5 for / = 1, ..., I. Then 
z-Xj = (z ; +1p z ) ( z j+ ipZJ) = {z;, zj} + //¡(z,)(1j/zj) + (i/'r>/r(z.) and = m f a +1¡/z) = 
= bi + mi\j/zr Hence the new factor sets are 

(5) {zu Zj}' = {zh zj} + n,(zd (IAZ,) + ( « A M z j ) 
and 
(6) b't = bi + mi\l/zr 

We shall call two factor sets {z;, Zj}, {¿¡} and {zi; Zj}', {b]' equivalent if 
there exists a mapping 1j/: R — = 0) such that (5) and (6) hold. Hence any 
two factor sets corresponding to the same ^-extension of S by R are equivalent. 
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On the other hand, we shall call two ^-extensions T and T' of S by R equivalent 
(and write T') if there exists an isomorphism a: T—T' such that a is the identity 
on S and <p = cup', where cp: T-+R and q>': T' —R are the epimorphisms whose 
kernels are S. With these definitions we get the result: Let 7\ and T2 be two t]-
extensions of S by R. Then Tl ~ T2 if and only if, for some choice of representative 
sets in Tt resp. T2, the corresponding factor sets {zh Zj}L, {b^, resp. {zh Zj}2 {6,}2 

are equivalent More explicitly, if Tk, with representative set {z,}*, has the factor 
set {zf, Zj)k, {b)k (k — 1, 2), then the isomorphism a: Ti~*T2 is given by 

i = Z "¡(¿di+s+Z "dz,, where \j/:R-~S (>p0= 0) is a mapping 
V;=i / ¡ = 1 ¡=i 
such that (5) and (6) hold for i¡/ and the factor sets. The proof is straightforward. 

A n //-extension T of S by R is said to be a splitting extension over S if and only 
if, for some choice of representative set, all {zi; Zj} are 0 and all bt are 0. Also, 
T=S@R (ringtheoretical direct sum) if and only if T is a 0-extension of S by 
R (/7 = 0) and, for some choice of representative set, all {z„ Zj} are 0 and all b-t 

are 0. The direct sum extension is a zero-ring, since R and S are supposed to 
be zero-rings. 

Let J be an ^-extension of S by R. A subring AT of S is an ideal in J if and only 
if K is invariant under the double homothet isms of S, which occur as images in 
rj: R--D. N o w the ri(zt) = (^(z,), /?r(z;)) are double homothet isms of K and T\K 
is an ^ - ex t ens ion of S/Kby R. If r\: R-+D is such that r\(z;)= (rh(zi),t]r(zi)) then r f : 
R-+D*, where D* is a maximal ring of related double homothet isms of 
S/K, is defined by ri\zt) =(>lt(zi), ^ f e ) ) , where tfizdis+K^^zds + K and 

+ K)ri*(Zi) =srir(Zi) + K. Since K is invariant in rj(R), this definition does not 
depend on the particular choice of a representative s in s + It is easy to 
show that 1*(Zi)—(rif(Zi), rj*(Zi)) is a double homothet ism of S/K and that any 
two of such double homothet isms are related. It can be shown also that rf is a 
homomorph ic mapping. Hence rj*: R—D* is a homomorph i sm of R into a 
maximal ring of related double homothet isms of S/K. If T has the representative 
set z^ / = 1, . . . , / , then a representative set of T\K is the set zt+K, i= 1, ... /. 
We have (z ; + K) (zj + K) = {zh z j + K and mi(zi + K) = bi + K, hence the corres-
ponding factor sets are {zh ZJ} + K and bi + K for all /', j with More-
over (zi + K)(g+K)=vl(zfc + K=ti*(z,)(s + K) and (s + K)(zi + K)=sflr(zl) + K= 
= (5 + K)t]*(Zi), hence rj* is induced by inner double homothet isms of TIK. 

The following lemma is obvious now; in fact the proof is similar to that of 
Theorem 1. 

L e m m a 1. If T is an rj-square extension of S by R then, for each subring K 
of S invariant under the double homothetisms in r](R), TjK is an r]*-square extension 
of S/K by R. 
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Le m m a 2. Suppose that S = Sl@ S2 (direct sum) and the orders ql, and c/2 

of S\ resp. S2 are relatively prime. If there exist r\' resp. t]"-square extensions of 
Si resp. S2 by R, then there exists an (/)' -f >f')-square extension of S by R. 

P r o o f . Let {z;, Zj}', b\ resp. {zi; z,}", b" be factor sets is Sx resp. S2 for an 
f/'-resp. ^"-extension of St resp. S2 by R. Here t]': R->-D1 is a homomorphism 
of R into a maximal ring of related double homothetisms of Sl and r\"\ R^D2 

is a homomorphism of R into a maximal ring of related double homothetisms 
of S2. Extend the double homothetisms >?'(zi) = (rli(zd> ¥r(zd) of by letting 
them act trivially on S2. Then define '}!(z,)(s1+s2) = fjl'(zi)sl and (s1 +s2)/j/

r(zi) = 
= s1r]'r(Z[) for all (^i'(Zi), rj'r(zi)) in rj'(R) and all s^SSV and all s2£S2. Similarly, 
extend the double homothetisms ri"(zi) = (%(zi), t]"(zi)) of $2 by letting them act 
trivially on Si. Then define ri'{(zi)(sl+s2) = ifl'(zl)s2 and (.v, + s2)rj"(zi) —s2ilr(zd 
for all (r]J(Zi), rj"(zd) in t]"(R) and all sti 6 5 l and all s2ZS2. It is easy to show now 
that both the extended ij'(z;) and the extended i]"(Zi) are double homothetisms 
of S. Moreover the double homothetisms i?'(zi) a n d >?"(z;) of S are related double 
homothetisms. It follows that the sum t]'(z^ + ti"'(z;) is again a double homothetism 
of S, ([1]). We define now: + r]"(zi)=t1'(zi) + n"(zd for all z^R and extend 
tj' +tj" by linearity. Thus t]' + t]"(zi) is that double homothetism of S which is the 
sum of tfizj) and r]"(z,). More explicitly: i]' + rj"{zf) = (i]i(z,) + fi'r(zd + >l'i(zi))> 
where (rjl (z;) + ^'(z;)) ( i t + s2) = rfx 0 , ) C*i + s2) + n'iXzd Oi + s2) = r\\(z,-)^ + m(zi)s2 

for all and all s2£S2 and a similar formula holds for rj'r(Zi) + rj^(zi). Then 
r\' + rj": R-*D is a homomorphic mapping of R into a maximal ring D of related 
double homothetisms of S, as the extended if and r\" are homomorphisms of R 
into D. Here we may take D = Dl®D2. In order to construct an rj' + >7"-square 
extension of S by R, we use the sets {z;, Zj}' + {zh Zj}", b\ + b" in S as factor sets. 
As {zh Zj}', b\ with rf and {zh Zj}", b'[ with r\" both satisfy the conditions (1)—(4), 
it follows that {z;, Zj}' + {zh Zj}", b\ + b'[ together with if + if satisfy the conditions 
(1)—(4). Hence we have obtained an if + ^"-extension T of 5 = 5 1 © S ' 2 by R. 
Now we have to prove that T2—S. First we remark that S2 is mapped into itself 
under rj' +r]". As T is an tj' + ^"-extension of 5" by 7? it follows that tjS2 is an t]*-
extension of S/S2 by R, (Lemma 1). The corresponding factor set is {zh Zj}' + S2, 
b'i + S2. Now since {z;, zf}', b\ corresponds to an ^'-square extension of Sl by R, 
it follows that T/S2 is a square extension of S/S2 by R. So ( T / S 2 ) 2 = S/S2 and 
in the same way (Tj5J2 = 5 / S t . As T is an t]'+ ^"-extension of S by R with 
the factor set {zh ZJ}' + {zh ZJ}", b[ -f b{', it is clear that T2<^S. So we have to 
prove SQT2. From (TIS2)2 = S/S2 = Sl it follows that, if is a given element 
of S1} there exists an element af_T2 such that = a (mod S2). From (T/SJ2 = 
= S'/S,

1 = S2 it follows that, if s2 is a given element of S2, there exists an element 
b £ T2 such that s2 = b (mod S^). Then q2sl =q2a(mod q2S2 =0 ) , so q2Sx£T2. 
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As the order of J , is relatively prime to q2 it follows that ^ £ T 2 . Similarly g1s2 = 
= qxb (mod q{5] = 0 ) , so qis2^T 2. As the o rder .o f s2 is relatively pr ime to qj 
it follows that S2£T

2. F rom SX £ T 2 , s2 6 T 2 for all sl£SI,S2£S2 it follows that 
S{ + S2 = SQT

2. Then T 2 = S and T is an T]' + R]"-square extension of S by R. 
We apply the lemmas 1 and 2 in the following theorem: 

T h e o r e m 2. Let R and S be finite zero-rings. There exists a Square extension 
T of S by R if and only if for each prSylow subgroup A{ of S (pt a prime), there 
exists a square extension of A{ by R. 

P r o o f . Let 5 = / i 1 © . . . © y 4 t , where the prSylow subgroup At has the order 
/?f< / = 1 , ...,k. Now the orders p\l, p2\ ...,plk are relatively prime. Thus, if 
there exist square extensions of A1;A2, ...,Ak by R, then there exists a square 
extension T of S by R by the preceding Lemma 2. 

Conversely let us suppose that T is a square extension of S by R. N o w the 
AT are characteristic subrings of S, i.e. they are invariant under all double homo-
thetisms of S. Hence the direct sum A^ © . . . j j © . . . © AK is a charac-
teristic subring of S. Therefore T!Al®...(3Al-i®Ai+x@...®Ak is a square 
extension of S/AL © . . . ® A I + L © . . . ®AK = AT by R (Lemma 1). This theorem 
reduces the problem to the case in which S + is a finite abelian p-group. 

T h e o r e m 3. Let S+ be a finite abelian p-group, and S a zero-ring. Let R be 
a finite zero-ring. T is a square extension of S by R if and only if T/pS is a square 
extension of S/pS by R. 

P r o o f . First we remark t h a t p S i s a characteristic subring of S, for if a = (ai, a2) 
is an arbitrary double homothet ism of S, then <xl(ps)=pal(s) and (ps)u2=p(s)ix2 

for all s£S. Hence T is a square extension of S by R implies TjpS is a square 
extension of SjpS by R (Lemma 1). Conversely, suppose TjpS is a square extension 
of SjpS by R. Then T/pS/S/pS=•= T/S^R and T is an extension of S by R. F rom 
(T/pS)2 = S/pS it follows that, if b is a given element in T2, there exists an element 
s£S such that b = s ( m o d / ? S ) . Thus T2QS. Conversely, if s is a given element 
in S, there exists an element a£T2 such that i i f l ( m o d ^ S ) . Then ps =a0+p2st, 
where a0 =pa£T2 and i j £ S, p2st ~al +p3s2, where ax 6 T2, s2 € S, ...,pk~isk-2 = 
= a k - 2 J r P k s k - \ = a k - 2 ^ - T 2 , if we assume that pkS = 0. Tracing back we find 
ps£T2 and as s is an arbitrary element in S we have pSQT2. But this implies 
(:T/pS)2 = T2/pS = S/pS, hence S = T2. T is a square extension of S by R. We note 
that S+/(pS)+ is an elementary abelian /?-group and therefore we have reduced 
the problem to the case where S+ is an elementary abelian / j -group of finite rank. 

Let tj: R—D be a fixed homomorphism of R into a maximal ring of related 
double homothet isms of S. We consider the set of all elements of the form 
rji(r)s, s'r}r(r)i where t](r) = (/?,(/'), lXr)) i s a fixed element of t](R) and j is a variable 
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element in S, s' is a variable element in S, independent of s. Then let 5* be the 
subring of S, generated by all Sll(r) for r£R, which is denoted by S* — (Sn(r)). 
Finally, if T is an extension of 5 by R, then M will denote the multiplicative factor 
set for some choice of representative set in T, i.e. M = ({z;, ZJ), 1 ^ / s / , 1 S / ^ / ) . 
Now we can prove: 

L e m m a 3. T is a square rj-extension of S by R if and only if S is generated 
by M and S*: S = (M, S*). 

P r o o f . It is sufficient to show that, given an /y-extension T of S by R, 
(M, S*) = T2. Let us assume that this has been proved. Then if T is a square 
^-extension of S by R we get T2 = S=(M, S*). Conversely, if S = {M, S*) for some 
»/-extension T of S by R, then, as (M, S*) = T2, we get T2 = S and T i s a square 
ij-extension of S by R. Now we are going to prove that T2 = (M, S*) for a given 
//-extension T of 5 by R. For the multiplication in T we have: 

( 2 "¿i + 5 ]' ( 2 UjZj + v) = 2 2 »i«j izh zj} + 2»i(h0i)v) + 2 Uj(st]r(Zj)) 
V=i ' V= 1 ' i=lj=i i = l j= l 

where ( z j , . . . , z,) is a representative set of the basis (zx, ..., z,) in J?, s,v£S and nh Uj 
are integers for Thus T2<^(M,.S*). Now the generators of (M, S*) 
are the elements {zh Zj} of M and all elements of the form t],(zi)v, st]r{zj) where 
z;, z j £ ( z i , ..., z,) i n l a n d v,s£S. As {z;, zJ}=z izJ-, t]l(zi)v = ziv and sr]r(zj)=szj 
it follows that all generators of (M, S*> belong to T2, hence (M, S*)QT2. Then 
(M,S*)=T2. 

Next we investigate the »/-extensions of S by R which are splitting extensions 
over S. First we consider the case where S+ is an elementary abelian /7-group of 
rank 1. We prove: 

L e m m a 4. Let S+ = (0, a, ...,(p — l)o) be an elementary abelian p-group 
of rank 1. S is' a zero-ring, i.e. a2 — 0. Let R+ be the direct sum of I cyclic groups 
(z;) of order mhi= 1, ...,/. R is a zero-ring, i.e. z^zj = 0 for all i,j with l ^ i s l , 
1 =./ = /. Then there does not exist a splitting square rj-extension T of S by R, whatever 
i] may be. 

P r o o f . Let T be an ^-extension of S by R with representative set ( z 1 ; . . . , z(). 

Addition and multiplication in T are performed according to: ^ 2 «¡Z;4- .raj + 

+ \ 2 UiZi + va] = 2 (ni + Ui)Zi + (s+v)a, with «; + «,• reduced mod m^i— 1, . . . , / ) 
v = i / ¡=1 

and s + v reduced mod/7; 2 nizi + J f l j [ 2 uizi + — 2 niv{h(zda) + 
1 ' . 1 - 1 

+ 2 ujs(ar]r(Zj)), if we assume that T is a splitting extension over S. But then 
j = t 
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0 = a(zf) = (azi)zi=(atjXzi)),?Xzi)> which implies that at]Xzi) = 0. So we get 
ar\Xz ¡ ) = 0 for all z; with i=\,...,l. Similarly ^,(z,)a = 0 for all zf with / = 1 , . . . , / . 
Hence T i s a zero-ring and T 2 ^ S , as SV(0) . In this case there exists no splitting 
square //-extension T of 5 by R. 

T h e o r e m 4. Let R and S be finite zero-rings. Let rj: R—D be an arbitrary 
homomorphism of R into a maximal ring of related double homothetism of S. Then 
there does not exist an rj-square extension T of S by R, such that T splits 
over S. 

P r o o f . It is sufficient to show that there does not exist an //-square extension 
T of S by R, such that T splits over S for the case that S+ is an elementary abelian 
//-group of finite rank. Let us assume that this has been proved. First let a finite 
abelian //-group, not elementary, S a zero-ring and R a finite zero-ring. Then 
pS (¿¿0, S) is a characteristic subring of S. Suppose T i s an //-square extension 
of S by R which splits over S. Then, by Lemma 1, T/pS is an //*-square extension 
of S/pS by R and from the results preceding Lemma 1, it is easy to see that TjpS 
splits over S/pS. But S/pS is an elementary abelian //-group, hence by assumption 
there does not exist an //*-square extension of SjpS which splits over S/pS. So 
we get that there does not exist an //-square extension T of S by R which splits 
over 5 in case S+ is a finite abelian //-group and R and S are finite zero-rings. Next 
let S+ be an arbitrary finite abelian group and 5 a zero-ring. Let S+ = AV ©... ®Ak, 
where the//¡-Sylow subgroup A-t has the order p*>, i = 1, ... k, and the// ; are primes. 
Suppose T i s an //-square extension of S by R, which splits over S. Then, again by 
Lemma 1, T/Ax © . . . ®Ai+1 © . . . ®Ak is an /7*-square extension of SjA^ © ...ffi 

...®Ai_1®Ai+l®...@Ak = Ai by R, which splits over A-^l^i^k. But A? 
is a finite abelian //¡-group, hence there does not exist an ;/*-square extension T of 
Ai by R which splits over Ax. This contradiction implies that there does not exist 
an //-square extension T of S by R which splits over S, if R and S are finite zero-
rings. 

Now S+ is supposed to be an elementary abelian //-group of finite rank and 
we are going to prove that there does not exist an //-square extension T of S by 
R which splits over 5 whatever t] may be. For a split extension, for some choice 
of representative set, {zh ZJ} = 0 and bt = 0 for all i and j, 1 S / S / , Hence 
T is an //-square extension of S by R which splits over S if and only if S = S* = 
= (S,l(r)\r£R) (Lemma 3). Now suppose that T is an //-square extension of S by 
R which splits over S. Since S— /?(/?)^0, where r](R) is the image of R 
in the homomorphical mapping //: R-+D. Since R is generated by the zb 1 S / S / , 
it is clear that ij(R) is generated by the pairs (Ah 1 ^ / S / , • where ^ ¡ = / 7^ ) , 
Bi = nXzd> s u c h that //(z;) = (//,(z;), riXzd) is the double homothetism of 5 correspond-
ing to ztdR. The 2/ endomorphisms Ah Bj have the properties: 
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(i) AiAk = 0, BjB, = 0 for all i,j,k,t with i^i, k,j, i s / ; 
(ii) AtBj = BjAi for all i,j with l S / ' j S / . 

In particular both the At and Bj are nilpotent endomorphisms such that Af = 0 
and Bj = 0 for all i,j with Since //(/?) ^ 0, at least one of these endo-
morphisms is ?£0, say A v j i 0 . Now consider the set = 6 >S}. Then 
AtS is a subring of S, as A^i + Ats2 =A1(s\ + s2) and (/41i1)(y4152) = 0. Moreover 
AyS is invariant under Aly At; B±, ..., B,, as Ai(A1S)=0 (i), BJ(A1S) = 
=A1(BJS)QA1S for all Ah B} (ii) with This means AXS is a subring 
of S invariant under the double homothetisms of t](R). Further AxS^0, as At 

and AyS^S. If A X S = S then A1s = A1 (Ais')=0 for every and this would 
imply Ax = 0 which is a contradiction. By Lemma 1, as T is an //-square extension 
of by R, TjAx S is an //^-square extension of S/A, S by R, where //* is induced by rj. 
In fact, r f \ R—D*, D* a maximal ring of related double homothetisms of SIAtS, 
is such that //*(zf) = (//^(z,), //i(z;)), where, by definition, rif(zi)(s + A1S) = 
= t1i(zi)s + A1S and (s + A, 5)/,*(z;) = stjr(zd - M t S. Since S= S* = (Sn{r)\r^R), 
it follows from the definition of /^(z;), that SIAlS = (SIAlS)* = (SIA1S,l*(r)\r£R). 
Hence T/AyS is an //^-square extension of S/A1S. by R, which splits over 5/^415. 
As AlS?±0, and AyS^ S, the dimension of S/A1S is less than r and greater than 0, 
if we consider S+ as an /--dimensional vector space over the prime Galois field 
F=GF(p). By Lemma 4, there does not exist an //-square extension T of S by R, 
which splits over S, in case S+ has dimension 1. So, by induction on the dimension 
of S, it follows that there does not exist an //-square extension T of S by R which 
splits over S whatever // may be. This completes the proof of Theorem 4. 

Next we investigate the existence of 0-square extensions of S by R i.e. extensions 
where the homomorphism //:i?—Z> is the zero-homomorphism. Here we get the 
result: 

T h e o r e m 5. Let S be a zero-ring and S+ an elementary abelian p-group of 
i 

finite rank r. Let R be a finite zero-ring, where R+= 2 ®zi> O (z;) = «7,:, 1 S S / . 
>= I 

Then there exists a 0-square extension T of S by R if and only if the following conditions 
are satisfied: (i) l2^r; (ii) if (n—\)2 <.r^n2 for some n with l^Sn^l, then p\mt 

for at least n integers m,{\ ^¡i-ll). 

P r o o f . Let T be a 0-square extension of S by R. Then T2 — S and S is generated 
by M, for some choice of representative set (Lemma 3). As 5 has rank r, the number 
of generators of S in M is greater than or equal to r. Since 0(M) = l2, it follows 
that l2^r. As rj(R)= 0 we must have MI{ZH ZJ} = 0 and M ^ Z J , z;} = 0 for a fixed 
Zi and all Zj, 1 S y ' s / ((3) and (4)). But if {z;, z}) =^0 then it has order p, hence p\mi 
if {zj, z;} ^ 0 for any Zj. Likewise if {zj, z,} ̂ 0 for any Zj then /?[/«;. The question 
is now: how many different elements z;( £ R) have the property that either {zh z}} ^ 0 
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or {zj, z ^ 0 for at least one Zj(£R)l Now let (n — l ) 2 < r S n 2 for some n with. 
l ^ n ^ l , and let B be a basis of S in M. Since (n — l ) 2 < r = 0(B), there are more 
than (n — l)2 elements {zf, Zj} in M ( l S / S / , 1 ^ / s / ) which are not equal to 0, 
i.e. the elements of the basis B. It is clear now that the minimal number of different 
z,(£ 7?) which occur either as a first or as a second component in at least one element 
in B is n. Hence p\nti for at least n integers mt (1 S / S / ) . 

Conversely suppose the conditions (i) and (ii) are satisfied. We define functions 
{zh Zj} of RXR into S for the basic elements of R in the following way. First let 
{zh 0}={0, Zj} = 0 for all zhzj with 1 =§/=£/ and 1 S j ^ l . We know rSl2, 
hence we may suppose that (n — l)2<r^n2 for some n with l^n^l. We denote 
r = (n — l )2 + v, where 1 ̂  u ̂  2n — 1. Now S has rank r and let , . . s r ) be a basis 
of S. From (ii) we infer that there are n integers, say m l , . . . ,m„, such that piny 
for all i with 1 ^ / ^ 7 7 . Then set {z1 ; z 1 } = j 1 , {zj , z2}=s2, ..., {z1 ; z„_j} = 
= I j {z2 ) zl} =sn> • ••> {z2 , Zn- l} ~s2n-2 v ••> {zn- 1 ; zl} =Sn2- 3/1 + 3 > •••» {zn- 1> zn- l} = 

=i ( „_ 1 ) 2 and set {zh z„} and/or {z„, z,} equal to j ( „ _ 1 ) 2 + 1 , ..., j r for v 
functions {z ;,z„} and/or {zn,z;} with 1 s / s n . Then set all other {z;, z7} = 0. 
It is clear now that S is generated by the set of all {z;, zy} with l^i^n and 1 ^ j ^ n . 
If we put t](R) — 0 then the conditions (1)—(4) are satisfied for the functions 
{zhzj} (1 1 ̂ jml) and an arbitrary set b^S (l^i^l). Hence T is an 

i 
0-extension of S by R, if we define T as the set of all symbols 2nizi + s >h 

¡=1 

integers) with the addition and multiplication: 2 + + [ 2 uizi + — 

= 2 (ni+zi)zi+s+v> where mizi = bi(€S) for l ^ i ^ l , | 2 "izi + ^ 2 u,zi+v] = 

i i 
= 2 2 niuj{zi> zj}- As S~(M), it follows, that T is a 0-square extension of S 

¡=1.7 = 1 
by R, which completes the proof of Theorem 5. 

Now we determine the rings T which may occur as a square extension of a ring S 
of order 2 by a ring R of order 4. Both S and R are supposed to be zero-rings. Let 
S+—(0,a) with 2a = 0 and a2 = 0. Let J?+ = (z 1 )©(z 2 ) be the direct sum of two cyclic 
groups ( z j and (z2) both of order 2 and z2 = z1z2=z2z1=z2 = 0. Now the endomor-
phism ring of S+ consists of the zero-endomorphism and the identity mapping. Hence 
in this case we must have rj(R)= 0, so that there are only 0-square extensions of S b y R 
possible. As the conditions of Theorem 5 are satisfied "there exist 0-square extensions 
of S by R. There are 2 cases: (i) 2 z 1 = 2 z 2 = 0 , which means bi=b2=0 in S. (ii) 
at least one of b t and b 2 ^ 0. 

(i) In this case the elements a, zY and z 2 all have order 2 and we get T+ — 
= ( a ) © ( z 1 ) © ( z 2 ) is of typus (2 ,2 ,2) . As i](R)= 0, azl = az2=zia=z2a — 0. 
If { Z l , Z l H zi> z2}> iz2> zi} a n d {z 2 , z 2 } are 0, then T2 — (0) which contradicts 
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that T2 = S. Hence we must have at least one of the four elements (zL, z j , {zx, z2} 
{z2, Zj] and {z2 ,z2} equal to a. We get 15 different rings T with multiplications: 

a z 2 a z i Z2 a z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

z i 0 0 0 z l 0 a 0 0 ß a 

z 2 0 0 a z
2 0 0 0 z 2 0 a a 

a Zl z 2 a z i Z2 a z i z
2 

a 0 0 0 a 0 0 0 a 0 0 0 

z i 0 0 a 0 a 0 z i 0 a a 

z 2 0 a a z
2 0 0 a z 2 0 a 0 

a Zl z 2 a z i z 2 Ö z i z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 a 0 0 a a z l 0 0 0 

0 a a z 2 0 0 a Z2 0 a 0 

a z 2 a z i z
2 

a Z 1 z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 0 0 Z 1 0 0 a z i 0 0 a 

0 a a z 2 0 0 0 z 2 0 0 a 

a z2 a Zl z i a z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 a 0 0 a a z i 0 0 a 

Z2 0 a 0 z 2 0 0 0 z 2 0 a 0 

Thus we get 15 non-equivalent 0-square extensions T of S by R. 
(ii) In this case at least one of the elements z, and z2 is of order 4, and T+ is 

of typus (2, 4), say T+ = ( z 1 )©(z 2 ) where 0(zt) = 2 and 0(z2)=4. For the multipli-
cation in T one has again: z2=kta, z1z2 = k2ct, z2z1=k3a, z\=kA a where 

17 A 
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1, i— 1, 2, 3, 4. Hence we get the same multiplication tables as in case (i), 
if we omit the first row and the first column. Thus we find 15 non-equivalent 0-
square extensions T of S by R. Next we suppose S to be a zero-ring of order 2 as 
above and R'h = (z) a cyclic group of order 4. R is a zero-ring i.e. z2 — 0. Again 
r\(R) = 0 so there are only 0-square extensions of S by R possible and by Theorem 5 
there are such extensions. As z2 = 0 or a, we get {z, z}—0 or a. But if {z, z} = 0 
then T2= (0), contradiction. So we must have {z,z}=a. We have two possibilities 
for the addition according to 4z — 0 or a, which means b~ 0 or a. If b = 0, then 
Ty =(a)®(z) is of typus (2, 4), if b — a, then T+ = (z) is a cyclic group of order 8. 
Thus we get 2 non-equivalent 0-square extensions T of S by R. Finally we want 
to discuss the rings T which may occur as a square extension of a ring S of order 4 
by a ring R of order 2. Both R and S are supposed to be zero-rings. Let S+ ={ai) © 
©(a2) be the direct sum of two cyclic groups (a,) and (a2) each of order 2 and 
a\~ava2 —a2= a2=0. Let R + = (0, z) with 2z = 0 and z 2 = 0 . As the condition (i) 
of Theorem 5 is not satisfied in this case ( / = 1 , r=2), there do not exist 0-square 
extensions of S by R now. The nilpotent endomorphisms in the endomorpbismring 
of S+ are: .v1: a1 -*-0, a2 -»-0; s2' a1 -*-0, a2-^a1; s3: a1 ->-a2, a2 ->-0; s4: ->-a1 + a2; 
a2-"a1+a2. So the possible double homothetisms are (.s^, .vj , (s1,s2), , s3), 
(^i , .v4), (s2, Si), {sz,s2), (.s'3, .s'i), (.?3 ,s3), (.f4, .?4), which may occur as the 

element (/fi(z), >jr(z)) in t](R). For z2 = {z, z} as well as for 2 z = b we may choose 
0, a1, a2 or a1 + a2. But as 2{z, z) = 0 we must have (b)r\r(z) = rj1(z) (b) = 0, ((3) and 
(4)). Then we distinguish the following cases: 

(i) Let b = ai. Then (^¡(z), =(,s'2, s2) for a square extension of S by R. 
As S*=(S,,(,.)>=(0, ci]) we must have {z,z}=a2 or al+a2 for a square extension 
of S by R (Lemma 3). Since j / ;( z)—vX2)= s2 the condition (2) is satisfied. The additive 
group T+ of a square extension T of S by R has the form: T+ = ( z ) © ( a 2 ) where 
(z) has order 4 and a2 has order 2. So T+ is of typus (2,4). For the multiplication 
in T one has: a\ = 0 , za2 = s2a2 = aY; a2z—a2s2 = ai and z 2 = a2 or at + a2. Hence 
one gets 2 non-equivalent ^-square extensions T of S by R. 

(ii) Let b=a2. Then we must take (t]t(z), q,.(z)) = (^3, .s'3) for a square extension 
of S by R. As S* = (£„(,.)) = (0, a2) we must have {z, z)=a1 or aL + a2 (Lemma 3). 
Since f7;(z) = rir(z) = s3 the condition (2) is satisfied. The additive group T+ of a 
square extension T of S by R has the form: T+ = ( z ) © ( a 1 ) where (z) has order 
4 and ai has order 2. So T+ is of typus (2, 4). For the multiplication in T one has : 
a2 = 0, zai =^3«! —a2, a1z=a1s3 = a2 and z2=ai or at + a2. Hence one gets 
2 non-equivalent ^-square extensions T of S by R. 

(iii) Let b = av + a2. Now we must have (^¡(z), ii,.(z)) = (,s'4, s 4 ) for a square 
extension of S by R. As S*=(S,l(r)) = (0, av + a2) we must have {z,z}=a1 or a2, 
(Lemma 3). Since fj,(z) = ^ , . (z )=j 4 the condition (2) is satisfied. The additive group 
T+ of a square extension T of S by R has the fo rm: T+ =(z)®(ai), where (z) 
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has order 4 and ax has order 2. So T+ is of typus (2, 4). For the multiplication 
in T o n e has: a2 = 0, zax = sAax = «! + a2, a1z = a1s4 = a1 + a2 and •z2 = a1 or a2. 
Hence one gets 2 non-equivalent //-square extensions T of S by R. 

(iv) Let ¿ = 0. Then the conditions (3) and (4) are satisfied. For a square 
extension T of S by R we need only satisfy condition (2): rj,(z){z, z} ={z, z}//r(z). 
We have again different cases: 

(iv. a) Let {z,z} = aL. Now we must have (/7/(z), //r(z)) = (s3, s3) or (i4,.y4). 
In both cases the condition (2) is satisfied. So we get 2 rings ^ e a c h of which has an 
additive group T+= (ai)@(a2)®(z) of typus (2 ,2 ,2) . Hence there are 2 square 
extensions T of S by R, an //'-square extension where //'(z) = (s3 , s3) and an //"-
square extension where //"(z) = ( r 4 , J4). 

(iv. b) Let {z, z) = a2. Then we must have (//,(z), rjr(z)) = (s2, s2) or (s4 , s4). 
In both cases the condition (2) is satisfied. Thus we get 2 rings T each of which 
Has an additive group T+ = (a1)@(a2)@(z) of typus (2, 2, 2). So there are 2 square 
extensions T of S by R, an //'-square extension for //'(z) = (tf2, s2) and an //"-square 
extension for rj"(z) = ( i 4 , sA). 

(iv. c) Let {z,z}=al+a2. Here we must have (//;(z), rir(z)) = (s2, s2) or 
( j 3 , s3). In both cases the condition (2) is satisfied. Again we get 2 rings T each of 
which has as an additive group =(a 1 ) f f i (a 2 ) f f i (z) of typus (2 ,2 ,2) . Therefore 
we get 2 square extensions T of S" by R, an //-square extension where //(z) = (s2, s2) 
and an //'-square extension where z/'(z) = (y3, i 3 ) . 

(iv. d) Let {z, z} = 0. Now we would get a square extension T of £ by R which 
splits over S which is impossible by Theorem 4. Hence there do not exist square 
extensions in this case. 

There is a second class of rings T which may occur as a square extension of 
a ring S of order 4 by a ring R of order 2. Now we put S+ = (a) is a cyclic group 
of order 4 and a2 = 0 (S is a zero-ring). Again R+=(0, z) with 2z = 0 and z2 — 0. 
The nilpotent endomorphism in the endomorphismring of are: J 1 : a - ' 0 , and 
s2.a-*la. So the pairs (sl,sl), {si,s2), ( ^ » ^ i ) a n d is2ts2) m a y occur as the 
element (//¡(z), //r(z)) i n The elements z2 = {z, z} and 2z—b in an extension 
To f S b y R must satisfy the conditions (3) and (4), i.e. (b)rjr(z) —2{z, zj and /y,(z)(b) = 
= 2{z, z}, (b€ S, {z, z } £ S ) . This implies that if 6 = 0 or b=2a, then { z , z } = 0 
or {z, zj = 2a. In either case T2 = (0) or T2=(0, 2a) and T ^ S, so T i s not a square 
extension of S by R. Hence we must have b = a or b = 3a. By the conditions (3) 
and (4) we get square extensions if we take (z/,(z), rjr{z)) = (s2, s2) and { z , z } = a 
or 3a, (cf. also Lemma 3). The condition (2) is satisfied. 

(i) Let {z, zj = a and b = a resp. b = 3a. Let 7\ be an //-extension of S by R 
with factor set {z, z} = a, b=a and let T2 be an. //-extension of S by R with factor 
set {z, z}'=a, b' = 3a. Then T, ~T2 as the conditions (5) and (6) are satisfied for 
i¡/z = a. Here (//((z), rjr(z)) = (s2, s2) and 7 \ and T2 have the same additive group. 
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T+ = (z) which is a cyclic group of order 8. As S = (M, S*} both for Ty and T2, we 
get 2 equivalent //-square extensions of S by R (Lemma 3). 

(ii) Let {z, z} = 3a and b=a resp. b = 3a. In the same way as in case (i) we 
get 2 equivalent »/-square extensions Tt and T2 of S by R, where 7 | resp. T2 has 
the factor set (3a, a) resp. (3a, 3a). Both Ti and T2 have again the additive group 
T+ = (z) (cyclic of order 8). 

R e m a r k . Our results obtained in Theorems 1, 2.and 3 and Lemmas 1, 2 and 
3 are quite analogous to the corresponding Theorems and Lemmas in the paper: 
H . ONISHI , Commutator extensions of finite groups Mich. Math. J., 1 3 ( 1 9 6 6 ) , 

1 1 9 — 1 2 6 , if one replaces "commutator extension" by "square extension". In fact, 
the results of O N I S H I for finite groups led us to consider the situation for finite rings. 
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