Square extensions of finite rings

By L. C. A. VAN LEEUWEN in Chicago (Illinois, U.S.A.)*)

Let R and S be rings. We say that a ring T is an extension of S by R if S is an ideal in T and T / S is isomorphic to R. Let us call an extension T of S by R a square extension, if $S=T^{2}$, where T^{2} is the ideal in T generated by all products of elements of T. Now T / T^{2} is a zero-ring, so in order that there exist a square extension of S by R, R must be a zero-ring. Henceforth we assume that R is a zero-ring and moreover that R is a finite ring. On the other hand, if S^{2} is the ideal in S generated by all products of elements in S, then S / S^{2} is a zero-ring. We assume that S / S^{2} is also finite. Our problem is to find necessary and sufficient conditions for the existence of a square extension of S by R. We shall reduce this problem to the case in which the additive group of S is a finite abelian elementary p-group and S is a zero-ring. In Theorem 4 we get the result that there does not exist a split square extension of S by R. Next we get a partial result on the existence of nonsplit square extensions of S by R (Theorem 5). Finally we determine all rings of order 8 , which may occur either as a square extension of a ring of order 4 or as a square extension of a ring of order 2.

First we note that the ideal S^{2} of S is an ideal not only in S, but also in every extension of S, since S^{2} is a characteristic subring of S.

Theorem 1. T is a square extension of S by R if and only if T / S^{2} is a square extension of S / S^{2} by R.

Proof. From the isomorphism $T / S \cong T / S^{2} / S / S^{2}$ it follows that T is an extension of S by R if and only if T / S^{2} is an extension of S / S^{2} by R. Now suppose $T^{2}=S$, then $\left(T / S^{2}\right)^{2}=T^{2} / S^{2}=S / S^{2}$. Conversely, if $S / S^{2}=\left(T / S^{2}\right)^{2}$, then $S / S^{2}=T^{2} / S^{2}$ and hence $S=T^{2}$. This theorem reduces the problem to the case in which S is a finite zero-ring.

If $S=(0)$, then every extension T of S by R is a square extension because R is a zero-ring. Therefore, we assume that S is a non-trivial finite zero-ring. At this

[^0]point we want to summarize the theory of extensions of S by R, where R and S are finite zero-rings. Let T be an extension of S by R, so that $T / S \cong R$. Let $\varphi: T \rightarrow R$ be the epimorphism whose kernel is S. An element \bar{u} of T is called a representative of $u \in R$ if $\varphi(\bar{u})=u$. Let $\left(z_{1}, \ldots, z_{l}\right)$ be a basis of the additive group R^{+}of R and let m_{i} be the order of z_{i}. An l-tuple $\left(\bar{z}_{1}, \ldots, \bar{z}_{l}\right)$ is called a representative set of the basis if each \bar{z}_{i} is a representative of z_{i}. As the products $\bar{z}_{i} a, a \bar{z}_{i}(a \in S)$ are all in S, the mappings $a \rightarrow \bar{z}_{i} a, a \rightarrow a \bar{z}_{i}$ are endomorphisms of S^{+}, which will be denoted by $\eta_{l}\left(z_{i}\right)$ and $\eta_{r}\left(z_{i}\right)$ resp. Thus $\eta_{l}\left(z_{i}\right) a=\bar{z}_{i} \dot{a}$ and $a \eta_{r}\left(z_{i}\right)=a \bar{z}_{i}$.

It is clear that if we choose another representative of $z_{i} \in R$, for instance \bar{z}_{i}^{\prime}, then $\bar{z}_{i}^{\prime} a=\bar{z}_{i} a$ and $a \bar{z}_{i}^{\prime}=a \bar{z}_{i}$, as $\bar{z}_{i}^{\prime}=\bar{z}_{i}(\bmod S)$ and S is a zero-ring. Hence the induced endomorphisms are completely determined by the element $z_{i} \in R$. So we get a set of $2 l$ endomorphisms of S^{+}and we divide them into pairs: $\left(\eta_{1}\left(z_{1}\right), \eta_{r}\left(z_{1}\right)\right),\left(\eta_{l}\left(z_{2}\right), \eta_{r}\left(z_{2}\right)\right)$, $\ldots,\left(\eta_{1}\left(z_{l}\right), \eta_{r}\left(z_{l}\right)\right)$. Each of these pairs is a double homothetism of S, since S is a zero-ring and the endomorphisms $\eta_{l}\left(z_{i}\right)$ and $\eta_{r}\left(z_{i}\right)$ are commuting. As T is an associative ring these double homothetisms are pairwise related (cf. [2]). Now we consider the mapping: $z_{i} \rightarrow \eta\left(z_{i}\right)=\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)$, which associates with each $z_{i} \in R$ the corresponding double homothetism of S and we extend η by linearity. We claim that η is a homomorphism of R into a maximal ring D of related double homothetisms of S. First we remark that if \bar{z}_{i} and \bar{z}_{j} are arbitrary representatives in T then $\bar{z}_{i} \bar{z}_{j} \in S$, as $\varphi\left(\bar{z}_{i} \bar{z}_{j}\right)=\varphi\left(\bar{z}_{i}\right) \varphi\left(\bar{z}_{j}\right)=z_{i} z_{j}=0$. Hence $\bar{z}_{i}\left(\bar{z}_{j} a\right)=$ $=\eta_{l}\left(z_{i}\right)\left(\eta_{l}\left(z_{j}\right) a\right)=0$ for all. $a \in S$. This implies $\eta_{l}\left(z_{i}\right) \eta_{l}\left(z_{j}\right)=$ zero-endomorphism for all $z_{i}, z_{j} \in R$. In the same way it can be shown that $\eta_{r}\left(z_{i}\right) \eta_{r}\left(z_{j}\right)=$ zero-endomorphism for all $z_{i}, z_{j} \in R$. As the product of the double homothetisms $\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)\left(\eta_{l}\left(z_{j}\right), \eta_{r}\left(z_{j}\right)\right)=\left(\eta_{1}\left(z_{i}\right) \eta_{l}\left(z_{j}\right), \eta_{r}\left(z_{i}\right) \eta_{r}\left(z_{j}\right)\right)=(0,0)$ in D, it follows that the mapping η maps R homomorphically into a ring D; the homomorphic image $\eta(R)$ is a zero-subring of a maximal ring of related double homothetisms of S. As we saw earlier each product $\bar{z}_{i} \bar{z}_{j} \in S$; we define $\bar{z}_{i} \bar{z}_{j}=\left\{z_{i}, z_{j}\right\}$ for all i, j with $1 \leqq i \leqq l, 1 \leqq j \leqq l$; the elements $\left\{z_{i}, z_{j}\right\}$ are called'a multiplicative factor set. Finally we know that $m_{i} \bar{z}_{i} \in S$, as $\varphi\left(m_{i} \bar{z}_{i}\right)=m_{i} z_{i}=0$. So we get another set of elements $m_{i} \bar{z}_{i}=b_{i}$ in S.

It is easy to check that the homomorphism η, the multiplicative factor set $\left\{z_{i}, z_{j}\right\}$ and the set $\left\{b_{i}\right\}$ have the following properties:
(1) $\left\{z_{i}, 0\right\}=\left\{0, z_{j}\right\}=0$, if 0 is a representative of $0 \in R$.
(2) $\eta_{l}\left(z_{i}\right)\left\{z_{j}, z_{k}\right\}=\left\{z_{i}, z_{j}\right\} \eta_{r}\left(z_{k}\right)$,
(3) $\left(b_{i}\right) \eta_{r}\left(z_{j}\right)=m_{i}\left\{z_{i}, z_{j}\right\}$,
(4) $\eta_{l}\left(z_{j}\right)\left(b_{i}\right)=m_{i}\left\{z_{j}, z_{i}\right\}$, for all $z_{i}, z_{j}, z_{k} \in R, b_{i} \in S, m_{i}$ as integers.

Hence given an extension T of S by R, T determines with the representative set ($\bar{z}_{1}, \ldots, \bar{z}_{l}$) a homomorphism η of R into a maximal ring of related double homothetisms of S, a multiplicative factor set $\left\{z_{i}, z_{k}\right\}$ and a set $\left\{b_{i}\right\}\left(b_{i} \in S\right)$, such that the properties (1)-(4) are satisfied.

Conversely, assume that R and S are given finite zero-rings and that $\eta: R \rightarrow D$ is a given homomorphism of R into a maximal ring D of related double homothetisms of S. Let the functions $\left\{z_{i}, z_{j}\right\}$ of $R \times R$ into S and the set $\left\{b_{i}\right\}\left(b_{i} \in S\right)$ be given for all i, j with $1 \leqq i \leqq l, 1 \leqq j \leqq l$, such that (1)-(4) hold. Consider the set of all symbols $\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s, 0 \leqq n_{i}<m_{i}, s \in S$. Define equality by: $\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s=\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v$ if and only if $n_{i}=u_{i}$ for all i and $s=v$. Define addition by $:\left(\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s\right)+\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v\right)=$ $=\sum_{i=1}^{i}\left(n_{i}+u_{i}\right) \bar{z}_{i}+s+v$, where $m_{i} \bar{z}_{i}=b_{i}$ and the sum is reduced mod $m_{i} \bar{z}_{i}$. Define multiplication by:

$$
\left(\sum_{i=1}^{l} n_{i} \bar{z}_{l}+s\right)\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v\right)=\sum_{i=1}^{l} \sum_{j=1}^{l} n_{i} u_{j}\left\{z_{i}, z_{j}\right\}+\sum_{i=1}^{l} n_{i}\left(\eta_{l}\left(z_{i}\right) v\right)+\sum_{j=1}^{l} u_{j}\left(s \eta_{r}\left(z_{j}\right)\right) .
$$

It is easy to check that the set T of all symbols $\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s$ with the addition and multiplication just defined is a ring. Now $T^{2} \subseteq S$, hence S is an ideal in T and $T / S \cong R$ under $\sum_{i=1}^{l} n_{i} \bar{z}_{i}+S \rightarrow \sum_{i=1}^{l} n_{i} z_{i}$. Further $\bar{z}_{i} v=\eta_{l}\left(z_{i}\right) v \in S, v \bar{z}_{i}=v \eta_{r}\left(z_{i}\right) \in S$ for all $v \in S$, hence the double homothetisms $\left.\eta_{i}\right)=\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)$ of S are induced by inner double homothetisms $\left(\bar{z}_{i_{i}},{\overline{i_{i}}}_{r}\right)$ of T. So T is an extension of S by R which, with the representative set \bar{z}_{i}, induces the given homomorphism η. Since $\bar{z}_{i} \bar{z}_{j}=$ $=\left\{z_{i}, z_{j}\right\}$ for all i, j and $m_{i} \bar{z}_{i}=b_{i}$ for all i, T has, with the same representative set \bar{z}_{i}, the multiplicative factor set $\left\{z_{i}, z_{j}\right\}$ and the additive set $\left\{b_{i}\right\}$.

We call an extension T of S by R combined with the homomorphism $\eta: R \rightarrow D$, where D is some maximal ring of related double homothetisms of S, an η-extension of S by R.

Let T be any η-extension of S by R which has, for the representative set \bar{z}_{i}, the multiplicative factor set $\left\{z_{i}, z_{i}\right\}$ and the additive set $\left\{b_{i}\right\}$. Another representative set of T / S may be: $\bar{z}_{1}^{\prime}, \bar{z}_{2}^{\prime}, \ldots, \bar{z}_{l}^{\prime}$, where $\bar{z}_{i}^{\prime}=\bar{z}_{i}+\psi_{z_{i}}, \psi_{z_{i}} \in S$ for $i=1, \ldots, l$. Then $\bar{z}_{i}^{\prime} \bar{z}_{j}^{\prime}=\left(\bar{z}_{i}+\psi_{z_{i}}\right)\left(\bar{z}_{j}+\psi_{z_{j}}\right)=\left\{z_{i}, z_{j}\right\}+\eta_{l}\left(z_{i}\right)\left(\psi_{z_{j}}\right)+\left(\psi_{z_{i}}\right) \eta_{r}\left(z_{j}\right)$ and $m_{i} \bar{z}_{i}^{\prime}=m_{i}\left(\bar{z}_{i}+\psi_{z_{i}}\right)=$ $=b_{i}+m_{i} \psi_{z_{i}}$. Hence the new factor sets are

$$
\begin{equation*}
\left\{z_{i}, z_{j}\right\}^{\prime}=\left\{z_{i}, z_{j}\right\}+\eta_{l}\left(z_{i}\right)\left(\psi_{z_{j}}\right)+\left(\psi_{z_{i}}\right) \eta_{r}\left(z_{j}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}^{\prime}=\dot{b}_{i}+m_{i} \psi_{z_{i}} \tag{6}
\end{equation*}
$$

We shall call two factor sets $\left\{z_{i}, z_{j}\right\},\left\{b_{i}\right\}$ and $\left\{z_{i}, z_{j}\right\}^{\prime},\left\{b_{i}\right\}^{\prime}$ equivalent if there exists a mapping $\psi: R \rightarrow S\left(\psi_{0}=0\right)$ such that (5) and (6) hold. Hence any two factor sets corresponding to the same η-extension of S by R are equivalent.

On the other hand, we shall call two η-extensions T and T^{\prime} of S by R equivalent (and write $T \sim T^{\prime}$) if there exists an isomorphism $\alpha: T \rightarrow T^{\prime}$ such that α is the identity on S and $\varphi=\alpha \varphi^{\prime}$, where $\varphi: T \rightarrow R$ and $\varphi^{\prime}: T^{\prime} \rightarrow R$ are the epimorphisms whose kernels are S. With these definitions we get the result: Let T_{1} and \dot{T}_{2} be two η extensions of S by R. Then $T_{1} \sim T_{2}$ if and only if, for some choice of representative sets in T_{1} resp. T_{2}, the corresponding factor sets $\left\{z_{i}, z_{j}\right\}_{1},\left\{b_{i}\right\}_{1}$, resp. $\left\{z_{i}, z_{j}\right\}_{2 .}\left\{b_{i}\right\}_{2}$ are equivalent. More explicitly, if T_{k}, with representative set $\left\{\bar{z}_{i}\right\}_{k}$, has the factor set $\left\{z_{i}, z_{j}\right\}_{k},\left\{b_{i}\right\}_{k}(k=1,2)$, then the isomorphism $\alpha: T_{1} \rightarrow T_{2}$ is given by $\left(\sum_{i=1}^{l} n_{i}\left(\bar{z}_{i}\right)_{1}+s\right) \alpha=\sum_{i=1}^{l} n_{i}\left(\bar{z}_{i}\right)_{2}+s+\sum_{i=1}^{l} n_{i} \psi_{z_{i}}$, where $\psi: R \rightarrow S\left(\psi_{0}=0\right)$ is a mapping such that (5) and (6) hold for ψ and the factor sets. The proof is straightforward.

An η-extension T of S by R is said to be a splitting extension over S if and only if, for some choice of representative set, all $\left\{z_{i}, z_{j}\right\}$ are 0 and all b_{i} are 0 . Also, $T=S \oplus R$ (ringtheoretical direct sum) if and only if T is a 0 -extension of S by $R(\eta=0)$ and, for some choice of representative set, all $\left\{z_{i}, z_{j}\right\}$ are 0 and all b_{i} are 0 . The direct sum extension is a zero-ring, since R and S are supposed to be zero-rings.

Let T be an η-extension of S by R. A subring K of S is an ideal in T if and only if K is invariant under the double homothetisms of S, which occur as images in $\eta: R \rightarrow D$. Now the $\eta\left(z_{i}\right)=\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)$ are double homothetisms of K and T / K is an η^{*}-extension of S / K by R. If $\eta: R \rightarrow D$ is such that $\eta\left(z_{i}\right)=\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)$ then η^{*} : $R \rightarrow D^{*}$, where D^{*} is a maximal ring of related double homothetisms of S / K, is defined by $\eta^{*}\left(z_{i}\right)=\left(\eta_{l}^{*}\left(z_{i}\right), \eta_{r}^{*}\left(z_{i}\right)\right)$, where $\eta_{l}^{*}\left(z_{i}\right)(s+K)=\eta_{l}\left(z_{i}\right) s+K$ and $(s+K) \eta_{r}^{*}\left(z_{i}\right)=s \eta_{r}\left(z_{i}\right)+K$. Since K is invariant in $\eta(R)$, this definition does not depend on the particular choice of a representative s in $s+K$. It is easy to show that $\eta^{*}\left(z_{i}\right)=\left(\eta_{l}^{*}\left(z_{i}\right), \eta_{r}^{*}\left(z_{i}\right)\right)$ is a double homothetism of S / K and that any two of such double homothetisms are related. It can be shown also that η^{*} is a homomorphic mapping. Hence $\eta^{*}: R \rightarrow D^{*}$ is a homomorphism of R into a maximal ring of related double homothetisms of S / K. If T has the representative set $\bar{z}_{i}, i=1, \ldots, l$, then a representative set of T / K is the set $\bar{z}_{i}+K, i=1, \ldots l$. We have $\left(\bar{z}_{i}+K\right)\left(\bar{z}_{j}+K\right)=\left\{z_{i}, z_{j}\right\}+K$ and $m_{i}\left(\bar{z}_{i}+K\right)=b_{i}+K$, hence the corresponding factor sets are $\left\{z_{i}, z_{j}\right\}+K$ and $b_{i}+K$ for all i, j with $1 \leqq i, j \leqq l$ Moreover $\left(\bar{z}_{i}+K\right)(s+K)=\eta_{l}\left(z_{i}\right) s+K=\eta_{l}^{*}\left(z_{i}\right)(s+K)$ and $(s+K)\left(\bar{z}_{i}+K\right)=s \eta_{r}\left(z_{i}\right)+K=$ $=(s+K) \eta_{r}^{*}\left(z_{i}\right)$, hence η^{*} is induced by inner double homothetisms of T / K.

The following lemma is obvious now; in fact the proof is similar to that of Theorem 1.

Lemma 1. If T is an η-square extension of S by R then, for each subring K of S invariant under the double homothetisms in $\eta(R), T / K$ is an η^{*}-square extension of S / K by R.

Lemma 2. Suppose that $S=S_{1} \oplus S_{2}$ (direct sum) and the orders q_{1}, and q_{2} of S_{1} resp. S_{2} are relatively prime. If there exist η^{\prime} resp. $\eta^{\prime \prime}$-square extensions of S_{1} resp. S_{2} by R, then there exists an $\left(\eta^{\prime}+\eta^{\prime \prime}\right)$-square extension of S by R.

Proof. Let $\left\{z_{i}, z_{j}\right\}^{\prime}, b_{i}^{\prime}$ resp. $\left\{z_{i}, z_{i}\right\}^{\prime \prime}, b_{i}^{\prime \prime}$ be factor sets is S_{1} resp. S_{2} for an η^{\prime}-resp. $\eta^{\prime \prime}$-extension of S_{1} resp. S_{2} by R. Here $\eta^{\prime}: R \rightarrow D_{1}$ is a homomorphism of R into a maximal ring of related double homothetisms of S_{1} and $\eta^{\prime \prime}: R \rightarrow D_{2}$ is a homomorphism of R into a maximal ring of related double homothetisms of S_{2}. Extend the double homothetisms $\eta^{\prime}\left(z_{i}\right)=\left(\eta_{l}^{\prime}\left(z_{i}\right), \dot{\eta}_{r}^{\prime}\left(z_{i}\right)\right)$ of S_{1} by letting them act trivially on S_{2}. Then define $\eta_{l}^{\prime}\left(z_{i}\right)\left(s_{1}+s_{2}\right)=\eta_{l}^{\prime}\left(z_{i}\right) s_{1}$ and $\left(s_{1}+s_{2}\right) \eta_{r}^{\prime}\left(z_{i}\right)=$ $=s_{1} \eta_{r}^{\prime}\left(z_{i}\right)$ for all $\left(\eta_{l}^{\prime}\left(z_{i}\right), \eta_{r}^{\prime}\left(z_{i}\right)\right)$ in $\eta^{\prime}(R)$ and all $s_{1} \in S_{1}$ and all $s_{2} \in S_{2}$. Similarly, extend the double homothetisms $\eta^{\prime \prime}\left(z_{i}\right)=\left(\eta_{l}^{\prime \prime}\left(z_{i}\right), \eta_{r}^{\prime \prime}\left(z_{i}\right)\right)$ of S_{2} by letting them act trivially on S_{1}. Then define $\eta_{l}^{\prime \prime}\left(z_{i}\right)\left(s_{1}+s_{2}\right)=\eta_{l}^{\prime \prime}\left(z_{i}\right) s_{2}$ and $\left(s_{1}+s_{2}\right) \eta_{r}^{\prime \prime}\left(z_{i}\right)=s_{2} \eta_{r}^{\prime \prime}\left(z_{i}\right)$ for all $\left(\eta_{l}^{\prime \prime}\left(z_{i}\right), \eta_{r}^{\prime \prime}\left(z_{i}\right)\right)$ in $\eta^{\prime \prime}(R)$ and all $s_{1} \in S_{1}$ and all $s_{2} \in S_{2}$. It is easy to show now that both the extended $\eta^{\prime}\left(z_{i}\right)$ and the extended $\eta^{\prime \prime}\left(z_{i}\right)$ are double homothetisms of S. Moreover the double homothetisms $\eta^{\prime}\left(z_{i}\right)$ and $\eta^{\prime \prime}\left(z_{i}\right)$ of S are related double homothetisms. It follows that the sum $\eta^{\prime}\left(z_{i}\right)+\eta^{\prime \prime}\left(z_{i}\right)$ is again a double homothetism of S, ([1]). We define now: $\eta^{\prime}+\eta^{\prime \prime}\left(z_{i}\right)=\eta^{\prime}\left(z_{i}\right)+\eta^{\prime \prime}\left(z_{i}\right)$ for all $z_{i} \in R$ and extend $\eta^{\prime}+\eta^{\prime \prime}$ by linearity. Thus $\eta^{\prime}+\eta^{\prime \prime}\left(z_{i}\right)$ is that double homothetism of S which is the sum of $\eta^{\prime}\left(z_{i}\right)$ and $\eta^{\prime \prime}\left(z_{i}\right)$. More explicitly: $\eta^{\prime}+\eta^{\prime \prime}\left(z_{i}\right)=\left(\eta_{1}^{\prime}\left(z_{i}\right)+\eta_{l}^{\prime \prime}\left(z_{i}\right), \eta_{r}^{\prime}\left(z_{i}\right)+\eta_{r}^{\prime \prime}\left(z_{i}\right)\right)$, where $\left(\eta_{l}^{\prime}\left(z_{i}\right)+\eta_{l}^{\prime \prime}\left(z_{i}\right)\right)\left(s_{1}+s_{2}\right)=\eta_{l}^{\prime}\left(z_{i}\right)\left(s_{1}+s_{2}\right)+\eta_{l}^{\prime \prime}\left(z_{i}\right)\left(s_{1}+s_{2}\right)=\eta_{l}^{\prime}\left(z_{i}\right) s_{1}+\eta_{l}^{\prime \prime}\left(z_{i}\right) s_{2}$ for all $s_{1} \in S_{1}$ and all $s_{2} \in S_{2}$ and a similar formula holds for $\eta_{r}^{\prime}\left(z_{i}\right)+\eta_{r}^{\prime \prime}\left(z_{i}\right)$. Then $\eta^{\prime}+\eta^{\prime \prime}: R \rightarrow D$ is a homomorphic mapping of R into a maximal ring D of related double homothetisms of S, as the extended η^{\prime} and $\eta^{\prime \prime}$ are homomorphisms of R into D. Here we may take $D=D_{1} \oplus D_{2}$. In order to construct an $\eta^{\prime}+\eta^{\prime \prime}$-square extension of S by R, we use the sets $\left\{z_{i}, z_{j}\right\}^{\prime}+\left\{z_{i}, z_{j}\right\}^{\prime \prime}, b_{i}^{\prime}+b_{i}^{\prime \prime}$ in S as factor sets. As $\left\{z_{i}, z_{j}\right\}^{\prime}, b_{i}^{\prime}$ with η^{\prime} and $\left\{z_{i}, z_{j}\right\}^{\prime \prime}, b_{i}^{\prime \prime}$ with $\eta^{\prime \prime}$ both satisfy the conditions (1)-(4), it follows that $\left\{z_{i}, z_{j}\right\}^{\prime}+\left\{z_{i}, z_{j}\right\}^{\prime \prime}, b_{i}^{\prime}+b_{i}^{\prime \prime}$ together with $\eta^{\prime}+\eta^{\prime \prime}$ satisfy the conditions (1)-(4). Hence we have obtained an $\eta^{\prime}+\eta^{\prime \prime}$-extension T of $S=S_{1} \oplus S_{2}$ by R. Now we have to prove that $T^{2}=S$. First we remark that S_{2} is mapped into itself under $\eta^{\prime}+\eta^{\prime \prime}$. As T is an $\eta^{\prime}+\eta^{\prime \prime}$-extension of S by R it follows that T / S_{2} is an η^{*} extension of S / S_{2} by R, (Lemma 1). The corresponding factor set is $\left\{z_{i}, z_{j}\right\}^{\prime}+S_{2}$, $b_{i}^{\prime}+S_{2}$. Now since $\left\{z_{i}, z_{j}\right\}^{\prime}, b_{i}^{\prime}$ corresponds to an η^{\prime}-square extension of S_{1} by R, it follows that T / S_{2} is a square extension of S / S_{2} by R. So $\left(T / S_{2}\right)^{2}=S / S_{2}$ and in the same way $\left(T / S_{1}\right)^{2}=S / S_{1}$. As T is an $\eta^{\prime}+\eta^{\prime \prime}$-extension of S by R with the factor set $\left\{z_{i}, z_{j}\right\}^{\prime}+\left\{z_{i}, z_{j}\right\}^{\prime \prime}, b_{i}^{\prime}+b_{i}^{\prime \prime}$, it is clear that $T^{2} \subseteq S$. So we have to prove $S \subseteq T^{2}$. From $\left(T / S_{2}\right)^{2}=S / S_{2}=S_{1}$ it follows that, if s_{1} is a given element of S_{1}, there exists an element $a \in T^{2}$ such that $s_{1} \equiv a\left(\bmod S_{2}\right)$. From $\left(T / S_{1}\right)^{2}=$ $=S / S_{1}=S_{2}$ it follows that, if s_{2} is a given element of S_{2}, there exists an element $b \in T^{2}$ such that $s_{2} \equiv b\left(\bmod S_{1}\right)$. Then $q_{2} s_{1} \equiv q_{2} a\left(\bmod q_{2} S_{2}=0\right)$, so $q_{2} s_{1} \in T^{2}$.

As the order of s_{1} is relatively prime to q_{2} it follows that $s_{1} \in T^{2}$. Similarly $q_{1} s_{2} \equiv$ $\equiv q_{1} b\left(\bmod q_{1} S_{1}=0\right)$, so $q_{1} s_{2} \in T^{2}$. As the order of s_{2} is relatively prime to q_{1} it follows that $s_{2} \in T^{2}$. From $s_{1} \in T^{2}, s_{2} \in T^{2}$ for all $s_{1} \in S_{1}, s_{2} \in S_{2}$ it follows that $S_{1}+S_{2}=S \subseteq T^{2}$. Then $T^{2}=S$ and T is an $\eta^{\prime}+\eta^{\prime \prime}$-square extension of S by R. We apply the lemmas 1 and 2 in the following theorem:

Theorem 2. Let R and S be finite zero-rings. There exists a square extension T of S by R if and only if, for each $p_{i}-S y l o w ~ s u b g r o u p ~ A_{i}$ of S (p_{i} a prime), there exists a square extension of A_{i} by R.

Proof. Let $S=A_{1} \oplus \ldots \oplus A_{k}$, where the p_{i}-Sylow subgroup A_{i} has the order $p_{i}^{\alpha_{i}} i=1, \ldots, k$. Now the orders $p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots, p_{k}^{\alpha_{k}}$ are relatively prime. Thus, if there exist square extensions of $A_{1}, A_{2}, \ldots, A_{k}$ by R, then there exists a square extension T of S by R by the preceding Lemma 2 .

Conversely let us suppose that T is a square extension of S by R. Now the A_{i} are characteristic subrings of S, i.e. they are invariant under all double homothetisms of S. Hence the direct sum $A_{1} \oplus \ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_{k}$ is a characteristic subring of S. Therefore $T / A_{1} \oplus \ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_{k}$ is a square extension of $S / A_{1} \oplus \ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_{k}=A_{i}$ by R (Lemma 1). This theorem reduces the problem to the case in which S^{+}is a finite abelian p-group.

Theorem 3. Let S^{+}be a finite abelian p-group, and S a zero-ring. Let R be a finite zero-ring. T is a square extension of S by R if and only if $T / p S$ is a square extension of $S / p S$ by R.

Proof. First we remark that $p S$ is a characteristic subring of S, for if $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ is an arbitrary double homothetism of S, then $\alpha_{1}(p s)=p \alpha_{1}(s)$ and $(p s) \alpha_{2}=p(s) \alpha_{2}$ for all $s \in S$. Hence T is a square extension of S by R implies $T / p S$ is a square extension of $S / p S$ by R (Lemma 1). Conversely, suppose $T / p S$ is a square extension of $S / p S$ by R. Then $T / p S / S / p S \cong T / S \cong R$ and T is an extension of S by R. From $(T / p S)^{2}=S / p S$ it follows that, if b is a given element in T^{2}, there exists an element $s \in S$ such that $b \equiv s(\bmod p S)$. Thus $T^{2} \cong S$. Conversely, if s is a given element in S, there exists an element $a \in T^{2}$ such that $s \equiv a(\bmod p S)$. Then $p s=a_{0}+p^{2} s_{1}$, where $a_{0}=p a \in T^{2}$ and $s_{1} \in S, p^{2} s_{1}=a_{1}+p^{3} s_{2}$, where $a_{1} \in T^{2}, s_{2} \in S, \ldots, p^{k-1} s_{k-2}=$ $=a_{k-2}+p^{k} S_{k-1}=a_{k-2} \in T^{2}$, if we assume that $p^{k} S=0$. Tracing back we find $p s \in T^{2}$ and as s is an arbitrary element in S we have $p S \subseteq T^{2}$. But this implies $(T / p S)^{2}=T^{2} / p S=S / p S$, hence $S=T^{2} . T$ is a square extension of S by R. We note that $S^{+} /(p S)^{+}$is an elementary abelian p-group and therefore we have reduced the problem to the case where S^{+}is an elementary abelian p-group of finite rank.

Let $\eta: R \rightarrow D$ be a fixed homomorphism of R into a maximal ring of related double homothetisms of S. We consider the set $S_{\eta(r)}$ of all elements of the form $\eta_{l}(r) s, s^{\prime} \eta_{r}(r)$, where $\eta^{\prime}(r)=\left(\eta_{l}(r), \eta_{r}(r)\right)$ is a fixed element of $\eta(R)$ and s is a variable
element in S, s^{\prime} is a variable element in S, independent of s. Then let S^{*} be the subring of S, generated by all $S_{\eta(r)}$ for $r \in R$, which is denoted by $S^{*}=\left\langle S_{\eta(r)}^{\dot{*}}\right\rangle$. Finally, if T is an extension of S by R, then M will denote the multiplicative factor set for some choice of representative set in T, i.e. $M=\left(\left\{z_{i}, z_{j}\right\}, 1 \leqq i \leqq l, 1 \leqq j \leqq l\right)$. Now we can prove:

Lemma 3. T is a square η-extension of S by R if and only if S is generated by M and $S^{*}: S=\left\langle M, S^{*}\right\rangle$.

Proof: It is sufficient to show that, given an η-extension T of S by R, $\left\langle M, S^{*}\right\rangle=\dot{T}^{2}$. Let us assume that this has been proved. Then if T is a square η-extension of S by R we get $T^{2}=S=\left\langle M, S^{*}\right\rangle$. Conversely, if $S=\left\langle M, S^{*}\right\rangle$ for some η-extension T of S by R, then, as $\left\langle M, S^{*}\right\rangle \doteq T^{2}$, we get $T^{2}=S$ and T is a square η-extension of S by R. Now we are going to prove that $T^{2}=\left\langle M, S^{*}\right\rangle$ for a given η-extension T of S by R. For the multiplication in T we have:

$$
\left(\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s\right) \cdot\left(\sum_{j=1}^{l} u_{j} \bar{z}_{j}+v\right)=\sum_{i=1}^{l} \sum_{j=1}^{l} n_{i} u_{j}\left\{z_{i}, z_{j}\right\}+\sum_{i=1}^{l} n_{i}\left(\eta_{l}\left(z_{i}\right) v\right)+\sum_{j=1}^{l} u_{j}\left(s \eta_{r}\left(z_{j}\right)\right)
$$

where $\left(\bar{z}_{1}, \ldots, \bar{z}_{l}\right)$ is a representative set of the basis $\left(z_{1}, \ldots, z_{l}\right)$ in $R, s, v \in S$ and n_{i}, u_{j} are integers for $1 \leqq i \leqq l, 1 \leqq j \leqq l$. Thus $T^{2} \subseteq\left\langle M, S^{*}\right\rangle$. Now the generators of $\left\langle M, S^{*}\right\rangle$ are the elements $\left\{z_{i}, z_{j}\right\}$ of M and all elements of the form $\eta_{l}\left(z_{i}\right) v, s \eta_{r}\left(z_{j}\right)$ where $z_{i}, z_{j} \in\left(z_{1}, \ldots, z_{l}\right)$ in R and $v, s \in S$. As $\left\{z_{i}, z_{j}\right\}=\bar{z}_{i} \bar{z}_{j}, \eta_{l}\left(z_{i}\right) v=\bar{z}_{i} v$ and $s \eta_{r}\left(z_{j}\right)=s \bar{z}_{j}$ it follows that all generators of $\left\langle M, S^{*}\right\rangle$ belong to T^{2}, hence $\left\langle M, S^{*}\right\rangle \subseteq T^{2}$. Then $\left\langle M, S^{*}\right\rangle=T^{2}$.

Next we investigate the η-extensions of S by R which are splitting extensions over S. First we consider the case where S^{+}is an elementary abelian p-group of rank 1. We prove:

Lemma 4. Let $S^{+}=(0, a, \ldots,(p-1) a)$ be an elementary abelian p-group of rank 1. S is a zero-ring, i.e. $a^{2}=0$. Let R^{+}be the direct sum of l cyclic groups $\left(z_{i}\right)$ of order $m_{i}, i=1, \ldots, l . R$ is a zero-ring, i.e. $z_{i} z_{j}=0$ for all. i, j with $1 \leqq i \leqq l$, $1 \leqq j \leqq l$. Then there does not exist a splitting square η-extension T of S by R, whatever η may be.

Proof. Let T be an η-extension of S by R with representative set ($\bar{z}_{1}, \ldots, \bar{z}_{l}$). Addition and multiplication in T are performed according to: $\left(\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s a\right)+$ $+\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v a\right)=\sum_{i=1}^{l}\left(n_{i}+u_{i}\right) \bar{z}_{i}+(s+v) a$, with $n_{i}+u_{i}$ reduced $\bmod m_{i}(i=1, \ldots, l)$ and $s+v \quad$ reduced $\bmod p ; \quad\left(\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s a\right)\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v a\right)=\sum_{i=1}^{l} n_{i} v\left(\eta_{l}\left(z_{i}\right) a\right)+$ $+\sum_{j=1}^{l} u_{j} s\left(a \eta_{r}\left(z_{j}\right)\right)$, if we assume that T is a splitting extension over S. But then
$0=a\left(\bar{z}_{1}^{2}\right)=\left(a \bar{z}_{1}\right) \bar{z}_{1}=\left(a \eta_{r}\left(z_{1}\right)\right) \eta_{r}\left(z_{1}\right)$, which implies that $a \eta_{r}\left(z_{1}\right)=0$. So we get $a \eta_{r}\left(z_{i}\right)=0$ for all z_{i} with $i=1, \ldots, l$. Similarly $\eta_{l}\left(z_{i}\right) a=0$ for all z_{i} with $i=1, \ldots, l$. Hence T is a zero-ring and $T^{2} \neq S$, as $S \neq(0)$. In this case there exists no splitting square η-extension T of S by R.

Theorem 4. Let R and S be finite zero-rings. Let $\eta: R \rightarrow D$ be an arbitrary homomorphism of R into a maximal ring of related double homothetism of S. Then there does not exist an η-square extension T of S by R, such that T splits over S.

Proof. It is sufficient to show that there does not exist an η-square extension T of S by R, such that T splits over S for the case that S^{+}is an elementary abelian p-group of finite rank. Let us assume that this has been proved. First let S^{+}a finite abelian p-group, not elementary, S a zero-ring and R a finite zero-ring. Then $p S(\neq 0, \neq S)$ is a characteristic subring of S. Suppose T is an η-square extension of S by R which splits over S. Then, by Lemma $1, T / p S$ is an η^{*}-square extension of $S / p S$ by R and from the results preceding Lemma 1 , it is easy to see that $T / p S$ splits over $S / p S$. But $S / p S$ is an elementary abelian p-group, hence by assumption there does not exist an η^{*}-square extension of $S / p S$ which splits over $S / p S$. So we get that there does not exist an η-square extension T of S by R which splits over S in case S^{+}is a finite abelian p-group and R and S are finite zero-rings. Next let S^{+}be an arbitrary finite abelian group and S a zero-ring. Let $S^{+}=A_{1} \oplus \ldots \oplus A_{k}$, where the p_{i}-Sylow subgroup A_{i} has the order $p_{i}^{\alpha_{i}}, i=1, \ldots k$, and the p_{i} are primes. Suppose T is an η-square extension of S by R, which splits over S. Then, again by Lemma $1, T / A_{1} \oplus \ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_{k}$ is an η^{*}-square extension of $S / A_{1} \oplus \ldots \oplus$ $\ldots \oplus A_{i-1} \oplus A_{i+1} \oplus \ldots \oplus A_{k}=A_{i}$ by R, which splits over $A_{i}, 1 \leqq i \leqq k$. But A_{i}^{+} is a finite abelian p_{i}-group, hence there does not exist an η^{*}-square extension T of A_{i} by R which splits over A_{i}. This contradiction implies that there does not exist an η-square extension T of S by R which splits over S, if R and S are finite zerorings.

Now S^{+}is supposed to be an elementary abelian p-group of finite rank and we are going to prove that there does not exist an η-square extension T of S by R which splits over S whatever η may be. For a split extension, for some choice of representative set, $\left\{z_{i}, z_{j}\right\}=0$ and $b_{i}=0$ for all i and $j, 1 \leqq i \leqq l, 1 \leqq j \leqq l$. Hence T is an η-square extension of S by R which splits over S if and only if $S=S^{*}=$ $=\left\langle S_{\eta(r)} \mid r \in R\right\rangle$ (Lemma 3). Now suppose that T is an η-square extension of S by R which splits over S. Since $S=S^{*} \neq 0, \eta(R) \neq 0$, where $\eta(R)$ is the image of R in the homomorphical mapping $\eta: R \rightarrow D$. Since R is generated by the $z_{i}, 1 \leqq i \leqq l$, it is clear that $\eta(R)$ is generated by the pairs $\left(A_{i}, B_{i}\right), 1 \leqq i \leqq l$, where $A_{i}=\eta_{l}\left(z_{i}\right)$, $B_{i}=\eta_{r}\left(z_{i}\right)$, such that $\eta\left(z_{i}\right)=\left(\eta_{l}\left(z_{i}\right), \eta_{r}\left(z_{i}\right)\right)$ is the double homothetism of S corresponding to $z_{i} \in R$. The $2 l$ endomorphisms A_{i}, B_{j} have the properties:
(i) $A_{i} A_{k}=0, B_{j} B_{t}=0$ for all i, j, k, t with $i \leqq i, k, j, t \leqq l$;
(ii) $A_{i} B_{j}=B_{j} A_{i}$ for all i, j with $1 \leqq i, j \leqq l$.

In particular both the A_{i} and B_{j} are nilpotent endomorphisms such that $A_{i}^{2}=0$ and $B_{j}^{2}=0$ for all i, j with $1 \leqq i, j \leqq 1$. Since $\eta(R) \neq 0$, at least one of these endomorphisms is $\neq 0$, say $A_{1} \neq 0$. Now consider the set $A_{1} S=\left\{A_{1} s \mid s \in S\right\}$. Then $A_{1} S$ is a subring of S, as $A_{1} s_{1}+A_{1} s_{2}=A_{1}\left(s_{1}+s_{2}\right)$ and $\left(A_{1} s_{1}\right)\left(A_{1} s_{2}\right)=0$. Moreover $A_{1} S$ is invariant under $A_{1}, \ldots, A_{i} ; B_{1}, \ldots, B_{i}$, as $A_{i}\left(A_{1} S\right)=0$ (i), $B_{j}\left(A_{1} S\right)=$ $=A_{1}\left(B_{j} S\right) \subseteq A_{1} S$ for all A_{i}, B_{j} (ii) with $1 \leqq i, j \leqq l$. This means $A_{1} S$ is a subring of S invariant under the double homothetisms of $\eta(R)$. Further $A_{1} S \neq 0$, as $A_{1} \neq 0$ and $A_{1} S \neq S$. If $A_{1} S=S$ then $A_{1} s=A_{1}\left(A_{1} s^{\prime}\right)=0$ for every $s \in S$ (i) and this would imply $A_{1}=0$ which is a contradiction. By Lemma 1 , as T is an η-square extension of by $R, T / A_{1} S$ is an η^{*}-square extension of $S / A_{1} S$ by R, where η^{*} is induced by η. In fact, $\eta^{*}: R \rightarrow D^{*}, D^{*}$ a maximal ring of related double homothetisms of $S / A_{1} S$, is such that $\eta^{*}\left(z_{i}\right)=\left(\eta_{l}^{*}\left(z_{i}\right), \eta_{r}^{*}\left(z_{i}\right)\right)$, where, by definition, $\eta_{l}^{*}\left(\dot{z}_{i}\right)\left(s+A_{1} S\right)=$ $=\eta_{l}\left(z_{i}\right) s+A_{1} S$ and $\left(s+A_{1} S\right) \eta_{r}^{*}\left(z_{i}\right)=s \eta_{r}\left(z_{i}\right)+A_{1} S$. Since $\quad S=S^{*}=\left\langle S_{\eta(r)} \mid r \in R\right\rangle$, it follows from the definition of $\eta_{l}^{*}\left(z_{i}\right)$, that $S / A_{1} S=\left(S / A_{1} S\right)^{*}=\left\langle S / A_{1} S_{\eta^{*}(r)} \mid r \in R\right\rangle$. Hence $T / A_{1} S$ is an η^{*}-square extension of $S / A_{1} S$ by R, which splits over $S / A_{1} S$. As $A_{1} S \neq 0$, and $A_{1} S \neq S$, the dimension of $S / A_{1} S$ is less than r and greater than 0 , if we consider S^{+}as an r-dimensional vector space over the prime Galois field $F=G F(p)$. By Lemma 4, there does not exist an η-square extension T of S by R, which splits over S, in case S^{+}has dimension 1 . So, by induction on the dimension of S, it follows that there does not exist an η-square extension T of S by R which splits over S whatever η may be. This completes the proof of Theorem 4.

Next we investigate the existence of 0 -square extensions of S by R i.e. extensions where the homomorphism $\eta: R \rightarrow D$ is the zero-homomorphism. Here we get the result:

Theorem 5. Let S be a zero-ring and S^{+}an elementary abelian p-group of finite rank r. Let R be a finite zero-ring, where $R^{+}=\sum_{i=1}^{l} \oplus z_{i}, O\left(z_{i}\right)=m_{i}, l \leqq i \leqq l$. Then there exists a 0 -square extension T of S by R if and only if the following conditions are satisfied: (i) $l^{2} \geqq r$; (ii) if $(n-1)^{2}<r \leqq n^{2}$ for some n with $1 \leqq n \leqq l$, then $p \mid m_{i}$ for at least n integers $m_{i}(\mathrm{l} \leqq i \leqq l)$.

Proof. Let T be a 0 -square extension of S by R. Then $T^{2}=S$ and S is generated by M, for some choice of representative set (Lemma 3). As S has rank r, the number of generators of S in M is greater than or equal to r. Since $O(M)=l^{2}$, it follows that $l^{2} \geqq r$. As $\eta(R)=0$ we must have $m_{i}\left\{z_{i}, z_{j}\right\}=0$ and $m_{i}\left\{z_{j}, z_{i}\right\}=0$ for a fixed z_{i} and all $z_{j}, 1 \leqq j \leqq l\left((3)\right.$ and (4)). But if $\left\{z_{i}, z_{j}\right\} \neq 0$ then it has order p, hence $p \mid m_{i}$ if $\left\{z_{j}, z_{i}\right\} \neq 0$ for any z_{j}. Likewise if $\left\{z_{j}, z_{i}\right\} \neq 0$ for any z_{j} then $p \mid m_{i}$. The question is now: how many different elements $z_{i}(\in R)$ have the property that either $\left\{z_{i}, z_{j}\right\} \neq 0$
or $\left\{z_{j}, z_{i}\right\} \neq 0$ for at least one $z_{j}(\in R)$? Now let $(n-1)^{2}<r \leqq n^{2}$ for some n with $1 \leqq n \leqq l$, and let B be a basis of S in M. Since $(n-1)^{2}<r=O(B)$, there are more than $(n-1)^{2}$ elements $\left\{z_{i}, z_{j}\right\}$ in $M(1 \leqq i \leqq l, 1 \leqq j \leqq l)$ which are not equal to 0 , i.e. the elements of the basis B. It is clear now that the minimal number of different $z_{i}(\in R)$ which occur either as a first or as a second component in at least one element in B is n. Hence $p \mid m_{i}$ for at least n integers $m_{i}(1 \leqq i \leqq l)$.

Conversely suppose the conditions (i) and (ii) are satisfied. We define functions $\left\{z_{i}, z_{j}\right\}$ of $R \times R$ into S for the basic elements of R in the following way. First let $\left\{z_{i}, 0\right\}=\left\{0, z_{j}\right\}=0$ for all z_{i}, z_{j} with $1 \leqq i \leqq l$ and $1 \leqq j \leqq l$. We know $r \leqq l^{2}$, hence we may suppose that $(n-1)^{2}<r \leqq n^{2}$ for some n with $1 \leqq n \leqq l$. We denote $r=(n-1)^{2}+v$, where $1 \leqq v \leqq 2 n-1$. Now S has rank r and let $\left(s_{1}, \ldots, s_{r}\right)$ be a basis of S. From (ii) we infer that there are n integers, say m_{1}, \ldots, m_{n}, such that $p \mid m_{i}$ for all i with $1 \leqq i \leqq n$. Then set $\left\{z_{1}, z_{1}\right\}=s_{1},\left\{z_{1}, z_{2}\right\}=s_{2}, \ldots,\left\{z_{1}, z_{n-1}\right\}=$ $=s_{n-1},\left\{z_{2}, z_{1}\right\}=s_{n}, \ldots,\left\{z_{2}, z_{n-1}\right\}=s_{2 n-2}, \ldots,\left\{z_{n-1}, z_{1}\right\}=s_{n^{2}-3 n+3}, \ldots,\left\{z_{n-1}, z_{n-1}\right\}=$ $=s_{(n-1)^{2}}$ and set $\left\{z_{i}, z_{n}\right\}$ and/or $\left\{z_{n}, z_{i}\right\}$ equal to $s_{(n-1)^{2}+1}, \ldots, s_{r}$ for v functions $\left\{z_{i}, z_{n}\right\}$ and/or $\left\{z_{n}, z_{i}\right\}$ with $1 \leqq i \leqq n$. Then set all other $\left\{z_{i}, z_{j}\right\}=0$. It is clear now that S is generated by the set of all $\left\{z_{i}, z_{j}\right\}$ with $1 \leqq i \leqq n$ and $1 \leqq j \leqq n$. If we put $\eta(R)=0$ then the conditions (1)-(4) are satisfied for the functions $\left\{z_{i}, z_{j}\right\}(1 \leqq i \leqq l, 1 \leqq j \leqq l)$ and an arbitrary set $b_{i} \in S(1 \leqq i \leqq l)$. Hence T is an 0 -extension of S by R, if we define T as the set of all symbols $\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s\left(s \in S, n_{i}\right.$ integers) with the addition and multiplication: $\left(\sum_{i=1}^{n i} n_{i} \bar{z}_{i}+s\right)+\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v\right)=$ $=\sum_{i=1}^{l}\left(n_{i}+z_{i}\right) \bar{z}_{i}+s+v$, where $m_{i} \bar{z}_{i}=b_{i}(\in S)$ for $1 \leqq i \leqq l,\left(\sum_{i=1}^{l} n_{i} \bar{z}_{i}+s\right)\left(\sum_{i=1}^{l} u_{i} \bar{z}_{i}+v\right)=$ $=\sum_{i=1}^{i} \sum_{j=1}^{l} n_{i} u_{j}\left\{z_{i}, z_{j}\right\}$. As $S=\langle M\rangle$, it follows that T is a 0 -square extension of S by R, which completes the proof of Theorem 5 .

Now we determine the rings T which may occur as a square extension of a ring S of order 2 by a ring R of order 4 . Both S and R are supposed to be zero-rings. Let $S^{+}=(0, a)$ with $2 a=0$ and $a^{2}=0$. Let $R^{+}=\left(z_{1}\right) \oplus\left(z_{2}\right)$ be the direct sum of two cyclic groups $\left(z_{1}\right)$ and $\left(z_{2}\right)$ both of order 2 and $z_{1}^{2}=z_{1} z_{2}=z_{2} z_{1}=z_{2}^{2}=0$. Now the endomorphism ring of S^{+}consists of the zero-endomorphism and the identity mapping. Hence in this case we must have $\eta(R)=0$, so that there are only 0 -square extensions of S by R possible. As the conditions of Theorem 5 are satisfied there exist 0 -square extensions of S by R. There are 2 cases: (i) $2 \bar{z}_{1}=2 \bar{z}_{2}=0$, which means $b_{1}=b_{2}=0$ in S. (ii) at least one of b_{1} and $b_{2} \neq 0$.
(i) In this case the elements a, \bar{z}_{1} and \bar{z}_{2} all have order 2 and we get $T^{+}=$ $=(a) \oplus\left(\bar{z}_{1}\right) \oplus\left(\bar{z}_{2}\right)$ is of typus (2,2,2). As $\eta(R)=0, a \bar{z}_{1}=a \bar{z}_{2}=\bar{z}_{1} a=\bar{z}_{2} a=0$. If $\left\{z_{1}, z_{1}\right\},\left\{z_{1}, z_{2}\right\},\left\{z_{2}, z_{1}\right\}$ and $\left\{z_{2}, z_{2}\right\}$ are 0 , then $T^{2}=(0)$ which contradicts
that $T^{2}=S$. Hence we must have at least one of the four elements $\left\{z_{1}, z_{1}\right\},\left\{z_{1}, z_{2}\right\}$ $\left\{z_{2}, z_{1}\right\}$ and $\left\{z_{2}, z_{2}\right\}$ equal to a. We get 15 different rings T with multiplications:

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	0
\bar{z}_{2}	0	0	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	0
\bar{z}_{2}	0	0	0

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	a
\vec{z}_{2}	0	a	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	a
\bar{z}_{2}	0	a	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	0
\bar{z}_{2}	0	0	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	a
\bar{z}_{2}	0	a	0

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	0
\bar{z}_{2}	0	a	a

	a	\bar{z}_{1}	\vec{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	0
\bar{z}_{2}	0	a	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	0
\bar{z}_{2}	0	a	0

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	a	a
\bar{z}_{2}	0	0	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	0
\bar{z}_{2}	0	a	0

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	a
\bar{z}_{2}	0	0	0

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\bar{z}_{1}	0	0	a
\bar{z}_{2}	0	0	a

	a	\bar{z}_{1}	\bar{z}_{2}
a	0	0	0
\vec{z}_{1}	0	0	a
\bar{z}_{2}	0	a	0

Thus we get 15 non-equivalent 0 -square extensions T of S by R.
(ii) In this case at least one of the elements \bar{z}_{1} and \bar{z}_{2} is of order 4 , and T^{+}is of typus (2, 4), say $T^{+}=\left(\bar{z}_{1}\right) \oplus\left(\bar{z}_{2}\right)$ where $O\left(\bar{z}_{1}\right)=2$ and $O\left(\bar{z}_{2}\right)=4$. For the multiplication in T one has again: $\bar{z}_{1}^{2}=k_{1} a, \bar{z}_{1} \bar{z}_{2}=k_{2} a, \bar{z}_{2} \bar{z}_{1}=k_{3} a, \bar{z}_{2}^{2}=k_{4}$ a where
$0 \leqq k_{i} \leqq 1, i=1,2,3,4$. Fence we get the same multiplication tables as in case (i), if we omit the first row and the first column. Thus we find 15 non-equivalent 0 square extensions T of S by R. Next we suppose S to be a zerorting of order 2 as above and $R^{-+}=(z)$ a cyclic group of order 4. R is a zero-ring i.e. $z^{2}=0$. Again $\eta(R)=0$ so there are only 0 -square extensions of S by R possible and by Theorem 5 there are such extensions. As $\bar{z}^{2}=0$ or a, we get $\{z, z\}=0$ or a. But if $\{z, z\}=0$ then $T^{2}=(0)$, contradiction. So we must have $\{z, z\}=a$. We have two possibilities for the addition according to $4 \bar{z}=0$ or a, which means $b=0$ or a. If $b=0$, then $T^{-+}=(a) \oplus(\bar{z})$ is of typus $(2,4)$, if $b=a$, then $T^{+}=(\bar{z})$ is a cyclic group of order 8. Thus we get 2 non-equivalent 0 -square extensions T of S by R. Finally we want to discuss the rings T which may occur as a square extension of a ring S of order 4 by a ring R of order 2 . Both R and S are supposed to be zero-rings. Let $S^{+}=\left(a_{1}\right) \oplus$ $\oplus\left(a_{2}\right)$ be the direct sum of two cyclic groups $\left(a_{1}\right)$ and $\left(a_{2}\right)$ each of order 2 and $a_{1}^{2}=a_{1} a_{2}=a_{2} a_{1}=a_{2}^{2}=0$. Let $R^{+}=(0, z)$ with $2 z=0$ and $z^{2}=0$. As the condition (i) of Theorem 5 is not satisfied in this case $(l=1, r=2)$, there do not exist 0 -square extensions of S by R now. The nilpotent endomorphisms in the endomorphismring of S^{+}are: $s_{1}: a_{1} \rightarrow 0, a_{2} \rightarrow 0 ; s_{2}: a_{1} \rightarrow 0, a_{2} \rightarrow a_{1} ; s_{3}: a_{1} \rightarrow a_{2}, a_{2} \rightarrow 0 ; s_{4}: a_{1} \rightarrow a_{1}+a_{2}$; $a_{2} \rightarrow a_{1}+a_{2}$. So the possible double homothetisms are $\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{1}, s_{3}\right)$, $\left(s_{1}, s_{4}\right),\left(s_{2}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{1}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{1}\right)\left(s_{4}, s_{4}\right)$, which may occur as the element $\left(\eta_{l}(z), \eta_{r}(z)\right)$ in $\eta(R)$. For $\bar{z}^{2}=\{z, z\}$ as well as for $2 \bar{z}=b$ we may choose $0, a_{1}, a_{2}$ or $a_{1}+a_{2}$. But as $2\{z, z\}=0$ we must have $(b) \eta_{r}(z)=\eta_{1}(z)(b)=0$, ((3) and (4)). Then we distinguish the following cases:
(i) Let $b=a_{1}$. Then $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{2}, s_{2}\right)$ for a square extension of S by R. As $S^{*}=\left\langle S_{\eta(r)\rangle}\right\rangle=\left(0, a_{1}\right)$ we must have $\{z, z\}=a_{2}$ or $a_{1}+a_{2}$ for a square extension of S by R (Lemma 3). Since $\eta_{l}(z)=\eta_{r}(z)=s_{2}$ the condition (2) is satisfied. The additive group T^{+}of a square extension T of S by R has the form: $T^{+}=(\bar{z}) \oplus\left(a_{2}\right)$ where (\bar{z}) has order 4 and a_{2} has order 2. So T^{+}is of typus (2,4). For the multiplication in T one has: $a_{2}^{2}=0, \bar{z} a_{2}=s_{2} a_{2}=a_{1} ; a_{2} \bar{z}=a_{2} s_{2}=a_{1}$ and $\bar{z}^{2}=a_{2}$ or $a_{1}+a_{2}$. Hence one gets 2 non-equivalent η-square extenisions T of S by R.
(ii) Let $b=a_{2}$. Then we must take $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{3}, s_{3}\right)$ for a square extension of S by R. As $S^{*}=\left\langle S_{\eta(r)}\right\rangle=\left(0, a_{2}\right)$ we must have $\{z, z\}=a_{1}$ or $a_{1}+a_{2}$ (Lemma 3). Since $\eta_{l}(z)=\eta_{r}(z)=s_{3}$ the condition (2) is satisfied. The additive group T^{+}of a square extension T of S by R has the form: $T^{+}=(\bar{z}) \oplus\left(a_{1}\right)$ where ($\left.\bar{z}\right)$ has order 4 and a_{1} has order 2. So T^{+}is of typus (2,4). For the multiplication in T one has: $a_{1}^{2}=0, \bar{z} a_{1}=s_{3} a_{1}=a_{2}, a_{1} \bar{z}=a_{1} s_{3}=a_{2}$ and $\bar{z}^{2}=a_{1}$ or $a_{1}+a_{2}$. Hence one gets 2 non-equivalent η-square extensions T of S by R.
(iii) Let $b=a_{1}+a_{2}$. Now we must have $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{4}, s_{4}\right)$ for a square extension of S by R. As $S^{*}=\left\langle S_{\eta(r)}\right\rangle=\left(0, a_{1}+a_{2}\right)$ we must have $\{z, z\}=a_{1}$ or a_{2}, (Lemma 3). Since $\eta_{l}(z)=\eta_{r}(z)=s_{4}$ the condition (2) is satisfied. The additive group T^{+}of a square extension T of S by R has the form: $T^{+}=(\bar{z}) \oplus\left(a_{1}\right)$, where (\bar{z})
has order 4 and a_{1} has order 2. So T^{+}is of typus (2,4). For the multiplication in T one has: $a_{1}^{2}=0, \bar{z} a_{1}=s_{4} a_{1}=a_{1}+a_{2}, a_{1} \bar{z}=a_{1} s_{4}=a_{1}+a_{2}$ and $\bar{z}^{2}=a_{1}$ or a_{2}. Hence one gets 2 non-equivalent η-square extensions T of S by R.
(iv) Let $b=0$. Then the conditions (3) and (4) are satisfied. For a square extension T of S by R we need only satisfy condition (2): $\eta_{l}(z)\{z, z\}=\{z, z\} \eta_{r}(z)$. We have again different cases:
(iv. a) Let $\{z, z\}=a_{1}$. Now we must have $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{3}, s_{3}\right)$ or $\left(s_{4}, s_{4}\right)$. In both cases the condition (2) is satisfied. So we get 2 rings T each of which has an additive group $T^{+}=\left(a_{1}\right) \oplus\left(a_{2}\right) \oplus(\bar{z})$ of typus $(2,2,2)$. Hence there are 2 square extensions T of S by R, an η^{\prime}-square extension where $\eta^{\prime}(z)=\left(s_{3}, s_{3}\right)$ and an $\eta^{\prime \prime}$ square extension where $\eta^{\prime \prime}(z)=\left(s_{4}, s_{4}\right)$.
(iv. b) Let $\{z, z\}=a_{2}$. Then we must have $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{2}, s_{2}\right)$ or $\left(s_{4}, s_{4}\right)$. In both cases the condition (2) is satisfied. Thus we get 2 rings T each of which has an additive group $T^{+}=\left(a_{1}\right) \oplus\left(a_{2}\right) \oplus(\bar{z})$ of typus $(2,2,2)$. So there are 2 square extensions T of S by R, an η^{\prime}-square extension for $\eta^{\prime}(z)=\left(s_{2}, s_{2}\right)$ and an $\eta^{\prime \prime}$-square extension for $\eta^{\prime \prime}(z)=\left(s_{4}, s_{4}\right)$.
(iv. c) Let $\{z, z\}=a_{1}+a_{2}$. Here we must have $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{2}, s_{2}\right)$ or $\left(s_{3}, s_{3}\right)$. In both cases the condition (2) is satisfied. Again we get 2 rings T each of which has as an additive group $T^{+}=\left(a_{1}\right) \oplus\left(a_{2}\right) \oplus(\bar{z})$ of typus $(2,2,2)$. Therefore we get 2 square extensions T of S by R, an η-square extension where. $\eta(z)=\left(s_{2}, s_{2}\right)$ and an η^{\prime}-square extension where $\eta^{\prime}(z)=\left(s_{3}, s_{3}\right)$.
(iv. d) Let $\{z, z\}=0$. Now we would get a square extension T of S by R which splits over S which is impossible by Theorem 4. Hence there do not exist square extensions in this case.

There is a second class of rings T which may occur as a square extension of a ring S of order 4 by a ring R of order 2 . Now we put $S^{+}=(a)$ is a cyclic group of order 4 and $a^{2}=0$ (S is a zero-ring). Again $R^{+}=(0, z)$ with $2 z=0$ and $z^{2}=0$. The nilpotent endomorphism in the endomorphismring of S^{+}are: $s_{1}: a \rightarrow 0$, and $s_{2}: a \rightarrow 2 a$. So the pairs $\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right)$ and $\left(s_{2} ; s_{2}\right)$ may occur as the element $\left(\eta_{l}(z), \eta_{r}(z)\right)$ in $\eta(R)$. The elements $\bar{z}^{2}=\{z, z\}$ and $2 \bar{z}=b$ in an extension T of S by R must satisfy the conditions (3) and (4), i.e. (b) $\eta_{r}(z)=2\{z, z\}$ and $\eta_{l}(z)(b)=$ $=2\{z, z\},(b \in S,\{z, z\} \in S)$. This implies that if $b=0$ or $b=2 a$, then $\{z, z\}=0$ or $\{z, z\}=2 a$. In either case $T^{2}=(0)$ or $T^{2}=(0,2 a)$ and $T \neq S$, so T is not a square extension of S by R. Hence we must have $b=a$ or $b=3 a$. By the conditions (3) and (4) we get square extensions if we take $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{2}, s_{2}\right)$ and $\{z, z\}=a$ or $3 a$, (cf. also Lemma 3). The condition (2) is satisfied.
(i) Let $\{z, z\}=a$ and $b=a$ resp. $b=3 a$. Let T_{1} be an η-extension of S by R with factor set $\{z, z\}=a, b=a$ and let T_{2} be an η-extension of S by R with factor set $\{z, z\}^{\prime}=a, b^{\prime}=3 a$. Then $T_{1} \sim T_{2}$ as the conditions (5) and (6) are satisfied for $\psi_{z}=a$. Here $\left(\eta_{l}(z), \eta_{r}(z)\right)=\left(s_{2}, s_{2}\right)$ and T_{1} and T_{2} have the same additive group.
$T^{+}=(\bar{z})$ which is a cyclic group of order 8 . As $S=\left\langle M, S^{*}\right\rangle$ both for T_{1} and T_{2}, we get 2 equivalent η-square extensions of S by R (Lemma 3).
(ii) Let $\{z, z\}=3 a$ and $b=a$ resp. $b=3 a$. In the same way as in case (i) we get 2 equivalent η-square extensions T_{1} and T_{2} of S by R, where T_{1} resp. T_{2} has the factor set ($3 a, a$) resp. $(3 a, 3 a)$. Both T_{1} and T_{2} have again the additive group $T^{+}=(\bar{z})$ (cyclic of order 8).

Remark. Our results obtained in Theorems 1, 2 and 3 and Lemmas 1, 2 and 3 are quite analogous to the corresponding Theorems and Lemmas in the paper: H. Onishi, Commutator extensions of finite groups Mich. Math. J., 13 (1966), 119-126, if one replaces "commutator extension" by "square extension". In fact, the results of ONISHI for finite groups led us to consider the situation for finite rings.

Literature

[1] L. C. A. van Leeuwen, Holomorphe von endlichen Ringen, Nederl. Akad. Wet. Proc., ser. A, 68 (1965), 632—645.
[2] L. Rédei, Algebra. I (Leipzig, 1959).

UNIVERSITY OF ILLINOIS AT CHICAGÓ CIRCLE
CHicago, illinois, U.S.A.
AND
INSTITUTE OF TECHNOLOGY
DELFT, THE NETHERLANDS

[^0]: ${ }^{*}$) This research has been supported by the National Science Foundation (GP-6539).

