Square extensions of finite rings

By L. C. A. VAN LEEUWEN in Chicago (Illinois, U.S.A.)%)

. Let R and S be rings. We say that a rihg T is an extension of S by R if §Sis
“an ideal in T and T/S is isomorphic to R. Let us call an extension T of S by R
a square extension, if S=T?, where T? is the ideal in T generated by all products
of elements of 7. Now T/T? is a zero-ring, so in order that there exist a square extension
of S by R, R must be a zero-ring. Henceforth we assume that R is a zero-ring and
moreover that R is a finite ring. On the other hand, if S? is the ideal in S generated
-by all products of elements in S, then S/S? is a zero-ring. We assume that S/S?
is also finite. Our problem is to find necessary and sufficient conditions for the
existence of a square extension of S by R. We shall reduce this problem to the
case in which the additive group of S is a finite abelian elementary p-group and
S is a zero-ring. In Theorem 4 we get the result that there does not exist a split
square extension of S by R. Next we get a partial result on the existence of non-
split square extensions of S by R (Theorem 5). Finally we determine all rings of
order 8, which may occur either as a square extension of a ring of order 4 or as
a square extension of a ring of order 2. : _
First we note that the ideal S? of § is an ideal not only in S, but also in every
extension of S, since S? is a characteristic subring of S.

Theorem 1. T is a square extension of S by R if and only if T/S? is a square
extension of S/S? by R. o

Proof. From the isomorphism T/ = T/S?/S/S? it follows that Tis an extension
of S by R if and only if 7/S? is an extension of S/S? by R. Now suppose T2=S,
then (7/S8%)?=1T?]8*=S/S%. Conversely, if S/S*=(7/S*)?, then S/S§*=123/S?
and hence S=T?. This theorem reduces the problem to the case in which S is a
finite zero-ring. ' . ‘

If §=(0), then every extension T of S by Ris a square extension because R
is a zero-ring. Therefore, we assume that S is a non-trivial finite zero-ring. At this
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point we want to summarize the theory of extensions of S by R, where R and §
are finite zero-rings. Let T be an extension of S by R, so that T/S=R. Let¢: T—R
be the epimorphism whose kernel is S. "An element & of T is called a representative
of u¢ R if (1) =u. Let (z, ..., z)) be a basis of the additive group R* of R and
let m; be the order of z;: An I-tuple (Z,, ...,z) is called a representative set of
the basis if each Z; is a representative of z;. As the products Z,a, az; (a€ S) are all
in S, the mappings @ —~Z;a,-a —aZz; are endomorphisms of S*, which will be denoted
by n,(z;) and n,(z;) resp. Thus n,(z)a =Z;a and an,(z;) =az,.

It is clear that if we choose another representative of z;€ R, for instance Z;,
then z/a =Z;,a and az; = az;, as Z; =Z; (mod S) and S is a zero-ring, Hence the induced
endomorphisms are completely determined by the element z;€ R. So we get a set of 2/
endomorphisms of S* and we divide them into pairs: (n.(z,), n,(z,)), (nz2), n1.(22)),
.. (n(z), n(z))). Each of these pairs is a double homothetism of S, since S
is a zero-ring and the endomorphisms 5,(z;) and #,(z;) are commuting. As T is an
associative ring these double homothetisms are pairwise related (cf. [2]). Now we
consider the mapping: z;—n(z) = (n,(zi), n(z)), which associates with each
z;€ R the corresponding double homothetism of S and we extend 5 by linearity.
We claim that 5 is a homomorphism of R into a maximal ring D of related double
homothetisms of S. First we remark that if Z; and Z; are arbitrary representatives
in T then Zz;eS, as o¢(Zz;) = ¢(E)o(Z;) = ziz; = 0. Hence Z(z;a) =
= n(z)(n(z;)a) = 0 for all a€ S. This implies n,(z)n,(z;) = zero-endomorphism
for all z;, z;€R. In the same way it can be shown that n(zn(z;) = zero-endo-"
morphism for all z, z;€R. As the product of the double homothetisms
(2, @)z, 1z)) = (m@mz), n@nz)) = 0,00 in D, it follows
that the mapping # maps R homomorphically into a ring D; the homomorphic
image n(R) is a zero-subring of a maximal ring of related double homothetisms
of S. As we saw earlier each product z;z;€ S; we define z,z;={z;, z;} for all i, j
with 1=i=/,1=j=I; the elements {z;, z;} are called a multiplicative factor set.
Finally we know that mz,;€ S, as @(mz)=mz;=0. So we get another set of
~elements m;z;=b; in S.

It is easy to check that the homomorphism #, the multiplicative factor set
{z;, z;} and the set {b;} have the following properties:

(1) {z:, 0} ={0, z;} =0, if 0 is a representative of 0E€R.

Q@ nz)Nz; 2 ={z: 2020,

(3) Gn(z)=miz; z;},

@ nzp®)=mfz;, z;}, for all z;, z;, z,€R, b;€ S, m; as integers.

Hence given an extension T of S by R, T determines with the representative
set (£,,...,%;) a homomorphism # of R into a maximal ring of related double
homothetisms of S, a multiplicative factor set {z;, z,} and a set {b;} (b;€S), such
that the properties (1)—(4) are satisfied.
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Conversely, assume that R and S are given finite zero-rings and that #: R—~D isa
* given homomorphism of R into a; maximal ring D of related double homothetisms
of S. Let the functions {z;, z;} of RXR into S and the set {b;} (b;€ S) be given
for all i, j with 1=i=] 1=j=/, such that (1)—(4) hold. Consider the set of all

. 1 . 1 1
symbols > n,Z;+s, 0=n,<m,;, s€ S. Define equality by: > mz;+s = > u;Z;+v
=1 : i=1 i=1

: 1 1
if and only if n;=u; forall { and s = v. Define addition by: [Z nZ;+s )+[ Uz + v) =
. ic1 J =

= > (m;+u)z;+s+v, where mZ;=b; and 'the sum is reduced mod m;Z;. Define
) i=1 . . .

12

multiplication by:

i=1j

1 (1 [ ! .
[2 h; 7.+S] [ 2 Z;+v] = 3> 2 mu{zi, 3+ 2 m(nz)v) + 2 u;(sn,(z))-
=1 =1 =1 R =1 ‘

: Lo
It is easy to check that the set T of all symbols > »;z;+s with the addition and
: i=1

multiplication just defined is a ring. Now T2C S, hence S is an ideal in T and
L !

T/S=R under 2 nZ;+S- 2nz;. Further Zp=n(z,veS, vZ;=vn(z)€S for
i=1 : i1

all v€ S, hence the double homothetisms 5(z;) =(n/(z), n.(z;)) of S are induced
by inner double homothetisms (Z;;, z;) ‘of T. So T is an extension of S by R which,
with_the representative set z;, induces the given homomorphism 7. Since Z;Z;=
={z;, z;} for all i,j and m;z;=b; for all i, T has, with the same representative
set z;, the multiplicative factor set {z;, z;} and the additive set {b;}.

We call an extension T of S by R combined with the homomorphism #: R—D,
where D is some maximal ring of related double homothetisms of S, an y-extension
of S-by R.

Let 7 be any n-extension of S by R which has, for the representative set Z;,
the multiplicative factor set {z;, z;} and the additive set {5;}. Another representative
set of T/S may be: Zi, Z3,...,Z;, where Zi=Z,+y,, . €S for i=1,...,l. Then"
2z = G )Gt L) = (2 23+ () o)+ W (e) and mizj=mZ+¢.)=
== b;+myl,,. Hence the new factor sets are '

© (2 2 ={z0 23+ (2D W) + W (z)
and . :
(6) ' bi=bi+my,,.

We shall call two factor sets {z;, z;}, {6} and {z, z;}’, {b)}) -equivalent if
there exists a mapping ¥: R—~ S/, =0) such that (5) and (6) hold. Hence any-
two factor sets corresponding to the same n-extension of S by R are equivalent. .
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On the other hand, we shall call two n-extensions T and T~ of S by R equivalent
(and write T~ T”) if there exists an isomorphism o: T—T” such that o is the identity
on S and ¢ =ap’, where ¢: T—R and ¢’: T'—~R are the epimorphisms whose
kernels are S. With these definitions we get the result: Let 7, and T, be two -
extensions of S by R. Then T, ~ T, if and only if, for some choice of representative
sets in T, resp. T, the corresponding factor sets {zi, z;}1, {bi}1, resp. {zi, 2;}2. {bi}2
are equivalent. More explicitly, if T;, with representative set {Z;},, has the factor
set  {z;, z;}x; {b}i (k=1,2), then the isomorphism a: 7, ~T, is given by

1

1 o
(Z’ni(zi)ﬁ-s)a:Z n(Z)+ s+ > nap,,, where Yy:R—~S (f,=0) is a mapping
i=1 i=1 !

i=1

such that (5) and (6) hold for ¢ and the factor sets. The proof is straightforward.

An n-extension T of S by R is said to be a splitting extension over S if and only
if, for some choice of representative set, all {z;, z;} are 0 and all b, are 0. Also,
T=S®R (ringtheoretical direct sum) if and only if 7 is a O-extension of S by
R (n=0) and, for some choice of representative set, all {z, z;} are 0 and all b;
are 0. The direct sum extension is a zero-ring, since R and S are supposed to
be zero-rings.

Let T be an r-extension of S by R. A subring K of S is an ideal in T if and only
if K is invariant under the double homothetisms of S, which occur as images in
#: R—~D. Now the n(z)=(n(z)), n.z;)) are double homothetisms of K and T/K
is an n*-extension of S/K by R. If n: R~ D is such that n(z;))= (1,(z),1,(z;)) then n*:
R—D*, where D* is a maximal ring of related double homothetisms of
S/K, is defined by n*(z)=(nf(z), n}(z)), where nf(z)(s+K)=n(z)s+K and
(s+ Kni(z) =sn(z,)+ K. Since K is invariant in n(R), this definition does not
depend on the particular choice of a representative s in s+ K. It is easy to
show that n*(z) =(n(z:), nf(z)) is a double homothetism of S/K and that any
two of such double homothetisms are related. It can be shown also that #* is a
homomorphic mapping. Hence #*: R—D* is a homomorphism of R into a
maximal ring of related double homothetisms of S/K. If T has the representative
set z, i=1,...,1, then a representative set of T/K is the set z,+ K, i=1, ... L
We have (Z;+K)(Z;+K)={z:, z;}+ K and m(Z;+ K)=5b;+ K, hence the corres-
ponding factor sets are {z;, z;}+ K and b;+ K for all j, j with 1=/, j=I/ More-
over (Z;+K)(s+K)=nfz)s+ K=n(z)(s+K) and (s+K)(Z;+K)=sn,(z)+ K=
=(s+ K)n}(z;), hence n* is induced by inner double homothetisms of 7/K.

The following lemma is obvious now; in fact the proof is similar to that of
Theorem 1.

Lemma 1. If T is an n-square extension of S by R then, for each subring K
of S invariant under the double homothetisms in y(R), T/K is an n*-square extension
of S/K by R.
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Lemma 2. Suppose that S=S,® S, (direct sum) and the orders q, and q,
of S, resp. S, are relatively prime. If there exist n’ resp. n”-square extensions of
S, resp. S, by R, then there exists an (y' +n")-square extension of S by R.

Proof. Let {z, z;}/, b; resp. {z;, z;}", b} be factor sets is S, resp. S, for an

- n’-resp. n”-extension of S, resp. S, by R. Here ': R—~D, is a homomorphism
of R into a maximal ring of related double homothetisms of S, and n”: R—~D;
is ‘'a homomorphism of R into a maximal ring of related double homothetisms
of S,. Extend the double homothetisms #5°(z;) =(n/(z), #/(z)) of S, by letting
them act trivially on §,. Then define »/(z;)(s, +5,) = #/(z)s; and (s, +s,)5,(z) =
=s,m,(z;) for all (n/(z), n}(z;)) in #’(R) and all 5,€ S, and all 5,€S,. Similarly,
extend the double homothetisms 7”(z;) =(n;(z), n/(z;)) of S, by letting them act
trivially on §,. Then define #/(z)(s, +5,) =n/(z))sy and (s; + 507 (z;) = 5,17 (z})
for all (n/(z)), n/(z;)) in n”(R) and all 5, € S, and all 5,€.S,. It is easy to show now
that both the extended #’(z;)) and the extended 4”(z;) are double homothetisms
of S. Moreover the double homothetisms 1’(z;) and #”(z;) of S are related double
homothetisms. It follows that the sum #’(z;) +#1"(z;) is again a double homothetism
of S, ([11). We define now: n"+n"(z)=n(z;) +n"(z;)) for all z;€ R and extend
n +n” by linearity. Thus #” +#5"(z;) is that double homothetism of .S which is the
sum of #'(z) and y"(z;). More explicitly: 1’ +n"(z;) = (n/ (2) +n/(z), () +1/(zD),
where ('1[ () +’1;/(Zi))(51 +53) = 0 (@) (sy +52) +ni(z) (s, +52) = ni(z)s + 11 (2)s2
for all 5;€S, and all 5,€S, and a similar formula holds for #;(z;) +#;(z)). Then
7" +#n": R—~D is a homomorphic mapping of R into a maximal ring D of related
double homothetisms of S, as the extended »#” and 4” are homomorphisms of R
into D. Here we may take D=D, & D,. In order to construct an n’ +5”-square
extension of S by R, we use the sets {z;, z;}' +{z;, z;}", b; +-b7 in S as factor sets.
As {z, z;Y, b with o and {z, z;}", b{ with y” both satisfy the conditions (1)—(4),
it follows that {z;, z;}" +{z;, z;}", b; + b together with 7" +n” satisfy the conditions
(1)—(4). Hence we have obtained an n’+n”-extension T of S=S, &S, by R.
Now we have to prove that T2=S. First we remark that S, is mapped into itself
under #* +n”. As T is an #” +#n"-extension of S by R it follows that 7/S, is an n*-
extension of S/S, by R, (Lemma 1). The corresponding factor set is {z;, z;}" + S,
b+ S,. Now since {z;, z;}’, b; corresponds to an n’-square extension of S; by R,
it follows that 7/S, is a square extension of S/S, by R. So (7/S,)*=S/S, and
in the same way (7/S,)*>=S/S;. As T is an # +n”-extension of S by R with
the factor set {z;,z;} +{z,z;}", b/ +b/, it is clear that TS S. So we have to
prove SST2. From (7/S,)?=S/S,=3S, it follows that, if s, is a given element
of S, there exists an element a€ T2 such that s, =a(mod S,). From (7/S,)*=
=8/S, =S, it follows that, if s, is a given element of S,, there exists an element
beT? such that s,=b(mod S;). Then ¢,5, =q,a(mod ¢,5,=0), so g,s, €T>.
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As the order of s, is relatively prime to g, it follows thats, € T2, Similarly g,s,=
=g¢,b(mod ¢, S, =0), so g,5,€T% As the order of s, is relatively prime to ¢,
it follows that s,€72. From s,€7T?, s5,€T? for all 5,€8S,,s,€S, it follows that
S, +S8,=SET?2 Then T?=S and T is an ' +n"-square extension of S by R.
We apply the lemmas | and 2 in the following theorem:

Theorem 2. Let R and S be finite zero-rings. There exists a square extension
T of S by R if and only if, for each pi-Sylow subgroup A; of S (p; a prime), there
exists a square extension of A; by R.

Proof. Let S=4,®...® A4, where the p-Sylow subgroup A4; has the order
% =1, ...,k Now the orders p3, p%, ..., px are relatively prime. Thus, if
there exist square extensions of A4, 4,, ..., 4, by R, then there exists a square
extension T of S by R by the preceding Lemma 2. '

Conversely let us suppose that 7 is a square extension of § by R. Now the
A, are characteristic subrings of S, i.e. they are invariant under all double homo-
thetisms of S. Hence the direct sum A4, ... PA;_ DAy, B...H A, is a charac-
teristic subring of S. Therefore T/A, ®...QA;- DA+ P...BA4, is a square
extension of S/A, ®...RA4;_ @A+ ,D... DA, =A; by R(Lemma 1). This theorem
reduces the problem to the case in which S* is a finite abelian p-group.

Theorem 3. Let S* be a finite abelian p-group, and S a zero-ring. Let R be
a finite zero-ring. T is a square extension of S by R if and only if T|pS is a square
extension of S/pS by R.

Proof. First weremark fhatpSis a characteristic subring of S, forif o =(x,, a,)
is an arbitrary double homothetism of S, then o, (ps)=pa,(s) and (ps)x, =p(s)x,
for all s€S. Hence T is a square extension of S by R implies 7/pS is a squaré
extension of S/pS by R (Lemma 1). Conversely, suppose 7/pS is a square extension
of S/pS by R. Then T/pS/S/pS=T/S=R and T is an extension of S by R. From
(TIpS)2=5/pS it follows that, if b is a given element in T2, there exists an element
5€S such that b=s(mod pS). Thus T2S S. Conversely, if s is a given element
in S, there exists an element a€ T2 such that s=a (mod pS). Then ps=ay+p3s,,
where a,=pacT? and s, €S, p?s, =a, +p3s,, where a, €T?, 5,€S, ..., P ls_,=
=@y_,+pis,_ =a,., €T3, if we assume that p*S=0. Tracing back we find
ps€T? and as s is an arbitrary element in S we have pSCS T2. But this implies
(T/pS)? = T?/pS = S/pS, hence S=T?2. T is a square extension of S by R. We note
that S*/(pS)* is an-elementary abelian p-group and therefore we have reduced
_ the problem to the case where S* is an elementary abelian p-group of finite rank.

Let n: R—~D be a fixed homomorphism of R into a maximal ring of related
double homothetisms of S. We consider the set S,,, of all elements of the form
m(r)s, s'n,(r), where n(r)=(n,(r), n,(r)) is 4 fixed element of n(R) and s is a variable
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element in S, s” is a variable element in S, independent of 5. Then let §* be the
subring of S, generated by all S,,, for ré R, which is denoted by S*’z(S,,'(,)}.
Finally, if T is an extension of S by R, then M will denote the multiplicative factor
set for some choice of representative set in 7, i.e. M=({z, z;}, 1=i=l 1=sj=]).
Now we can prove: '

Lemma 3. T is a square n-extension of S by R if and only if S is generated
by M and S*: S=(M, S*).

Proof. It is sufficient to show that, given an p-extension T of S by R,
(M, S*y=T?. Let us assume that this has been proved. Then if T is a square
n-extension of by Rwe get T?=S5=(M, S$*). Conversely, if S=(M, S$*) for some
n-extension T of S by R, then, as (M, S*)=T2, we get T?=S and T is a square
n-extension of S by R. Now we areé going to prove that T2=(M, S*) for a given
n-extension T' of S by R. For the multiplication in 7 we have:

(;’; "ifi‘*‘S) (2 Uiz +U) =le' é;”iuj {z;, ZJ'.,}"'_:ZI;"i('?z(Zi)U) +j§l'1uj(5’7r(zj))

where (Z,, ..., Z) is a representative set of the basis (z, ..., z) in R, 5, v€ S and n;, u;
are integers for | =i=/,1 =j=I. Thus T?S(M,.S*). Now the generators of (M, S*)
are the elements {z;, z;} of M and all elements of the form #,(z;)v, sn,(z;) where
Zi, 2j€(2y5 .., 2) in Rand v,5€S. As {z;,z;}=zz;, nz)v=Zv and sn(z;)=sz;
it follows that all generators of (M S*) belong to T2, hence (M, S*)S T?. Then
(M, S*)=T"=.
Next we investigate the n-extensions of S by R which are splitting extensions
over S. First we consider the case where S* is an elementary abelian p-group of
rank [. We prove:

‘Lemma 4. Let S§t=(0,q,..,(p—1Da) be an elementary abelian p-group
of rank 1. S is a zero- ring, i.e. a —0 Let R* be the direct sum of | cyclic groups
(z)) of order m, i=1, ..., R is a zero-ring, i.c. z;z;=0 for all.i,j with 1=i=|,
1=j=/ Then there does not exist a sPhttmg square n-extension T of S by R, whatever
n may be.

Proof. Let T be an n-extension of S by R with representative set (Zys oo 2).

Addition and multiplication in T.ai‘e performed according to: (an+sa)+
=1

: ] 1
+(Z ui2,~+va] = Z (n; + u)z; +(s+v)a with n;+u; reduced modm(z—l S 1)
i=1 -

1
and s+v reduced modp; ( P ni2i+sa) [ Z’u,-f,—+va) = 2 mu(nfz)a)+
i=1 i=1 :

i=1

P | . .
+ 2 u;s(an,(z;)), if we assume that T is a splitting extension over S. But then
= . 4 Hs
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0=a(z})=(az,)z, =(an,(z,))n(z,), which implies that an(z,)=0. So we get
an(z;)=0 for all z; with i=1, ..., 1. Similarly n(z)a=0 for all z; with i=1, ...,
Hence T is a zero-ring and T2 S, as S#(0). In this case there exists no splitting
square n-extension T of S by R. '

Theorem 4. Let R and S be finite zero-rings. Let n: R—~D be an arbitrary
homomorphism of R into a maximal ring of related double homothetism of S. Then
there does not exist an n-square extension T of S by R, such that T splits
over S.

Proof. It is sufficient to show that there does not exist an y-square extension
T of S by R, such that T splits over S for the case that S* is an elementary abelian
p-group of finite rank. Let us assume that this has been proved. First let St a finite
abelian p-group, not elementary, S a zero-ring and R a finite zero-ring. Then
pS (#0, #5) is a characteristic subring of S. Suppose T is an y-square extension
of § by R which splits over S. Then, by Lemma 1, T/pS is an p*-square extension
of S/pS by R and from the results preceding Lemma 1, it is easy to see that T/pS
splits over S/pS. But S/pS is an elementary abelian p-group, hence by assumption
there does not exist an n*-square extension of S/pS which splits over S/pS. So
we get that there does not exist an y-square extension T of S by R which splits'
over S in case S* is a finite abelian p-group and R and S are finite zero-rings. Next
let S* be an arbitrary finite abelian group and S a zero-ring. Let St =4, ®...®4,,
where the p;-Sylow subgroup A; has the order p?"‘, i=1, ... k, and the p; are primes.
Suppose T is an y-square extension of S by R, which splits over S. Then, again by
Lemmal,7/4,®...® A, DAir, D... ® A, is an y*-square extension of S/4, & ...
W BA_ DAL D...BA,=A4; by R, which splits over A4;, 1=i=k. But A4}
is a finite abelian p;-group, hence there does not exist an n*-square extension 7" of
A; by R which splits over A4;. This contradiction implies that there does not exist
an n-square extension T of S by R which splits over S, if R and S are finite zero-
rings.

Now ST is supposed to be an elementary abelian p-group of finite rank and
we are going to prove that there does not exist an n-square extension T of S by
R which splits over S whatever  may be. For a split extension, for some choice
of representative set, {z;, z;}=0 and b;=0 for all i and j, | =i=/, | =j=/ Hence
T is an n-square extension of S by R which splits over S if and only if S=S*=
={Syn|r€R) (Lemma 3). Now suppose that T is an n-square extension of § by
R which splits over S. Since S$=5%>0, n(R)0, where n(R) is the image of R
in the homomorphical mapping #: R - D. Since R is generated by the z;, 1 =i=/,
it is clear that i(R) is generated by the pairs (4;, B), 1 =i=/,. where A;=n(z;),
B;=n,(z)), such that n(z;)=(n(z), n,(z)) is the double homothetism of S correspond-
ing to z;€ R. The 2/ endomorphisms 4;, B; have the properties:
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(i) 4,4,=0, B;B,=0 for all i,j, k,t with i=i, k,j, t=1,

(i) A;B;=B;A, for all i, j with 1=i, j=I.
In particular both the A4; and B; are nilpotent endomorphisms such that A2=0
and B} =0 for all i,j with 1 =4, ]fl Since 7(R) <0, at least one of these endo-
morphisms is #0, say 4,0. Now consider the set A;S={4,s[s€S}. Then
A, S is a subring of S, as 4,5, + 4,5, =A4,(sy +5,) and (4,5,)(4,5,)=0. Moreover
A,S is invariant under A,,...,4;; B, ..., B,as A(4,5)=0 (i), Bi(4,5)=
=A,(B;S)S A4,S for all 4;, B; (ii) with 1=1, j=/. This means 4, is a subring
of S invariant under the double homothetisms of #(R). Further 4,S =0, as 4, #0
and A4, S=S.If 4, S= S then 4A,s=A4, (4,5")=0 for every s€ S (i) and this would
imply 4, =0 which is a contradiction. By Lemma 1, as 7" is an #-square extension
of by R, T/A, S is an y*-square extension of S/4,S by R, where * is induced by 7.
In fact, #*: R—~D*, D* a maximal ring of related double homothetisms of S/4,S,
is such that #»*(z)=(n{(z), n}(z)), where, by definition, 5/(z)(s+4,S) =
=nz)s+A4,S and (s+A4,Sn z)=sm(z)+A4,S. Since S=S8*=(S,,Ire€R),
it follows from the definition of #}(z;), that S/4,S=(S/A;S)*=(S[A;S,@»|r € R).
Hence T/A4,S is an p*-square extension of S/4,S by R, which splits over S/A4,S.
As 4,50, and 4,5 > S, the dimension of S/4,S is less than r and greater than 0,
if we consider S* as an r-dimensional vector space over the prime-Galois field
F=GF(p). By Lemma 4, there does not exist an n-square extension T of S by R,
which splits over S, in case S* has dimension 1. So, by induction on the dimension
of S, it follows that there does not exist an n-square extension T of S by R which
splits over S whatever n may be. This completes the proof of Theorem 4.

Next we investigate the existence of 0-square extensions of .S by R i.e. extensions
where the homomorphism 5#: R—D is the zero-homomorphism. Here we get the
result:

Theorem 5. Let S be a zero-ring and S* an elementary abelian p-group of
finite rank r. Let R be a finite zero-ring, where R+ = Z' Bz, O@z)=my1=i=1

Then there exists a O-square extension T of S by R if and only if the following conditions
are satisfied: () 1*z=r; (i) if (n—1D2<r=n> for some n with t =n=1, then p\m;
for at least n integers m;(1 =i=)). :

Proof. Let T be a 0-square extension of S by R. Then 7%= S and S is generated
by M, for some choice of representative set (Lemma 3). As S has rank r, the number
of generators of S in M is greater than or equal to r. Since O(M)=12, it follows
that [2=r. As n(R)=0 we must have m{z;, z;}=0 and mz;, z;}=0 for a fixed
z;and all z;, 1 =/=1((3) and (4)). But if {z;, z,} 50 then it has order p, hence p|m;
if {z;, z;} #0 for any z;. Likewise if {z;, z}#0 for any z; then p|m;. The question
isnow: how many dlﬂ“erent elements z,( € R) have the property that either {z;, z;} %0
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or {z;, z;} #0 for at least one z,(€R)? Now let (n—1)><r=n? for some n with.
I=n=I, and let B be a basis of S in M. Since (n—1)?><r=O(B), there are more
than (n—1)? elements {z;, z;} in M (1=i=/,1=j=I) which are not equal to 0,
i.e. the elements of the basis B. It is clear now that the minimal number of different
z{(€ R) which occur either as a first or as a second component in at least one element
in B is n. Hence p|m; for at least n integers m; (1 =i=I). :
Conversely suppose the conditions (i) and (ii) are satisfied. We define functions
{z;, z;} of RXR into S for the basic elements of R in the following way. First let
{zi 0}={0, z;}=0 for all z,z; with 1=i=/ and 1=j=l We know r=/p,
hence we may suppose that (n—1)2<r=n? for some n with | =n=/J. We denote
r=(n—1)*+v, where 1 =v=2n—1. Now S has rank r and let (s,, ..., 5,) be a basis
of S. From (ii) we infer that there are » integers, say m,, ..., m,, such that plm,
for all i with 1=i=nThen set {z,,z,}=s,,{zy,2:}=55, ..., {21,241} =
=Sn—1’{22’ Zl}=S,,, ces {ZZ: Zn—1}=52n—2’,"'a {Zn—l’zl}:sn2—3n+3: '"’{Zn—li Zn-l}=
=Swm-1y> and set {z, z,} andfor {z,,z} equal to Su_yy4y, ... s for v
functions {z;, z,} andfor {z,,z} with 1=i=n. Then set all other {z,z}= 0.
It is clear now that S is generated by the set of all {z;, z;} with 1 =i=nand 1 =j=n.
If we put 5(R)=0 then the conditions (1)—(4) are satisfied for the functions
{(z:,z;} (1=i=l,1=j=]) and an arbitrary set b€ S (1=i=/). Hence T is an

]
O-extension of S by R, if we define T as the set of all symbols Zni2i+s (sé S, n;

. ' i
integers) with the .addition and multiplication: (Zn-?--{-s) ( wz;+ ):

i ! i
= > (m+z)zZi+s+wv, where mz;=b(€S) for 1=i=], (2 iZ; s)(ZuiZ +v) =
i=1 =1 i=
I 1
=2 Z‘ Uiz, z;}. As S=(M), it follows that T is a O-square extension of S
i=1j=1

by R, which completes the proof of Theorem -5.

Now we determine the rings T which may occur as a square extension of a ring S
of order 2 by aring R of order 4. Both S and R are supposed to be zero-rings. Let
S*=(0, a) with 2a=0 and a?=0. Let R*=(z,) ®(z,) be the direct sum of two cyclic
groups (z,) and (z,) both of order 2 and z2=z,z, =z,z;, =2z3=0. Now the endomor-
phism ring of St consists of the zero-endomorphism and the identity mapping. Hence
in this case we must have n(R) =0, so that there are only 0-square extensions of Sby R
possible. As the conditions of Theorem 5 are satisfied there exist 0-square extensions
of S by R. There are 2 cases: (i) 2Z, =2z, =0, which means b, =b,=0 in S. (ii)
at least one of b, and b, 0. ‘

(i) In this case the elements a, Z, and Z, all have order 2 and we get T*=
=(@®(E)&(z,) is of typus (2,2,2). As y(R) =0, az,=az,=Z,a=2%,a=0.
If {z,,z},{zy, 22}, {22, 2;} and {z,, z,} are O, then T7T?=(0) which contradicts
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that 72 = S. Hence we must have at least one of the four elements {z;, z;}, {z;, z,}
{z,, z;} and {z,, z,} equal to a. We get 15 different rings 7" with multiplications:

a|zy| z, alz;|z, a | z;| Z,y
a|l0[0]O0 al 0| 0]0 a|l010]0
?1 000 Z,1 0] al O z,| 0| al| a
—27 00| a Z,] 01 0|0 Z,| 0| a| a

a|z|z, a|z;| z, a|z |z,
a|0]0|0 al0|0|O a|0]0]0
2—1 00| a z¢| 0l a| O Zz,/| 0| a| a
2—2 O|a| a z,| 00 —a— Z,| 0| a| O

a | zy| z, a|zy| z, a|z|z,
a|0]0]|0 al 0|00 al0]0|0
Z—l 0la|O zy| 0| a| a z|0]0]0
Z,| 0| a| a Z,| 0| 0| a Z,1 0] al| O

a|zi| z, a|z;| z, a | zy| zy
alo]ofo al0]0]0 al0|0]0
Zz| 0] 0|0 zZ;| 00| a Z;| 00| a
?2 0| a|a Z,] 01 0] O Z,| 0| 0| a

a|z| z, a|zy| zy a|z; |z,
a|0]|0]0 a|l0]0]0 al0]0]O0
Z, 10| a| O zi| 0| a| a Z;0 0] 0| a
Z,| 0| al o 7, 0] 0 0 7,/ 0] al O

Thus we get 15 non-equivalent O-square extensions 7" of S by R.

(i) In this case at least one of the elements z, and Z, is of order 4, and 7" is
of typus (2, 4), say T =(Z,) ®(Z,) where O(Z;)=2 and O(Z,)=4. For the multipli-
cation in T one has again: z3=k,a,z,Z,=kya, 7,Z,=ksa,z5=k, a where

17 A
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0=sk;=1,i=1,2,3,4. Hence we get the same multiplication {ables as in case (i),
if we omit the first row and the first column. Thus we find 15 non-equivalent 0-
square extensions 7" of S by R. Nexi we suppose S lo be a zero-ring of order 2 as
above and R*=(z) a cyclic group of order 4. R is a zero-ring i.e. z2=0. Again
#(R) =0 so there are only O-square exiensions of S by R possible and by Theorem 5
there are such extensions. As zZ>=0 or a, we get {z, z}=0 or a. Bul il {z,z}=0
then 72=(0), contradiction. So we must have {z, z}=a. We have two possibilities
for the addition according to 4Z=0 or g, which means =0 or a. If b=0, then
T+ =(@)® ) is of typus (2, 4), if b=a, then T+ =(Z) is a cyclic group of order 8.
Thus we get 2 non-equivalent O-square extensions T" of S by R. Finally we want
o discuss the rings 7" which may occur as a square exlension of a ring S of order 4
by a ring R of order 2. Both R and S are supposed to be zero-rings. Let S* =(a,) ®
®(a,) be the direct sum of two cyclic groups (a;) and (a,) each of order 2 and
ai=a,a,=a,a, =a3=0. Let R* =(0, z) with 2z=0 and z?>=0. As the condition (i)
of Theorem 5 is not satisfied in this case (/=1, r=2), there do not exist 0-square
extensions of S by R now. The nilpotent endomorphisms in the endomorphismring
of St are: s;: a; ~0, ay~>0; 55t a0, a,>a;83:a,~a,,a,~0;5,: 0, ~a;, +a,;
a,—~a; +a,. So the possible double homothetisms are (sy, 5y), (51, 52), (51, 83),
(815 84)s (525 50) (82, 52), (83, 51)s (535 53), (52, 51) (s, 54), which may occur as the
element (1,(2), n,(2)) in #(R). For z>={z, z} as well as for 2Z=b we may choose
0, a,, a, or a, +a,. But as 2{z, z}=0 we must have (b)y,(z) =1,(2) by =0, ((3) and
(4)). Then we distinguish the following cases:

(i) Let b=a,. Then (n(2), n,(z)) =(s,, 5») for a square extension of S by R.
As S*=(S,4y=(0, a;) we must have {z, z}=a, or a, +a, for a square extension
of S'by R (Lemma 3). Since #,(z) =#,(z) =s, the condition (2) is satisfied. The additive
group T of a square extension 7" of S by R has the form: T =(2) ®(a,) where
(2) has order 4 and a, has order 2. So T+ is of typus (2, 4). For the multiplication
in T one has: a§ =0, Za, =5,a, =a,; ,Z=a,5,=a, and z2=a, or a, +a,. Hence
one gets 2 non-equivalent n-square extensions 7" of S by R.

(ii) Let b=a,. Then we must take (n,(z), 1(2))= (83, 53) for a square extension
of S by R. As $*=(S,)=(0, a,) we must have {z, z}=a, or a; +a, (Lemma 3).
Since #,(z) =#,(z)=s; the condition (2) is satisfied. The additive group T+ of a
square extension 7" of S by R has the form: T =(2) ®(a,) where (z) has order
4 and a, has order 2. So T is of typus (2, 4). For the multiplication in T one has:
a?=0, Za, =830, =a,, a,Z=a,53=a, and z>=a; or a;+a,. Hence one gets
2 non-equivalent #-square extensions 7" of S by R. )

(iii) Let b=a,+a,. Now we must have (1,(z), n,(z))=(s4,s,) for a square
extension of S by R. As §*=(S,))=(0, @, +a,) we must have {z,z}=a, or a,,
(Lemma 3). Since n,(z) =1,(z)=s, the condition (2) is satisfied. The additive group
T+ of a square extension T of S by R has the form: T*=(2)®(a,), where (2)

(94
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has order 4 and @, has order 2. So T is of typus (2,4). For the multiplication
in T one has: a?=0, Za, =s4a,=a, + a,, a,Z=a;5,=a, +a, and z2=aq, or a,.
Hence one gets 2 non-equivalent #-square extensions 7 of § by R.

(iv) Let 5=0. Then the conditions (3) and (4) are satisfied. For a square
extension T of S by R we need only satisfy condition (2): n,(2){z, z} ={z, z}n,(2).
We have again different cases: _ A

(iv. a) Let {z,z}=a,. Now we must have (n(z), n,(2))=(s3,53) or (sy,Ss).
In both cases the condition (2) is satisfied. So we get 2 rings T each of which has an
additive group T+ =(a,)®(a,) ®(Z) of typus (2,2, 2). Hence there are 2 square
extensions 7 of S by R, an n’-square extension where n’(z) =(s5, 55) and an n”-
square extension where n”(z) =(s,, 54). '

(iv. b) Let {z,z}=a,. Then we must have (n,(2), n(2))=(s2, 52) or (54, 54).
In both cases the condition (2) is satisfied. Thus we get 2 rings T each of which
has an additive group 7 =(a,) ® (a,) ®(Z) of typus (2, 2, 2). So there are 2 square
extensions 7" of S by R, an n’-square extension for '(z) =(s,, 5,) and an »”-square
extension for n"(z) =(s4, $4)- o

(iv.c) Let {z,z}=a, +a,. Here we must have (y(2), n(2)=(sz,s,) or
(53, 53). In both cases the condition (2) is satisfied. Again we get 2 rings 7" each of
which has as an additive group T =(a,)®(a,) ®(Z) of typus (2,2, 2). Therefore
we get 2 square extensions T of S by R,.an n-square extension where #(z) =(s,, 5,)
and an n’-square extension where #'(z) =(s3, 53).

(iv. d) Let {z, z} =0. Now we would get a square extension T of S by R which
splits over S which is impossible by Theorem 4. Hence there do not exist square
extensions in this case.

There is a second class .of rings 7" which may occur as a square extension of
a ring S of order 4 by a ring R of order 2. Now we put S* =(a) is a cyclic group
of order 4 and a?*=0 (S is a zero-ring). Again R*=(0, z) with 2z=0 and z?=0.
The nilpotent endomorphism in the endomorphismring of S* are: s,:a—0, and
s, a-2a. So the pairs (s,,5,), (5;,5,), (52,5,) and (s,;s,) may occur as the
element (n,(z),' 1.2)) in n(R). The elements z2={z, z} and 2z =b in an extension
T of S by R must satisfy the conditions (3) and (4), i.e. (b)y,(z) =2{z, z} and n(2)(b)=
=2{z,z}, (b€ S, {z, z} € S). This implies that if =0 or b=2qa, then {z,z}=0
or {z, z}=2a. In either case T2=(0) or T2=(0, 2a) and T S, so T is not a square
extension of S by R. Hence we must have b =a or b=3a. By the conditions (3)
and (4) we get square extensions if we take (n,(2), n,(2))=(s,,s,) and {z,z} =a
.or 3a, (cf. also Lemma 3). The condition (2) is satisfied.

(i) Let {z, z} =a and b=a resp. b=3a. Let T} be an n-extension of S by R
with factor set {z,z}=a, b=a and let T, be an.y-extension of S by R with factor.
set {z, z}’=a, b’ =3a. Then T, ~ T, as the conditions (5) and (6) are satisfied for
Y,=a. Here (n,(z), n,(z)) =(s,,5,) and T, and T, have the same additive group
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T* =(z) which is a cyclic group of order 8. As S=(M, $*) both for T, and T,, we
get 2 equivalent y-square extensions of S by R (Lemma 3).

(i) Let {z,z}=3a and b=a resp. b=3a. In the same way as in case (i) we
* get 2 equivalent n-square extensions 7; and T, of S by R, where T} resp. T, has
the factor set (3a, a) resp. (3a, 3a). Both 7, and T, have again the additive group
. T*=(2) (cyclic of order 8).

Remark. Our results obtained in Theorems 1,2 and 3 and Lemmas 1, 2 and
3 are quite analogous to the corresponding Theorems and Lemmas in the paper:
H. OnisHi, Commutator extensions of finite groups Mich. Math. J., 13 (1966),
119—126, if one replaces “commutator extension” by ‘square extension”. In fact,
the results of OnisHI for finite groups led us to consider the situation for finite rings.
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