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Nilpotent grohp_s and automorphisms™*)

JOHN DAUNS and KARL HEINRICH HOFMANN!) in New .Orleans (Louisiana, U.S.A.)

I. First an arbitrary endomorphism AX V—~A4, XV, of semi-direct products
AXV, A XV, of arbitrary groups 4, ¥, 4,, V; is described by four .functions
fii A=A, fo: VA, ¢, AV, and ¢,: V—V,. Under additional hypotheses,
automorphisms of A4 X V leaving the subgroup 1 X ¥ < A X V invariant are studied.

II. If K is any field, set ¥=K". Let 4 be the group of all upper triangular
matrices a=[a;| (0=i,j=n; a;€¢K; a;=0 for i>j; a;#0). Form the semi-
direct product A X V: :

(B, W@, v) =(Bat, wa+1) (2, BEA; b, wEKT);
wa=(vg, ) lagl, (=l €4; w=(0w, o m)EKT).

Secondly, the general methods of I are used to compute the automorphism group
Aut A X V. Modulo all the inner automorphisms, there is exactly one non-inner
agtomorphism ¢: AX V~AXV with 6(1 X V)= 1 X V; ¢ is found explicitly.

III. The quotients of the descending central series of the commutator subgroup
N=[A XV, AX V] are K-vector spaces. Lastly, all normal subgroups W< N whose
1mage in each quotient of the descending central series is a one dimensional vector .
space are determined.

The automorphism group Aut 4 XV of the holomorph AXV of a group V
has received considerable attention (see [6], [7], [11] and [12]). In all of the above
papers, those automorphisms of 4 X ¥ which leave the normal subgroup 1 X V<«
< A XV invariant, play a significant role. Suppose V is any abelian o-group which
is divisible by 2 and -4* the group of all order preserving transformations of V.
[t has been shown (see [HARVEY; Theorem 2. 1, p. 24]), that if 4* can be ordered
'n any manner whatever so that it becomes an o-group, then:

(i) 1 XV is o-characteristic in the o-holomorph 4+ >< v

(ii) every o- automorphlsm of AT XV is inner.
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Let 4 and ¥ be as in II of the introduction with K an ordered field. Let 4+ <4
be all |la;fl€A with a;=0 for i=1,...,n. If V=K" is ordered lexicographically,
then A% is a group of order preserving transformations of V. Now take K to be the
rationals. Then A% is precisely all order preserving transformations of V. Since
clearly A* can be naturally ordered so that it becomes an o-group, any automorphism
¢ of A+ XV which does not leave 1X V invariant satisfies:
(i) ¢ does not preserve the order of V;
(ii) o is not inner. '

If NqAt XV is the commutator subgroup of 41 XV, then the quotients of the
descending central series of N are vector spaces. Since the image of 1 X ¥ in each
quotient is a one dimensional vector space, if ¢ is any automorphism of 4% XV,
o(1 X V) should have the same property. These considerations were the motivation
for classifying all normal subgroups W < N with one dimensional images in each
quotient. If in the above example K is taken as the reals, then the group of all order
preserving transformations of ¥ consists of matrices having zeroes below the
diagonal, strictly positive entries on the diagonal, and rational-linear (in general
discontinuous) linear maps of K into K as the entries above the diagonal. Due to
our inability to handle such groups, this note deals with groups of the above general
kind, where the entries of the matrices are in an arbitrary field K (sometimes assumed
to be not of characteristic 2).

1. Automorphisms of semi-direct products

The main objective of this first section is to determine all those automorphisms
F of a semi-direct product 4 X V of two groups 4 and V having the property that
F[1XV]=1XV. Most of the propositions are established in greater generality
than later needed. In fact, for the most part it is not even necessary to assume that
V is abelian — let alone a vector space, or even a finite dimensional one. However,
it has to be assumed that 4 is a group of automorphisms of ¥ and-that the inner
automorphisms by elements of ¥ belong to A.

1.1. Notation. If 4and V are any groups, then an action of A on V isa map
AX V=V, (v, «) =va, with the properties

(w+w, ) = va+wa and (v, aff) = (va)p, (o, BEI;I; v, weV).

Although written additively, ¥ is not assumed to be abelian. With respect to any
fixed action of 4 on V, the semi-direct product A X V will be written as follows:

(o, v)‘(/i, w)#(aﬁ, vf+w) (a, fEA; v,w €V).

The identity elements of ¥ and A will be denoted by 0 and 1. Inner automorphisms
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and commutators in any group will always be written as - f*=o~*fu and [o, B]=
=oa~1f~1af. If 4,, V; are two other such groups, then the functions f;, ¢; (i=1, 2)
are defined by

F[(OQ 0)] = (fl(a)'.' cl(a)), F[(I, U)] = (fz'(v)a cz(v)) ‘(OC €A5 ve V)

If f: B—~A4 is any homomorphism of any group B into A4, then a map t: B~V
is ‘a crossed homomorphism with respect to f provided (af)r =/ (at)f(f)+ fr holds
for all o, € B. It is inner if there is a y € ¥ for which at = — yf(«) +y for all a€ B.

For any arbitrary group ¥, Aut V' will denote the group of all automorphisms
of V. The centralizer and normalizer of a subgroup 4 in Aut V' will be denoted
by C(Ad<Aut V) and N(Ad<Aut V)={TcAut V|T~! AT=TAT-*=A4)}. Every
element v€ V gives rise to an inner automorphism ¢ Aut V.

Remark. If 4 acts on an abelian group V, the crossed homomorphisms
form a group Z!(A4, V) under pointwise addition. The inner automorphisms form
a subgroup B(4, V). The factor group Z(A, V)/B'(A, V) is the first cohomology
group of A with respect to the given action of 4 on V.

In the next proposition ¢, and ¢, are crossed homomorphisms with respect
to f; and f,. Note that equation (iv) implies that 4 leaves the kernel of f, invariant.

Proposition 1.2. Let F: AXV—~A, XV, and f,, c;, i=1,2, be as above
arbitrary semi-direct products: Then the following hold for all a, f€ A and v, weV:

(@ Fll, )1 =(/f1(@)f20), ¢, (0)f2(0) + ¢, (v)); '

(i) f, and f, are homomorphisms; '

(i) ¢;(@f)=c,(@f1(B)+¢i(B);  ca(v+w)=cr(v)f5(w) + c2(w);

(iv) LOvB)=£1(B) " LL(mf1(B);

V) c2(wh) = — ey (B)f2(wh) + c2(W)f1(B) + ¢4 (B).

Conversely, if fi, 2, ¢, and ¢, are any functions satisfying (i\)—(v), then F
defined by equation (i).is an endomorphism. :

Proof. As an illustration, (iv) and (v) will be proved. The proofs of (i)—(iii)
are similar and even simpler. Computing F[(8, 0)] F[(1, wp)] and F[(1, w)] F[(B, 0)]
by (i) and then equating the first and second components, we obtain

(V) fo(wB) =£2(w)/1®,

) ey(B)f2(wB) + c;(wh) = c;(W)f1(B) + ¢, (B).

Since it is not clear that (ii)—(v) are all the relations that interrelate the functions
fi» ¢i» the proof of the converse will be indicated. Equation (i) shows that
Fl(@B, v+ w)l =(11(@B)f2(vB +w), c,(2B)f>(uB +w) + c,(vf + w)),
Fl(a, 0)] FI(B, W) = (/y(@/20)/1(B)f2(w); e1()f2(0)/i(B)f2(w) +
+ e2(0)f1(B)f2(w) + ¢, (B)f2(w) + c2(w)).
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By (iv) and (i) the first components of the above two equations are equal. Use
of (iv) and (iii) gives that

a@LONBLM) = @B +w) (B0 +w).

Thus it only remains to show that

(B +w) = —c (B (B 4 w) + c,(0) [ (B f2(w) + Cl(ﬂ)fz(“’) + Cz(“’)

But this follows from (iii) and (v), since

c2(vB +w) = [=cs(B)f2(0B) + c2(0)f1(B) + e1 (B f2(W) + ().

From now on, three simplifications will be assumed throughout. First V=V,
A=A,; secondly 4 will be taken in ASAut V; and thirdly, only automorphisms
" F of AXV will be considered.

The proof given in [HARVEY; p. 7] of the next corollary for the case when V
is abelian generalizes to non-abelian V.

Corollary 1.3. If 1: A~V is a crossed homomorphism with f(A)g center V,
then :
FiAXV—~AXV, Fl(x,0)] = (@, at+v)  ((a, ) €AXYV)

is an automorphism of AXV leaving 1 XV elementwise fixed. Conversely, every
automorphism of AXV leaving 1 XV elementwise fixed is necessarily of the above
form. Furthermore, suppose (o) =.—ya+y, for all a€ A and some y¢€center V-
Then Fl(«, v)]=(x, at +0)=(0, )~ 1(«, v)(0, ) for (¢, v)€AXV.

Note that the converse of (i) of the next corollary is also true, ie., f,=1 if
and only if F[IXV]S1XV.

Corollary 1.4. In Proposition 1.2 assume V=V, A=A, and that F is
an automorphism of A XV onto itself. Suppose F[1 X VIS 1X V. Then

M f2=1,
(i) f1(4) = 4,

(iti) ¢, is an injective homomorphism.

Corollary 1.5. Let T: V-V be defined by vT =c,(v) for all v€ V. Assume that:
(@) F: AXV~>AXV is an automorphism,
(b) FIIXV]=1xXYV,
© {loevisa.
Then:
O fo=1;
(ii) fy is an 1somorph1sm of A onto A; F-1{(, 0)]= (f1 (), 0) for all a4,
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(iii) ‘F“[(i, V)] =(1,0T~Y) for all veV;

(iv) 1(B)=T1BTc,(B)~*;
(V) T7*AT=TAT'=4; TEN(A<Aut V).

Proof. Conclusions (i)—(iv) are immediate consequences of Proposition 1. 2.
It follows from (iii), (iv), and (c) that T-1ATS A and TAT-1< 4 and hence T—1AT=
=TAT ' = A. ' .

The next lemma shows how to construct automorphisms of A X ¥ which leave
‘1 X V invariant. '

Lemma 1. 6. Consider any group V. (not assumed to be abelian) and any sub-
group AS Aut V. . : '
(i) For any SeN(A<AutV) and any ye V, the map' FiAXV~>AXV
defined by : '

FIB, wi=(F, —yB+wS+y)  (Bed, weV)

is an automorphism. '
(ii) For S and y as in (i),

(S, Y)EAUt VXV and FI(B, W] =(S, »)~ (8, w)(S, ).

 Thus the automorphism in (i) is inner if and only if S€A.
(i) In addition assume that {Slv€ V}S A and let T€¢ Aut V. Then T extends
to an automorphism F: AXV ~AXV if and only if TEN(A<Aut V).

Proof. (i) and (ii). Conclusion (ii) proves (i). (iii) If 7 is obtained from an
automorphism F of A XV by F[(1, v)]=(1, vT) for v€ V, then by Corollary 1. 5 (v)
. TEN(A<Aut V). Conversely, if T€N(A<Aut¥V), then the map F[(B, w)]=
=(B7, wT) for (8, w)€ A X V is an automorphism by (i) of this lemma.

From now on the group ¥V will be abelian, later a vector space, and, finally,
a finite dimensional one. The following lemma is well known (see [HARVEY; p. 11)];
its proof is omitted. ‘;

Lemmal.7. Let V be any abelian group, A S Aut V any subgroup, and f,: A~ A
a homomorphism of A into A. Assume that:

(@) The map 2: V~V, v—2v, is an isomorphism of V onto V',
(b) 2¢4;
©) fi?)=2.

Then every crossed homomorphism © with respect to the action fy, is inner. In fact,
at = —yfi(2)+y, where y.= —21.
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Definition 1. 8. Consider a vector space V over a field K and a field auto-
morphism p: K—K. Any K-basis {t(2)|A€ A}, where A is an indexing set, defines
a map jf: V-V by:

if o=Z{k(No(D)]k(A)EK, A€ A}, define ovi=Zk(A)uv(l).

Suppose A S Aut V is any subgroup having the property that
A={afilne 4} = {fofi~* [ € 4},
Then an automorphism ji: A XV —~AXV may be defined by

B, wWa=@"pg, wi)  (BEA, weEV).

The subgroup of Aut ¥ consisting of all K-linear automorphisms of V will be
denoted by Autg V.

Remarks 1. If in the above definition a€ 4 is K-linear, then so is g~ leji. .
The matrix with respect to the basis {s(1)|1€ A} of fi~laj is obtained by applying
4 to each entry of the matrix of a. '

2. The automorphism [ depends upon the choice of basis; whether
fieN(A<Aut V) may also depend upon the choice of the basis.

Lemma 1. 9. Consider a vector space V over a field K and a subgroup AS Aut V.
Let E: V>V be the identity map. Assume that

(a) F: AXV~AXV is an automorphism;
(b) FIIXV]=1X7V;
(c) C(4<Aut V) ={kElk e K\ {0}}.
Then:
(i) There is a (bijective) field automorphism u: K—~K such that

()T =(cu=)(vT) eV, ce€K).

(it) In addition assume that for some choice of basis in V, i¢ N(A<Aut V).
Then the automorphism Foji: AXV-—~AXYV satisfies: '

Fopl(l,v)]=(, viiT), (cv)(ﬁT) =c(iT) (weV, ceK).

Proof (i) It follows from equation (v) of Proposition 1.2, that for any €A,
weV, and ¢c€ K, we have '

wh(cEYT=wTf (B (cE), wW(cEWT=wTf(cE)f(B).

Since by Corollary 1.5 (ii) the map T is surjective, it follows that f,(f)f,(cE)=
=f,(cE)f(f) and f,(cE)€C(A<Aut V). Thus there is a map v: K—K such that
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f1(cE)=(cv)E. Tt is easily seen that v is an injective homomorphism. There is a
similar map u: K~K associated with the automorphisfn F~1 which satisfies
vou=ypov=identity. Thus v and u are eplmorphlc and v=p~!. Conclusion (ii)
follows immediately.

2. Automorphisms of linear groups

In this section the general facts about automorphisms of semi-direct products
developed in section 1 are used to find the automorphism groups of a certain class
of groups. The next definition gives this class of groups as well as various subgroups
which will be of major interest throughout the rest of the discussion.

Definition 2. 1. Let K be an arbitrary field and G the group of all-(n +1) X
X (n+ 1) upper triangular matrices P with entries from K of the form

. P=|a,| O=ij=n); a;=0 if i>j;a;=0
for all i.
Two normal subgroups NcG!< G of G are defined by:

N={PeGlay=1,i=0, .., n); G'={P€Glag,=1}.

The normal subgroups I and I'! of G are defined by:
I'={P¢Nla;;=0 for i<}, except in the first row and the last column},
rt={P¢eNla;=0 for i<j, except in the first two rows and the last column}.
Let a€ K be any scalar. Two normal subgroups B! and B!(«) of N are defined as
follows:
B'={P¢cNl|a;;=0 for i<j unless i=0},

B'(a)={P€N|a;;=0 for i<j unless i=0, or (i,j)=(I,n) and a;,=0a,,}.

The groups B! and N are normal in G. Note that B!(0)=B!. For a0, Bi(x) is
normalin N but not in G'. By taking transposes of all elements of B, B!(x), I'! around
the second diagonal, we obtain three other groups B,, B;(x), I';. The subgroup
of G consisting of all diagonal matrices is denoted by D. The element of D whose
diagonal entries are A,, ..., 4, Will be denoted by diag (%o, ..., 4,). Set D =Gt D.

If No=N=[G, Gl and N;=[N;_,, Nl,j=1,..,n—1; then N is a group
of nilpotency class n having the same descending and ascending central series

[G,G]=N=Ny>N,>... DN,_, ON,=1.

The group N; consists precisely of all matrices having j strings of zeroes parallel
to the main diagonal. The entries of a matrix in the (j+ 1)-st string parallel to the
main diagonal will be referred to as the (j+ 1)-st layer. The center N,_; of N will
be denoted by Z for simplicity. The usual matrix unit with all zeroes except.for

‘a one in the p-th row and g-th column will be denoted by 'qu, 0=p,q=n. For
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Jj=0, ..., n, there is an isomorphism «; of K-vector spaces
. n—j
aj:K"_J_’Nj/Nj+1: oo ,---,x..—j)] =1+ Z; XEiq, j+ie
i=

For the reader’s convenience we include schematic diagrams showing the forms
of the elements in the various groups where the a;;€ K are arbitrary

1 agy ao; Qo,n-1 Gon 11 @y doz 4o,n—1 on
. : Jjo0 1 0 0  odgy
B 0 o 1 o | B®iy 0 o 1 0
0 0 0 0 1 00 O 0 1
1 dor Qo2 Ao, n 1 Aoy do2 do,n-1 . Gon
0 1 0 ay, 0 1 ais a1 n-1 Ay
r I':lo o 1 0 Azn
0 o0 0 1 a,_4 ., O 0 O 1 Qnoq,n
0O O 0 0 1 0O 0 0 0
P
100 0 x,0 00
1 0 00x, 00
al(xy,eX- )] = ) N+ 1€N;/N; 1 (j=0,...,n—1).
, 000 ‘ 0 x,-;
000 0 1
Figure 1.

Let #n be any integer; set V'=K". Let A be the group of all nX#n matrices a
with zeroes below the diagonal, arbitrary elements above the diagonal and non-
zero elements on the diagonal, Elements of ¥ are viewed as row vectors and in
AXV, A acts on these by right multiplication. The group 4 X ¥ can be identified
as a subgroup of the general linear group Gl/(n+ 1, K) as follows:

agy ay3 ayy,
0 ap az, )
o= : 0= (Ag1,do2s-+-d0n)  (XEA, VEV);
0 0 Ay _ '
Qoo 91 Yoq
1 v 0 a,, ay, B '
(o, 0) = 0 ol = _ €Gl(n+1, K);
0 o Ay
( . L, 1 ol|l v 1 va’+0 »y , v '
o, V)(o, ¥) = (e, vet’ + 1), 0 o0 o |0 ax ('€ ,v§ ).
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Sometimes G'=4 XV will be viewed as a matrix subgroup of G/(n+1, K) and
denoted by G!, whereas at other times, when in our considerations its semi-direct
product structure plays an important role, it will be written as a semi-direct product
AXV. In case K is an ordered field, the normal subgroup of G consisting of all
matrices with strictly positive entries on the diagonal will be denoted by G*; set
G*'=G!NG* D'=DNGY, and D*'=D'NG*. Similarly A+ will consist of
all « having strictly positive diagonal entries. Thus just as 4 X V can be identified
with G!, so A" X V can be identified with G*+!.

Next some automorphisms of G! and G*! are defined. If u: K—~K is any '
field automorphism, then ji: V—» V will always be deﬁned with respect to the natural
basis by .

0[‘2(01/19 sers mu) (Ula . ’v)eKn

Let ¥ denote the subgroup of Aut A X V consisting of all automorphisms F: A X V —
—~A XV such that the restriction F|l X V€ Autg V, where Auty V' was the group
of all K-linear isomorphisms of V.

For the remainder of this definition suppose now that K is an ordered field.
The subgroup of all ji obtained from order preserving automorphisms will be denoted
by U. The element F;= I 2E;€G (1=0,1,...,n) defines an automorphism

GG by . '
Fi(g) = F,~gF; (geG*Yy; i=0,1,..,n).
Note that F;€ G' for i=1; ..., n, that F,¢ G'. However, F, = — F,...F, and hence

F,=F,...F,. The F,, ..., F, generate a subgroup & of Aut A* X V. The group
of .inner automorphisms of Aut A+ X ¥ will be denoted by J.

The objective is to find all automorphisms of G*1.

Proposition 2.2. Consider the group G*'=A* XV of Definition 2.1 and

any automorphism F: AT XV —~AY XV such that FIlXV]=1XV. Let c,: V-V
be defined by F[(1, v)] =(1, c,(v)} for v€ V. Then: :

(i) There is an order preserving field automorphism u: K—K such that

F[(l, er)] =(1, (cu™ Ve, () (€K, vEV).
(ii) If T: V-V is defined by Fofi[(l,v)]=(, vT) (UE V), then
TEN(A* <Aut V) =A.
(i) There is a y€V such that for any (o, v)€ AT XV,
-1l v
0 «

y

0T 0o 1

.1y'

Foil(a, v)]=(@T, —yaT+0vT+y) = '

(v) V =%J.
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‘Proof. (i) First, it is easy to see that C(4+ < Aut V') are the scalar operators.
The automorphisms p and p=! given by Lemma 1.9 (i) clearly preserve the order
of K. (ii) It is well known and easy to prove that N(4+ <Aut; V)=A. In order
to show that 7€ Auty V, take c€ K and (v, ..., v,) € V. Then

(1, (e0)T) = FI(1, (co)il = FI1, (e o] = (1, cex(om)) = (1, c(wT).

Thus T¢€Aut, V and it follows from Corollary 1.5 (v) that TEN(A* < Autg V).
(iii) By Proposition 1. 2 there are functions f;, /=1, ¢;, ¢, =T corresponding
to the automorphism Fop such that

Foi(x, v)] = (fl (), cl(a) + I’T) (o, v)EAXV.

By Corollary 1.5 (iv), fi(«) =TT for ¢ 4. By Lemma 1.7, ¢, is of the form
¢ (@) = —ypaT +y for some y€ V. Then the above equation becomes

Fofl(a, v)] =", —yaT +0" +y).

(iv) The automorpﬁism F can be realized aé an innef automorphism by the ele-
ments (L, y)€A* XV and (T,0)€4A XV as follows:

Fofil(e, o) = (T, »)~ '@ 0)(T, ) = (1, »)~'(T; 0~ (@ 0)(T; 0)(l, 7)
(2, )€AXT).

Howéver (T, 0) equals a product of some of F,, ..., F, times an elementof 4% X V.
Thus V=%J.

Remark. The last Proposmon 2. 2 remains valid verbatlm if A% is replaced
by A throughout.

The second step in determining the automorphlsm group of G*1! is to show
that any automorphism F: G'—G' maps either F(B')=B' or F(B')=B,. Since
the previous Proposition 2. 2 completely determines all automorphisms F: G! ~G*
satisfying F(B')=B!, the final step will be the construction of an automorphism
o: G'~G"' satisfying o(B')=B,. The next definition and sequence of lemmas
is needed in order to accomplish the second step.

Definition 2.3. For O0=p<x=n, let 4,, be the set of all' [a,l € N with
a,3=0 for a=p+1 and for f=sx—1.

Remarks. 1. The group 4, is abelian and 4, < G".

2. It can be shown that 4, ,.; (0 <p<n—1) is a maximal normal abellan
subgroup of N. It is our conjecture that there are no others.

3. Note that Ay, =B, A,_, ,=B; also 4,; S B* and 4,,S B, for all j and i.

4. If j=x—p—1,then N;_  C A, EN;; A, =N, if andonlyif Ag,=N,_,=Z.
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Suppose a4l €N; with a, #0 where x—p—1=j, 0=j=n-—1. Suppose
i and j satisfy i=p and »x =j. The next sequence of lemmas will show that by inner
automorphisms from G, [/l can be transformed into I+ cE;;, where c€K.
In the diagram below, [la,ll has non-trivial entries in the triangular region in the
upper right hand corner. The group A, consists of all elements having non-trivial
entries in the rectangle region inside the triangular region. The j-th layer is repres-
ented by the line'coﬁnec_ting 0, % —p) and (n —x +p, n) entries.

01
010
110 1
p
gl = n—x+p.
noo 1

Figure 2.

The next lemma describes the types of elements that can be constructed by
application of inner automorphisms.

Lemma 2.4. Let I1Bill, Bi; €K, 0=i, j=n, be any matrix.
() If Bl is defined by

”ﬂ:_)” :(I_Cqu)|l/3ij”(I+Cqu) (O §ps qé”),

then \Bi;ll is obtained from | Bl by subtracting ¢ times the g-th row from the p-th
row and adding c-times the p-th column to the g-th column. .

(i) If S=diag (4o, ..., 4,), where 2o, ..., € K\{0}, and if S~ |B;IS=
=B, then B; =A7'B:;A; (0=i, j=n). , v

(i) I S=diag (1, 2, 22, ..., ), and if S~ BAS =11, then B juu=Boysuut?
(=0, ...,n—j); i.e. STYBi;|S is obtained from- {|B;;| by multiplying the j-th layer
of Bl by M. -

Remark. The inner automorphism by the diagonal element S in (iii) of the
above Lemma 2.4 induces scalar multiplication by A/*! on N;/N;,, =K"=/, If the
ground field K does not contain all the j-th roots of its elements for 2 =j=n, then
t may be impossible to obtain all scalar multiplications on N;/N;., from inner
automorphisms. The following fact will not be later used. If d=diag (1, 4, 43, ...,
wn MU, 2,22, L, Ay and if (By, jeqs oees Bumjo1,a) BS the (j 4 1)-st layer of |8,
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then (Apo,j+l,...;iﬂj—l,2j,;~j+1ﬁj,2j+l,...’)‘j+]ﬁr{—j—l,n) is the (j+1)-st layer
of d=1||Bi;ld. : :

Lemma 2. 5. Let P=|ayl (0§i,j§n) be any matrix of the form P={§ g

where B is (j+ DX+, Cis (j+1)X(n—j), D is (n—j)X(n—j), and where
B and D have inverses B~',D~'. For AcK set d(j, )= Ey+..+E;+
+MEjs1, a1t + E,n). Then: ' '

B-! —B-'CD-!

R -~ |B iC
(ii) d(j,l)—lPd(jJ)=\0 D
| I (—-1DB'C
(iii) [P,d(j,i)]=P"d(f"1)'..1pd(f’*):Jo I J

(iv) If' B has ones on the diagonal, zeroes below and if the last t rows of
B are those of the identity matrix, then the last t rows of B~'C are those of C.

Proof. Conclusions (i), (i), and (iii) are immediate, while (iv) is a consequence
of (i) with D an ¢ X ¢ matrix.

Lemma 2. 6. For any subgroup W <\ G, if for some j, N; "\ W contains an element
llagll with a,, #0 for p and x satisfying « —p —1=j, then there is an element|af}| €
€A, NW with d,, #0.

Proof. Applying the prcvious Lemma 2.5 with j=x—1, we get a matrix
.P=|ay as follows '

: (A—1)B-'C

0 ] , A= (A—1)a,,.

P, =[P, d(x—1,4)] =

Due to the fact that from the p-th row on (and including the p-th row) the entries
of B are those of the identity matrix, also the matrices B~1C and C agree in the
p-th and all subsequent rows. Lemma 2. 5 will be applied a second time to P, with
j=p; in the decomposition

B C,

A={0 p | Ciis (2+DX@-p);

B, =Iand columns p + 1 to x — 1 inclusive of C, are zero. For A€ K let P, =||aj}| € A,
be defined by )
‘ I (4-nc,

o Gy = Gy = 1A= 1) pe.

b

P2' = [Pl’d(psll)] = ’
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The p-th row of P, from the x-th column on inclusive is that of P multiplied by
(A, — 1(A—1). (In fact, the same is true for the rows p, ..., x —1.)

The proof of the next lemma follows from Lemma 2. 4. It should be observed
that the next two lemmas require the use of inner automorphisms from N but not
from G*.

Lemma 2.7. If c€K and P =|a,l € A,, are arbitrary then:

(i) The inner automorphism. by I+cE;, (0=i=p—1) subtracts c times the
p-th row from the i-th (with the exception that the (i, p) entry remains unchanged).

(i) The inner automorphism by I+cE,;, x+1=j=n, adds c-times the x-th
column to the j-th (except for the (x, j). entry which remains unchanged).

(iii) Consequently, if a,, #0, and if a,, a, €K are any non-zero scalars, then
@l can be transformed by inner automorphzsms from N into elements Q, Q,, and Q,
of the form

Q=1+4a,E, +T, T= Z{b,.jE,.jliép~1; %+ 1=/},

Ql = I+aprpx+a Ep x+1+T1 QZ = I‘+apr;:x+a2Ep—1,x+T'

Lemma 2. 8. If llapll € 4, is an element with a,,#0, then the normal subgroup
of N generated by ||a is-precisely A, ‘

Proof. It suffices to show that the subgroup of N generated by Ilaa,,H contains
all elements of the form 74 cE;;, where 0#c€K and i=x,p=j. By application
of inner automorphisms from N, ||a, sl can be transformed 1nto elements 0, 0,,

and Q, as in the last Lemma 2. 7. But then

o

07'g, = I+a,E, +1, 07'g, = I+aE,. . (a;,a,€K; a,#0, a, #0).

It is now clear that by a finite number of applications of the above process, the -
element 7+ cE;; can be obtained. ‘ V

The previous lemmas imply the next proposition. It is false if the hypothesis
that W< G' is weakened to W < N. (See Figure 2.)

Proposition 2.9. For a subgroup W G", if.for some j=0,...,n—1, the

-group N; (W contains an element ||\a,g|| with a,, %0 for p and x satisfying x —p —1 =/,

then A,,S W. In particular, if ||a,g)| € W and szor some i and j, a;#0, then [+ cE ;€ W
Jor all ceK.

Remark. The previous P.roposition 2.9 has the following interesting conse-
quence. Suppose WS N, WG, and |ayll€ W. If |[bl is obtained from [a,l
by replacing all a,; 0, o« < 8, with arbitrary scalars b,g, then also [|b,,] € W.

Corollary 2.10. If F: G' —G" is any automorphism, then either F(B')=B'
or F(BY)=B,.
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Proof. If F(BYET, let j be the smallest integer such that N;NF(BY)
contains an element [a,l with a,, #0, x—p—1=j, and with p=0, xn. Then
the second center of N is N,_, E 4, S F(B'). Thus the nilpotency class of G'/F(B') =
=n—2, whereas class of G'/B! is n—1. This is a contradiction, since G'[/B'=
=~ G'/F(B"). Thus F(B')EST. Since F induces an automorphism on Ny/N,, there
is an |lall € F(B') with either ag, #0 or a,_,##0. Thus either B'S F(B') or
B, S F(B'). If BLC F(B'), but B> F(B"), then by the last Proposition 2.9, F(B')
would have to contain a group of the form 4, with 1=p. However, then F(B')
would not be abelian. A similar argument applies if B, S F(B!) and B, # F(B').

The last step in determining the group of automorphisms of G! is to construct
an automorphism o: G -~G! such that o(B!)=B,.

2.11. Homomorphisms of semi-direct produéts. The group B, is
embedded in a semi-direct product KX B, </ G* consisting of all (4, b) of the form:

bo
b=|: €K"
bn—l
(0 A€K; “ A, b) = (AN, b +b); (X, B)EKXBy).

(A,_b>=lo A

Similarly B' is embedded in another semi-direct product KX B' <{G! consisting
of all [4, 4] '

1 a
[4, a] = diag(1, 4, ...,/1)'0 I‘

(a=(ay,....,a)eK"; 0=AcK; [AalV,d]=[Id +Xd], [V, d]€ KX By
The - map KX B, -KX B!, (4, b)—~[A, b] is an isomorphism.
The group G is a direct product G=K@®G'. Define a map p: G -G by:
g=la,ll €G, p(g) =llaa50 || =azs ey
Note that both G' and G are semi-direct products G=DXN and G'=D'XN.

Definition 2.12. An anti-automorphism 1": G -G is defined by transposing
around the second diagonal, i.e. by ’

"‘”au”EG T,(g)—!lbljll’ u n i,n—j

(0=i,j=n). An automorphism 1: G—G is deﬁned by w(g)=1(g~1) for g¢G.
Thirdly, by use of themap p of 2. 11,a map ¢: G —G' isdefined by o(g) =plo(g)], g€ G.

The matrix with zeroes everywhere but ones on the second diagonal will be
denoted by P. A superscript ¢ denotes the transpose of a matrix; —¢ denotes the
inverse of the transpose.
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Remarks. 1. It is asserted that v'(g)=Pg'P, 1(g)=Pg~'P, 7'(g7 ") =(7(g))~*
(g€G). For any matrix g, the matrix Pg is obtained simply by rotating g hundred
eighty degrees about its horizontal axis-of symmetry. Similarly, gP is obtained by
fotating g hundred eighty degrees about its vertical axis of symmetry. Thus PgP
is obtained by transposing g about both of its diagonals, the order being immaterial.
Thus '(g) = Pg'P. The other two equations follow from the fact that P>=1.

2. Since G=DXN and G'=D!XN are semi-direct products, for g=dn;
nEN, d=diag (A, ..., An), 4 € K; 0(g) = plt(d)]r(n), where p[t(d)] =diag (1, LAY .»
2,25 Y). Thus all elements of the form diag (1, 4, A2, ..., ") (A€ K) are left invariant
by o. ‘ .

The main properties of the map ¢ are given by the next proposition.

Proposition 2. 13. Let the notation be as in 2. 11 and 2. 12. Then.
() For any g=la|€G, o(g)=(amDPg'P.

(ii) The restriction o|G': G' -G is an automorphism.

(iii) (KX BY)Y=KXB,." _

(iv) There does not exist an M€ Gl(n+1; K) such that for all h¢ G,

o(W)=M"*hM or o(W)=M-1h"'M.

Proof. Conclusions (i)—(iii) are easily verified using the formula for ¢ given
in Remark 2 above. For g=diag (1, 4,, ..., 4,)n€G*, with n¢€ N, determinant g =
=(A;...y—) " 45, Thus (iv) follows.

Finally, we are in a position to combine Propositions 2.2, 2.9, and 2. 13 to
find -all automorphisms of G*1.

Theorem I. Let K be any ordered field and G*'=A* X V; F;, i=0, ..., n;
F, 0, U, and J as in Definition 2. 1 and as in 2. 12. Then:
() 6>=1; & is abelian; Fy=F,...F,; F}=1; 6~ 'Fio=F,_; (i=0, ..., n):
(ii) The following subgroups of Aut A* XV are semi-direct products:
C {o} X F, o} X T, F X, {6} X F;

Aut AT X V=Ua{o} X[F XJ]:
In particular,

+
AutAJ XV%U@{G}X?_.
Proof. Conclusion (i) is clear. (i) Since F,F,=F;F;,0=i,j=n, and since’
Fy = — F,...F,, it follows that & is abelian and that F,=F,...F,. The geometric

characterization of PF; and F,P shows that PF,=F,_,P, i=0,...,n. For
g=la,l€G*,
Fl[a(g)] = Fi(annl)(Pg—tP)‘Fiﬁ(annI)P(Fn—ian—i)—tP=U[Fn—i(g)]'

Thus ¢-'Fi6=F,_;, i=0, ...,n—i. Thus (i) follows; it immediately implies (ii).
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The situation becomes somewhat simpler if the group A* of the last theorem
is replaced by 4 as is done in the next corollary. Its proof is an immediate consequence
of the remark following Proposition 2.2, -

Corollary 2. 14. For any field K, let G'=AXV, i, and ¢ be as in 2.1 and
2.12. Let US Aut A XV be the subgroup generated by all [i; J denotes the group
of inner automorphisms of AXV. Then:

i o2=1, : .

(@it) {6} XJ is a semi-direct product; Aut AXV=ud{c}xJ.

3. Subgroups whose images in the quotients of a central series are one dimensional

In the notation of the previous section
N=N,DN,D..DN,_,ON,=1

is both the descending and ascending central series of N; N;/N;_ =K"J,
7=0, ...,n—1. The objective of this section is to characterize all normal subgroups
W SN such that each (WNN;)N;.,/N;., is a one dimensional K-vector space.

Definition 3. 1. A subgroup WS N is called K-linear, if it has the property
that for any k€K and Pe W, if Pk is the matrix obtained by multiplying every
non-diagonal entry of P by k, then Pk¢ W. For any subgroup WEN, (which is
not assumed to be K-linear) the rank of (WNN)N;,(/N;+y,j=0, con—1, is
defined as the number of linearly independent elements- over K that it contains.

Example. Let n=4 and let a, b, ¢, d, e€ K be arbitrary constants. The most
general abelian subgroup M of N consists of all (x, y, z) where for any x, y, z€K,

1 ax ay+dx z
101 cx by +ex
(x5y’z)_ 0 0 1 bx .
0 0 0 1

Since two elements (x, y, z) and (x’, ", z’) € M multiply according to the rule
(xs ) Z)(x,5 y,, Z’) = (x+x,’ J’+y'.+6‘xx', 2),

(where z”=z+2z'+ab(xy’ + x’y) + (ae + db)xx’), it follows that for 0=k€K, the
map M —M, P—~Pk is not a homomorphism. However, this map is in general
for any #n a homomorphism for all the normal abelian subgroups of N considered
here. ' -
Lemma 3.2. (i) If WEN is ‘a subgroup such that (WNN)N;. /Ny
is a K-vector space for all j=0, ...,n—1, then W is K-linear. )
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(ii) Let n be the nilpotency class of G and suppose that K contains the j-th roots
of all of its elements for 2=j=n. Then if W is a normal subgroup of G' and W N,
then W is K-linear.

Proof. Conclusion (i) is easily proved; (ii) follows from (i) and Lemma 2. 4 (iii).
The subgroup W in the next lemma need not be K-linear.

Lemma 3.3. Suppose WS N is any subgroup such rhat:
(@) W is invariant under inner automorphisms from I''l'y;

(b) (WﬂN) i+1/Nj+1 is of rank at most one for all j=0, ...,n—1.
Then WCr.

Proof. For n=1, N=I. Assuming the lemma to be true for 1,...,n—1,
it will be proved for groups W N of (n+1)X(n+ 1) matrices. Replacmg N by
N/B, and W by WB,/B, and using induction, we obtain that WB,/B, &I'/B,.
Thus WETI,. Similarly, W&t Thus WS, NIt Suppose there is a g€ W
of the form '

11 a a,.y z =g,y Ay_y)
b . j .. .
£ ) b1 b= l?z (a;,b;€K; 05 s€K).
1 bay

For arbitrary ¢, k€ K we have
' 1 a a,_,—cs Zq
by ks
b
-1

(I—kE,_y, (I —CEo)g(I+ cEy ) +kE, - ,) =

(where zy =z —¢b, +ka,_ ). Since ¢ and k are arbitrary, there are elements /1, fe W
of the form :

1 a 0 z 1 a a,_, z,
h= s b f= v 0
b b
1 1
(by,y_y,21,2,€K; by #0,a, = 0).
Then '
1 —a (a5s—a,—y) Z3
o1 = (sby—1—by)
1

16 A
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(where z3 = —z—(a;by+...+a,_,b,_,)—a,sb,_,), and

1 00 2z I 0 —a,_y zs
0 -b : ' 0

R 1 -1 £ __
1 1

for some z,, zs€ K. Thus s=0 and WCT.

Notation 3.4. Consider a subgroup W with ZE WET'. Its elements will
be written as [a; z; b), where

l a z b,
[a;z;b]= 0 19 a=(a1""3an—l); b= : ; aj>bieK .
0 0 1 - By |

Then the elements of W/Z and B'/Z are canonically of the form [a; 0; 5] and
[a; 0; 0]. There is a homomorphism r': W/Z ~B'/Z defined by =n'([a; 0; b])=
={a; 0; 0]. Similar remarks apply to =, and B,/Z. Note that

[a:2; 5] =[—a; a-b—z; —b], ab=ab,+ ..+ @ b1
[a; 0; 6] '=[—a;0; —b] in BYZ.
Note that hypothesis (b) of the next lemma implies that Z& W.

Lemma 3. 5. Suppose the subgroup WZ N satisfies:

(8) W is invariant under inner automorphisms from I'I'y;

() (WNN)N;, [N,y is a one dimensional K-vector space, j=0,...,n—1.

(c) There exists [a; z: bJ¢ W with a, 0.
Then:

(1) n! is a bijective isomorphism.

(ii) There exist linear functionals f;: K"~'—~K, i=1, ...,n—1, such that every
element of W is of the form ' '

1 ¢+ =z
Lz f@O1=10 T f()
0 0 1
1 _ fi(®) et
t=(t1,...,t,,_,)EK ; )= fo D) eKn-ty zEK].

Proof. (i) In order to show that n! is surjective, it suffices to show that for
any g in 2=g=n- 1, there is an element w¢& W of the form

w=[(,...,0,¢,.,0,...,0); z; 5] be K", zeK
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for some 03¢, € K. For any c€ K, the element (/+ cal“Elv,l)‘1 la; z; b1+ c,a,Eq )
“has the same entries as [a; z; b], except in positions (0, ¢g) and (1, n), where (0, q)
entry =a,+c¢ (g=2,..,n—1) and (I,n) entry =b; —car'b,. Thus there are
w,u~, r,ru" €W of the form
u=[(a1’ 0, sees O); 0; (bfll, b23 oy bn—l)L
-1 =[(—a1’ 09 0) albi; ('_bl’ _b25 teesy _bn—l)]: )
r=[(a;,0,... 0,¢,0,...,0); 0; (b7, b5, ..., b,_ )],
-1=[(o, e 0,640, .., 0); 25 (5, 0, ..., O)),
where 07 c,€ K and where, in fact, by, b7, b,, and z are'
bi:bl+ai-1 (albl+"'+anbn)’ b,l,:bi—cqal_lbq’
by=—bl+by = —cai'b, z = —c¢b,

Since kernel n' = {[0; 0; b]lbe K"~ 1}, the hypothesis (b) with n!(W)=B'/Z 1mp]y
that ! is a bijective isomorphism.

(i1) Since an arbitrary element [¢;0; bl€ W/Z thh LbeK" tis umquely deter-
mined by its first component ¢, the functions fi,...,f,—;: K"~1—K are uniquely
defined by setting (fy(¢), ..., fu—;(t))=b. Let f: K"~' K"~ be the map f(r)=
= (fi®), ..., fu-a(0).  Since for any 1, €K™, [t; 05 f(It'; 0; f(¢)] =
=[t+1t;0; /@) +f )] = [t+1¢;0; f(t+1¢)], we have f(t+1t)=7f(t)+/(t"). Since
by assumption (b) and Lemma 3. 2 (i) the group W is K-linear, it follows that for
any c€K and any [t;0; 7)€ W/Z, [ct; 0; cf (1€ W]Z.  But [ct; 0; cf(1)] =
=[ct; 0; f(ct)]; thus f(ct) = cf(t) and the f; are K-linear functionals f;: K"~! > K.

Remark. The assumption (b) of the last Lemma 3.5 in conjunction with
Lemma 3. 3 implies that W& . Assumption (b) of the last Lemma 3. 5 guarantees
that there is an element [a; z; b]€ W with either a, 0 or b, 0. Thus hypothesis
(c) is no real restriction but merely a notational convenience.

Lemma 3. 6. Assume that the subgroup WS N 'satisﬁes (b) and (c) of the
previous Lemma 3.5 and that in addition W < N. Then:

(i) There are o, BE€K such that every element of W is of the form

[l'Z'(O(t +ﬁt29 :Btl, ’ 0)] (tl,--" tl-—l)E]<"_1 (ZEK),

(ii) If characteristic K = 2, W is abelian.

(iii) If character:sttc K 2, and if in addition W is abeltan, then f=0 and
W = BY(«).

Proof. (i) Let [¢; z;f(t)]E W be an afbitrary element with.z€ K"~ ! and z¢K
For c€ K and any indices 7 and r satisfying O0=i—r<i=n—1, let re K" 1, z7¢K
be defined by
M (75 25 f@)] = U= cEi-, )t; z; f(O)T +Ei )
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The inner automorphism has only changed the (0, i), (i —r, n), and (0, n) entries
'in the manner indicated in the following diagram:

i n

0 ’i+cr‘i—r Z,
i—ri’f fimr(®) —cfi(1)
n
-Figure 3.

Thus t;=t; for j#i and t,;=t;+ct;_,. Then equation (1) shows that
_ Si- ) =fi- (1) = cfi(1)
which in turn. implies that
fl) =—£_40,...,0,¢,_,,0,..,00 (O=i—r<i=n),
where #;_, is in the i-th position. Suppose i=3; for r =1, 2 the above becomés
2 r=1:f(t) =—-£_,0,..0,t_,,0,..,0),
) r =2:-f,-(t) =—fi_,0,..,0,£_5,0,...,0).

where ¢;_; and t,_, are in the i-th position. Since for arbitrary #_,, t;-, €K,
fi-:0, ..., 0,4_,,0, ..,0=f_,50,...,0,t,_,,0,..,0), it follows that both
of these are identically zero for all choices of 1., t;_, € K; consequently f;=0
for i=3. The equation fi(t")=/f(t), k#i—r implies that

fl0, 0,12, 0, .., 00=0  (k=i—r, |=k=n),

where the ¢;_, is in the i-th position. Take a fixed k, 1 =k=n and r=1; then the
above equation holds for all i except i=k +1 and /=1. Since f; is linear and #,_, ¢ K
is arbitrary, this implies that o

Sty =Lty s i ) =R(t1,0, ..., 0,4, 0, ..., 0),
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where the £, ., is in the (k + 1)-st position. In particular, for k=1 there are a, € K
such that f,(r) = at, +pt,. But now equation (2) with /=2 becomes fz(i) =
=—£0,¢,,0,...,0) = —B¢,. Thus (i) has been proved. :

(i) and (iii) If [#; z; f(¢)] and {¢’; z7; f(¢")] are arbitrary. elements of W, then
a necessary and sufficient condition that they commute is that 2f8(¢,25 —t1¢,)=0.

Corollary 3.7. If Ko, Ky, ..., K, are any multiplicative subgroups of K {0},
let G(Ky, Ky, ..., K,) denote the subgroup of G consisting of all matrices |a;|| with
a;€K; (i=0,1, ...,n). Suppose the subgroup W< N satisfies the hypotheses of the
last Lemma 3. 6. T hen oo=p=0and W=B'if either one of the followzng two conditions
hold:.

(l) KO =K1 = =Kn—1 :{1}5 Kn¢{l};

(i) Ko=K,=...=K,={1}; K, ={1}, {1, —1}.

In particular, if WA G!, then W=B"!,

Proof. Let d(x)=diag(l,...,1,4, 1, ..., 1) where 0 A€k is located in the
x-th row and column. Let w=[t; z; (at, +pt,, —ft,,0,...,0]€ W, where
t€K" 1, z¢K. Then '

d(n)~wd(n) = [t; Az; (Aut, + ABty, — Bty, 0, ..., 0)],
d(l)_IWd(l) = [(;"tl ’ t2: i tn);.Z()“_latl +;"_.1ﬂt2, —.Btl, O: (X3} O)I

Thus at, + ft, = A(at, + ft;), A= 1 for all ¢; ¢, € K implies that o =8=0. Similarly,
Moty + pt,)=A"Yat, + Bt,) and 22— 10 also implies that a=8=0.

The next lemma is proved by tedious but stralghtforward computatlons its proof
is omitted.

Lemma 3.8. For any constant a€ K, B'(«) and B,(«) are maximal normal
abelian subgroups of N; B! and B, qre maximal normal abelian subgroups of G'.
The results of this section are summarized in the next theorem.

Theorem II. Let the notation be as in 2 1 and 3. 4. Suppose WS N is a sub-
group satisfying: . :

(@ WaN, (b) (WNNHN, +1/ 41 IS a one dimensional K-vector space-
for each j=0,..,n—1. Then WEST and consequent!y there exists an . element
la; z; b€ W with either a, #0 or b, 0. Assume: :

(c) {a; z; ble W, al#O
Then: ,

(i) There exist a, €K such. that W consists of all elements of the form

t; z; (e +Bty, —Bt,, 0, ..., 0)] (teK" 1, zeK).

(ii) If characteristic K=2, W is abelian.



246 J. Dauns and K. H. Hofmann: Nilpotent groups and automorphisms

(i) If characteristic K2, and if W is abelian, then necessarily B=0 and
W = BY(«).

(iv) If, in addition to (a) (b), and (c), W also satisfies (d) W G, then W =B,
In particular, W is abelian. In the other case when by #0, the obvious analogues of
()—(v) hold. ' ‘

(v) For any a € K («=0 is not excluded), Bl(oc) and B,(x) are maximal normal
abelian groups of N; B and B, are maximal normal abelian subgroups of G'.
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