On the sum de( finy) )
By I. KATAT in Budapest
1.

Let £ (n) denote an irreducible _polyndmial 'with integer coefficients. We assume

that £ (n) =0 for n=1. Suppose further that f(n) = cn.. Let d(n) denote the number™ -

" of divisors of n, and dd(n) the number of divisors of d(n). The letters P54, P, Pas ey

qy, q,, --- stand for prime numbers. For the sake of brevity we write xl—logx :
2—log Xy, . We shall. prove the following results.

Theorem 1. If the degree of f(n) is §3, then

a1.n : A _zdd(f(n))_cxx2+o(x1/x_2)

nsx
where ¢ is a positive constant.

- Theorem 2. If the degrée of f(n) is =2, then
(1.2 2 dd(f(p)) = ¢’ lix-x, +O(lix:Vxyx3),

where ¢ is a paszttue constant.

Remarks. It seems probable that the relations (1. l)—-—(l 2) hold without
Aany restriction on the degree of f(n). For the proof of (1.1) in the case r=3 we
use a result of C. HOOLEY concerning the power-free values of polynomials [1].
(This question previously was’ investigated by P. ErRDGs in [2].) For the proof of
(1.2) we use some well-known theorems on the distribution of prime numbers
in arithmetical progressions. '

2. Notafion

.The function U(n) is the number of di_étinct jarime factors of n. (a, b) is the
highest common factor of a and b. g(n) denotes the number of (incongruent) roots
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of the congruence f(v)=0 (mod #), and A(n) the number of those roots for which
(v,n)=1. The letter m denotes square-free numbers.

We shall say that K is a ‘‘square-full” number if it contains every prime-divisors
at least on the second power. Let 1l denote the set’ of the square-full numbers. It is
_evident, that every integer n can be represented in the form n= Km; where K¢,
(m, K)=1: This representation is unique. We say that K is the square-full part
and m is the square-freé part of n. Let %, denote the set of n’s, square-full part
of which is K. :

Let pu(n) denote the Moblus function.

"For K€U we introduce the notation:

@.1) k=d(K), k= 2%k, (k, is odd), k2.‘=d_(k-), k;:d(lkl);

4(2.7‘_) SR a(K) = ky— U(K)ks. |
Thus for f(n)¢ By we have '

'(,2.‘ 3) ‘  ddf(n) = k3U(f(n))+a(K)

: Let BK(x) (resp By(x)) the number of n’s (resp p’s) in the 1nterval {1, x] for
~which f(n) (resp. f(»)) belongs to %x. Let C(x, n) (resp. C(x, 7)) the number
of n’s (resp. p’s) in the interval [1, x] for which £ (#) =0 (mod {) but /()0 (mod g?)
(resp. f(p)=0 (modl) but f(p)#0 (mod qz)) when 1=¢=¢ and q’rl Let
- Cx)=C(x, =), Cx)= Ci(x, <).. :
The following relations obviously hold:

@24 ' Bx(x) = vgu(v)cxv(x),j
(2.9 - o 'BK‘(x) ;_Z 1(¥) Cg, ().

. &1, &, &3 denote sufficiently small posmve constants. We use the symbol - < in
g VINOGRADOV § sense. : :

3 Lemmas

Lemma 1. [3] The following relations hold: a) o(ab)= Q(a)g(b) if (a, b)=1; :
b) o(pY<a; ¢ o(p?)= o(p),.if pID (D denotes the dzscrzmmant of f(n)). Further
o(p®) = A(p*), when p- is sufﬁczently large.

We shall use the fo]lowmg result of P. TURAN. ~

Lemma. 2. [4] ]
| Z(U(f(”)) xz) < XX,.
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Comblmng the method of TurRAN w1th the Rodossky—Tatuzawa theorems,
we can prove the following

. Lemma 3. . )
. X ) .
3.1 | 2 W) —x) < —x: log x2.
Usmg addmonally the result of BOMBIERI in the theory of large sieve [6], we
could prove that the left hand side of (3. 1) has the order xxi x2
Lemma 4. ([8]) ‘
C S[fe)F<xx@ i a1,
(o) is a suitable constant which' depends only on « and f. '
Corollary. ' - _
. > d(f(n)) <« %, if B is large enough.
nsx ' 1. : .
U (n))> px2

Let N(x, y) denote the number of those n’s in l<n<x, for which p |f(n)
with some p>y.
C. HooLEY proved

Lemma 5. ([1])
N(x, x.l)<<x Lxp A% “ (A =0, suitable constant).
Lemma 6. Let b,<n} be a sequence of positive numbers. Then

Sy for y .

K>y

The proof is simple.and so can be omitted.
Applying the sieve method, we can prove the following

Lemma 7.

© pth

G, 9 = <20 ]][ -2 o )
umformly for. ]<h<x | : '

Lemma 8. Let f(n) be an zrreduczble polynomial of degree 2 Then for ﬁxed h
. the number of the solutions of f(n) hs? (1 =n=x, n,s integers) is at most O(x,)
: umformly in h. '

For the- proof see [7], Lemma: 2.
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Lemma 9..

Ci(x, x11?) = lix-Lh) ]][1— 11(7122)]'*'0("?‘1_2),

h pth

umformly in l=h=x,.
The proof goes with the standard application of the s1eve method usmg in
addmon the prime number theorems in the form: : '

lix

(3.2) . kD) = (k)(1+0(x1 2)),
umformly for: 1<k<x1, (k H=1 (see [5], and the Brun—Trtchmarsh 1nequa11ty
stating that ‘

lix

G.3) (e k1) < Coiyr for K = W (5= 0) @),

4. The oroof of Theorem 1

Sk= 3 ddf(); Sea= PARIGON

: o f(:)éefzx ' f(n)e Bx
' Using (2. 3) we have
' ' Zx —k32KA+a(K)BK(x)

Let é=x and let 6 bea sufﬁcrently small posmve constant. Frrst we prove that -

(4 1) . ‘ ’ . . 2 ZK << X,

K>¢

Applylng the Corollary to Lemma 4, it is enough to. prove that
Z (x2k +k2)BK(x) <x..

( )+ Q(K) by Lemma 6 we obtain

Since Bg(x) <

< xx,&° 13 <<x

> <k3x2+k2>BK(x)<<xx2 > ’M bx 3 ka0l

¢SKsx S =ksx K K=
Let now K>x K =pit--Pirs Py <P2<""<Pj§x /4<Pj+1’<"'.<Pr~ Let K'=K1K2_f
K; =pj--p} | o S " |
Let _ - .
2 (x2ks +k2)BK(x) = Dat Zp+ e

where in the sums D Db D We sum over those K for whxch a) K, =¢;
b) §<K1 =x; ¢) K;>x holds, respectively. oo
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Since for K;=¢ the inequality

=)k, = ¢ _loge | _ X3
. (k; =)k, = dd(K) < dd(K, ) < [d(K; )] < exp [2 Toglog 2 exp[ x3]
holds, by Lemma 5 we have '

2 <« x2 exp [a, z ] N(x x14) «< xx, exp [—%ﬁ] < X.
3

For 3, we have

Z}_,‘<< Z (k3x2'+k;)CK1(x)<<xx2 Z M

1/3
EsKi=x - R e<Ki<x K '

<« xx, 870 = x.

For the estimation of 3. let K; denote the maximal square- full divisor of
K, in the interval x!'*=K;=x. (K, exists since the greatest prime factor of K,
- is =x'/%.) Consequently, we have :
K
Zc < xl*e Z Q(K ) < X.

x/4<K3y=x

So (4. 1) holds.
Sinc_e ' -
Za(K)BK(x) <« X Z LS Q(K) < X,

for 'the proof of (1.1) it is enough to prove that
Ké’{ ks ZK"? = cxx,+ O(xl/g)
By the Cauc’hy—Schwarz inequality we have
' T= xé; k{2 k,a—x2 Bg()} < Ké; 2 k3|U(f(”)) PARS
<(Z kB (2 lU(f(n))—x:P)‘/Z S sy

Since

21 <x D ki =2 Q( )

=
. and by Lemma 2 D XXy, WE have T<<xxi/?,
Now we prove that

4.2)  ZkaBe) = cx+0 [x exp [——’;- fj]]

hence Theorem 1 follows.
Applying (2. 4) we have

ZaBe(®) = 3 ks 2 u0)Ca(s) = 25 ks 3 H0)Cra( 9+
+0(Zh 3 O o)~ Cr0) = Zat+0(Za).
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Since in the sum - >, the relations d(K)<<exp (35 ) k3 =d¥X) hold, by

Lemma 5
24-'<< exp (4dx;/x3) N (3, x) << xxy4/2%3,

if § is small enough.
F urther by Lemma 7

25 = CX+0(xxf152) e b O (A,

where |
- {2 20 17[1_—@_0;)]. -
. K Ptk p
» 5, The proof of'Theorem 2. )
Let A -
Sk = ; ddf(p);  Ska= Z U(f(p))
V /e ' Fesg
By (2.3) :

Sk = ks SK,A + a(K)EK(x)‘

~ Using the Corollary to Lemma 4, we have

25k< Z(k3x2+k2>BK(x)+0(x/x )=2+0 [xi]
Let . o
S = +22+23+24,
where in. 3, : 6<K<x’/4 in 22 ¥t <K=x,in J5: x<K<x7/‘* and in 24
K=x"4. » ‘
For K =x34 we have by 3. 3) that .

EK (x) « ;1)((11(()) li'Ax‘.

.Consequently

k
21<<11‘62 3x2+k <<x211x - 1/3<<]1x
g=arTo .

For x% <K <x we use the tr1v1a1 estlmatlon

BK(.?.C). = B,(x) < x%,

D, < xlte 2 ok )<<11x

K=x3/4

Since for K=x .
‘ By(x) < Q(K) <X,
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and the number of the square-full number in the interval [1 x”“] is majorlzed by
7/8+e , SO

'23<<li x.

Finally, let K=x"/*. Let L? denote thelgreatest square d1v1sor of K. Since K
is a square-full number, so L2>K2/3 (>x7/6)
It is obvious, that
24<<x > > l<xt 2 > 1.
K2x7/4 f(n)=0(mod K) L2z=x7/6 f(n)=hL2
nsx . - . n=x
Since the degree off(n) is 2 SO h<<‘c5/6 Changmg the order of summatxon '
and applymg Lemma 8 we have
Dl = xt 2 2 l<lix.
h=cx36 f(my=hL? = : .

n=x

Consequently
: . ZSk= ZSK+0<hx>

. K=&
Taking into account that

Zla(K)]BK(x) < ]1)6‘2 ja ((K))‘ < lix,.

we have
’ Z’SK = 3 k3Sx 4+ O(li x).
kst

By Lemma 3 we obtain that

Ké€k3S1\A x2 Z k B (x)‘ <<[ ZkZBk(v)]I/Z(Z (U(f(p)) Xz)z]llz << A
‘ L= (h ,\‘)lfz(hx-,\‘z-xs)‘/2 <lix-Vx,x5.
Conseqﬁ'eqtly for the probf of Theorem 2 it is enough to prove that

(. 1) S k3 By(x) = dlix-x, + O(lix- Vx,x3).
A B _ 3)

The proof of (5. 1) is very similar to that of (4. 2)-and so it can be omitted.
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