On the sum $\sum dd(f(n))$

By I. KÁTAI in Budapest

1.

Let f(n) denote an irreducible polynomial with integer coefficients. We assume that f(n) > 0 for $n \ge 1$. Suppose further that $f(n) \ne cn$. Let d(n) denote the number of divisors of n, and dd(n) the number of divisors of d(n). The letters $p, q, p_1, p_2, \cdots, q_1, q_2, \cdots$ stand for prime numbers. For the sake of brevity we write $x_1 = \log x$, $x_2 = \log x_1, \cdots$. We shall prove the following results.

Theorem 1. If the degree of f(n) is ≤ 3 , then

(1.1)
$$\sum_{n \leq x} dd(f(n)) = cxx_2 + O(x\sqrt{x_2}),$$

where c is a positive constant.

Theorem 2. If the degree of f(n) is ≤ 2 , then

(1.2)
$$\sum_{p \le x} dd(f(p)) = c' \operatorname{li} x \cdot x_2 + O(\operatorname{li} x \cdot \sqrt{x_2 x_3}),$$

where c' is a positive constant.

Remarks. It seems probable that the relations (1.1)—(1.2) hold without any restriction on the degree of f(n). For the proof of (1.1) in the case r=3 we use a result of C. Hooley concerning the power-free values of polynomials [1]. (This question previously was investigated by P. Erdős in [2].) For the proof of (1.2) we use some well-known theorems on the distribution of prime numbers in arithmetical progressions.

2. Notation

The function U(n) is the number of distinct prime factors of n. (a, b) is the highest common factor of a and b. $\varrho(n)$ denotes the number of (incongruent) roots

200 I. Kátai

of the congruence $f(v) \equiv 0 \pmod{n}$, and $\lambda(n)$ the number of those roots for which (v, n) = 1. The letter m denotes square-free numbers.

We shall say that K is a "square-full" number if it contains every prime-divisors at least on the second power. Let $\mathfrak U$ denote the set of the square-full numbers. It is evident, that every integer n can be represented in the form n=Km, where $K\in \mathfrak U$, (m,K)=1. This representation is unique. We say that K is the square-full part and m is the square-free part of n. Let $\mathscr B_K$ denote the set of n's, square-full part of which is K.

Let $\mu(n)$ denote the Möbius-function.

For $K \in \mathcal{U}$ we introduce the notation:

(2.1)
$$k = d(K), k = 2^{\alpha}k_1(k_1 \text{ is odd}), k_2 = d(k), k_3 = d(k_1);$$

(2.2)
$$a(K) = k_2 - U(K)k_3.$$

Thus for $f(n) \in B_K$ we have

(2.3)
$$ddf(n) = k_3 U(f(n)) + a(K).$$

Let $B_K(x)$ (resp. $\overline{B}_K(x)$) the number of n's (resp. p's) in the interval [1, x] for which f(n) (resp. f(p)) belongs to \mathcal{B}_K . Let $C_l(x, \eta)$ (resp. $\overline{C}_l(x, \eta)$) the number of n's (resp. p's) in the interval [1, x] for which $f(n) \equiv 0 \pmod{l}$ but $f(n) \not\equiv 0 \pmod{q^2}$ (resp. $f(p) \equiv 0 \pmod{l}$ but $f(p) \not\equiv 0 \pmod{q^2}$), when $1 \leq q \leq \zeta$ and $q \nmid l$. Let $C_l(x) = C_l(x, \infty)$, $\overline{C}_l(x) = \overline{C}_l(x, \infty)$.

The following relations obviously hold:

(2.4)
$$B_{K}(x) = \sum_{v \mid K} \mu(v) C_{Kv}(x),$$

(2.5)
$$\overline{B}_K(x) = \sum_{v \mid K} \mu(v) \, \overline{C}_{Kv}(x).$$

 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ denote sufficiently small positive constants. We use the symbol \ll in VINOGRADOV's sense.

3. Lemmas

Lemma 1. [3] The following relations hold: a) $\varrho(ab) = \varrho(a) \varrho(b)$, if (a, b) = 1; b) $\varrho(p^a) \ll \alpha$; c) $\varrho(p^a) = \varrho(p)$, if $p \nmid D$ (D denotes the discriminant of f(n)). Further $\varrho(p^a) = \lambda(p^a)$, when p is sufficiently large.

We shall use the following result of P. TURÁN.

Lemma 2. [4]

$$\sum_{n \le x} (U(f(n)) - x_2)^2 \ll xx_2.$$

Combining the method of Turán with the Rodossky—Tatuzawa theorems, we can prove the following

Lemma 3.

(3.1)
$$\sum_{p \le x} (U(f(p)) - x_2)^2 \ll \frac{x}{x_1} x_2 \log x_2.$$

Using additionally the result of BOMBIERI in the theory of large sieve [6], we could prove that the left hand side of (3. 1) has the order $xx_1^{-1}x_2$.

Lemma 4. ([8])

$$\sum_{n \le x} \left[d(f(n)) \right]^{\alpha} \ll x \cdot x_1^{c(\alpha)} \quad \text{if} \quad \alpha \ge 1.$$

 $c(\alpha)$ is a suitable constant which depends only on α and f.

Corollary.

$$\sum_{\substack{n \leq x \\ U(f(n)) > \beta x_2}} d(f(n)) \ll \frac{x}{x_1^2}, \text{ if } \beta \text{ is large enough.}$$

Let N(x, y) denote the number of those n's in $1 \le n \le x$, for which $p^2 | f(n)$ with some p > y.

C. Hooley proved

Lemma 5. ([1])

$$N(x, x_1) \ll x \cdot x_1^{-A/x_3}$$
 (A>0, suitable constant).

Lemma 6. Let $b_n \ll n_A^e$ be a sequence of positive numbers. Then

$$\sum_{K>y} \frac{b_K}{K} \ll y^{-\frac{1}{2}+\varepsilon} \quad \text{for} \quad y \to \infty.$$

The proof is simple and so can be omitted.

Applying the sieve method, we can prove the following

Lemma 7.

$$C_h(x, x) = x \frac{\varrho(h)}{h} \prod_{p+h} \left(1 - \frac{\varrho(p^2)}{p^2} \right) + O(xx_1^{-1})$$

uniformly for $1 \le h \le x_1^2$.

Lemma 8. Let f(n) be an irreducible polynomial of degree 2. Then for fixed h the number of the solutions of $f(n) = hs^2$ $(1 \le n \le x, n, s \text{ integers})$ is at most $O(x_1)$ uniformly in h.

For the proof see [7], Lemma 2.

202 I. Kátai

Lemma 9.

$$\overline{C}_h(x, x^{1/2}) = \lim_{x \to \infty} x \cdot \frac{\lambda(h)}{h} \prod_{p+h} \left(1 - \frac{\lambda(p^2)}{p^2} \right) + O(xx_1^{-2}),$$

uniformly in $1 \le h \le x_1$.

The proof goes with the standard application of the sieve method using in addition the prime number theorems in the form:

(3.2)
$$\pi(x,k,l) = \frac{\operatorname{li} x}{\varphi(k)} (1 + O(x_1^{-2})),$$

uniformly for $1 \le k \le x_1^3$, (k, l) = 1 (see [5], and the Brun—Titchmarsh inequality stating that

(3.3)
$$\pi(x, k, l) < C_{\delta} \frac{\text{li } x}{\varphi(k)}, \text{ for } k < x^{1-\delta} \qquad (\delta > 0) ([5]).$$

4. The proof of Theorem 1

$$\sum_{K} = \sum_{\substack{n \leq x \\ f(n) \in B_K}} ddf(n); \quad \sum_{K,A} = \sum_{\substack{n \leq x \\ f(n) \in B_K}} U(f(n)).$$

Using (2.3) we have

$$\sum_{K} = k_3 \sum_{K,A} + a(K) B_K(x).$$

Let $\xi = x_1^{\delta}$, and let δ be a sufficiently small positive constant. First we prove that

$$(4.1) \sum_{K>\xi} \sum_{K} \ll x.$$

Applying the Corollary to Lemma 4, it is enough to prove that

$$\sum_{K>\xi} (x_2k_3+k_2)B_K(x) \ll x.$$

Since $B_K(x) \ll \frac{x\varrho(K)}{K} + \varrho(K)$, by Lemma 6 we obtain

$$\sum_{\xi \le K \le x} (k_3 x_2 + k_2) B_K(x) \ll x x_2 \sum_{\xi \le K \le x} \frac{k_3 \varrho(K)}{K} + x \sum_{K \ge \xi} \frac{k_2 \varrho(K)}{K} \ll x x_2 \xi^{-1/3} \ll x.$$

Let now K > x. $K = p_1^{\alpha_1} \cdots p_1^{\alpha_r}$, $p_1 < p_2 < \cdots < p_j \le x^{1/4} < p_{j+1} < \cdots < p_r$. Let $K = K_1 K_2$, $K_1 = p_1^{\alpha_1} \cdots p_j^{\alpha_j}$.

Let

$$\sum_{K>x} (x_2 k_3 + k_2) B_K(x) = \sum_a + \sum_b + \sum_c$$

where in the sums \sum_a , \sum_b , \sum_c we sum over those K for which: a) $K_1 \le \xi$; b) $\xi < K_1 \le x$; c) $K_1 > x$ holds, respectively.

Since for $K_1 \leq \xi$ the inequality

$$(k_3 \le)k_2 \le dd(K) \ll dd(K_1) \ll [d(K_1)]^{\varepsilon} \ll \exp\left(2\varepsilon \frac{\log \xi}{\log \log \xi}\right) \ll \exp\left(\varepsilon_1 \frac{x_2}{x_3}\right)$$

holds, by Lemma 5 we have

$$\sum_{a} \ll x_2 \exp\left(\varepsilon_1 \frac{x_2}{x_3}\right) N(x, x^{1/4}) \ll x x_2 \exp\left(-\frac{A}{2} \frac{x_2}{x_3}\right) \ll x.$$

For \sum_{b} we have

$$\sum_{b} \ll \sum_{\xi \leq K_1 \leq x} (k_3 x_2 + k_2) C_{K_1}(x) \ll x x_2 \sum_{\xi < K_1 < x} \frac{d(K_1) \varrho(K_1)}{K} \ll x x_2 \xi^{-1/3} \ll x.$$

For the estimation of \sum_c let K_3 denote the maximal square-full divisor of K_1 in the interval $x^{1/4} \le K_3 \le x$. (K_3 exists since the greatest prime factor of K_1 is $\le x^{1/4}$.) Consequently, we have

$$\sum_{c} \ll x^{1+\varepsilon} \sum_{x^{1/4} < K_3 \le x} \frac{\varrho(K)}{K} \ll x.$$

So (4. 1) holds.

Since

$$\sum_{K \le \xi} a(K) B_K(x) \ll x \sum_{K \le \xi} \frac{K^{\varepsilon} \varrho(K)}{K} \ll x,$$

for the proof of (1.1) it is enough to prove that

$$\sum_{K \leq \xi} k_3 \sum_{K,A} = cxx_2 + O(x\sqrt{x_2}).$$

By the Cauchy—Schwarz inequality we have

$$T = \sum_{K \le \xi} k_3 \{ \sum_{K,A} - x_2 B_K(x) \} \ll \sum_{K \le \xi} \sum_{f(n) \in \mathcal{B}_K} k_3 |U(f(n)) - x_2| \ll$$

$$\ll (\sum_{K \le \xi} k_3^{1/2} B_K(x))^{1/2} (\sum_{n \le x} |U(f(n)) - x_2|^2)^{1/2} = \sum_{1}^{1/2} \cdot \sum_{2}^{1/2}.$$

Since

$$\sum_{1} \ll x \sum_{K \le F} k_3^{1/2} \frac{\varrho(K)}{K} \ll x$$

and by Lemma 2 $\sum_{2} \ll xx_2$, we have $T \ll xx_2^{1/2}$.

Now we prove that

(4.2)
$$\sum_{K \leq \xi} k_3 B_K(x) = cx + O\left(x \exp\left(-\frac{A}{2} \frac{x_2}{x_3}\right)\right),$$

hence Theorem 1 follows.

Applying (2. 4) we have

$$\sum_{K \leq \xi} k_3 B_K(x) = \sum_{K \leq \xi} k_3 \sum_{\nu \mid K} \mu(\nu) C_{K\nu}(x) = \sum_{K \leq \xi} k_3 \sum_{\nu \mid K} \mu(\nu) C_{K\nu}(x, x) + O\left(\sum_{K \leq \xi} k_3 \sum_{\nu \mid K} |\mu(\delta)| |C_{K\nu}(x, x) - C_{K\nu}(x)|\right) = \sum_3 + O(\sum_4).$$

Since in the sum $\sum_{k=1}^{\infty} d^{k}(K) \ll \exp\left(3\delta \frac{x_{2}}{x_{1}}\right)$, $k_{3} \leq d^{k}(K)$ hold, by Lemma 5

$$\sum_{4} \ll \exp(4\delta x_2/x_3) N(x, x) \ll x x_1^{-A/2x_3}$$

if δ is small enough.

Further by Lemma 7

$$\sum_{3} = cx + O(xx_{1}^{-1}\xi^{2}) = cx + O(xx_{1}^{-A/2x_{3}}),$$

where

$$c = \sum_{K} \frac{k_3}{K} \left\{ \sum_{v \mid K} \mu(v) \frac{\varrho(Kv)}{v} \right\} \prod_{p+K} \left(1 - \frac{\varrho(p^2)}{p^2} \right).$$

5. The proof of Theorem 2

Let

$$S_K = \sum_{\substack{p \leq X \\ f(p) \in B_K}} ddf(p); \qquad S_{K,A} = \sum_{\substack{p \leq X \\ f(p) \in B_K}} U(f(p)).$$

By (2.3)

$$S_K = k_3 S_{K,A} + a(K) \overline{B}_K(x).$$

Using the Corollary to Lemma 4, we have

$$\sum_{K>\xi} S_K \ll \sum_{K>\xi} (k_3 x_2 + k_2) \, \overline{B}_K(x) + O(x/x_1^2) = \sum_{K>\xi} + O\left(\frac{x}{x_1^2}\right).$$

Let

$$\Sigma = \sum_{1} + \sum_{2} + \sum_{3} + \sum_{4},$$

in $\sum_{2} : x^{3/4} < K \le x$, in $\sum_{3} : x \le K \le x^{7/4}$, and in $\sum_{4} = x^{7/4}$

where in $\sum_1 : \xi \le K \le x^{3/4}$, in $\sum_2 : x^{3/4} < K \le x$, in $\sum_3 : x \le K \le x^{7/4}$, and in $\sum_4 : x \le K \le x^{7/4}$ $K \ge x^{7/4}$.

For $K \le x^{3/4}$ we have by (3. 3) that

$$\bar{B}_K(x) \ll \frac{\lambda(K)}{\alpha(K)} \operatorname{li} x.$$

.Consequently

$$\sum_{1} \ll \operatorname{li} x \sum_{K \ge \xi} \frac{k_3 x_2 + k_2}{\varphi(K)} \ll x_2 \operatorname{li} x \cdot \xi^{-1/3} \ll \operatorname{li} x.$$

For $x^{3/4} < K \le x$ we use the trivial estimation

$$\overline{B}_K(x) \leq B_K(x) \ll x \frac{\varrho(K)}{K},$$

$$\sum_{2} \ll x^{1+\varepsilon} \sum_{K=-3/4} \frac{\varrho(K)}{K} \ll \text{li } x.$$

Since for $K \ge x$

$$B_K(x) \ll \varrho(K) \ll x^{\varepsilon},$$

and the number of the square-full number in the interval $[1, x^{7/4}]$ is majorized by $x^{7/8+\varepsilon}$, so

$$\sum_{3} \ll \text{li } x.$$

Finally, let $K \ge x^{7/4}$. Let L^2 denote the greatest square divisor of K. Since K is a square-full number, so $L^2 \ge K^{2/3}$ ($\ge x^{7/6}$).

It is obvious, that

$$\sum_{4} \ll x^{\varepsilon} \sum_{K \geq x^{7/4}} \sum_{f(n) \equiv O \pmod{K}} 1 \ll x^{\varepsilon} \sum_{L^{2} \geq x^{7/6}} \sum_{f(n) = hL^{2}} 1.$$

Since the degree of f(n) is 2, so $h \ll x^{5/6}$. Changing the order of summation and applying Lemma 8, we have

$$\sum_{k \le cx^{5/6}} \sum_{\substack{f(n) = hL^2 \\ n \le x}} 1 \ll \text{li } x.$$

Consequently

$$\sum_{K} S_{K} = \sum_{K \le \varepsilon} S_{K} + O(\operatorname{li} x).$$

Taking into account that

$$\sum_{K \le \xi} |a(K)| \, \overline{B}_K(x) \ll \operatorname{li} x \sum_{K \le \xi} \frac{|a(K)|}{\varphi(K)} \ll \operatorname{li} x,$$

we have

$$\sum_{K} S_{K} = \sum_{K \le \xi} k_{3} S_{K,A} + O(\operatorname{li} x).$$

By Lemma 3 we obtain that

$$\begin{split} \left| \sum_{K \le \xi} k_3 S_{K,A} - x_2 \sum_{K \le \xi} k_3 \overline{B}_K(x) \right| &\ll \left(\sum_{K \le \xi} k_3^2 \overline{B}_K(x) \right)^{1/2} \left(\sum_{p \le x} \left(U(f(p)) - x_2 \right)^2 \right)^{1/2} \ll \\ &\ll (\text{li } x)^{1/2} (\text{li } x \cdot x_2 \cdot x_3)^{1/2} \ll \text{li } x \cdot \sqrt{x_2 \cdot x_3}. \end{split}$$

Consequently for the proof of Theorem 2 it is enough to prove that

(5.1)
$$\sum_{K \le \xi} k_3 \overline{B}_K(x) = d \operatorname{li} x \cdot x_2 + O(\operatorname{li} x \cdot \sqrt{x_2 x_3}).$$

The proof of (5.1) is very similar to that of (4.2) and so it can be omitted.

References

- [1] C. Hooley, On the power free values of polynomials, Mathematika, 14 (1967), 21-26.
- [2] P. Erdős, Arithmetical properties of polynomials, J. London Math. Soc., 28 (1953), 416-425.
- [3] P. Erdős, On the sum $\Sigma df(k)$, J. London Math. Soc., 27 (1952), 7—15.
- [4] P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. London Math. Soc., 11 (1936), 125—133.
- [5] K. PRACHAR, Primzahlverteilung (Berlin, 1957).
- [6] E. Bombieri, On the large sieve, Mathematika, 12 (1965), 201-225.
- [7] F. V. ATKINSON and LORD CHERWELL, On arithmetical functions, *Quarterly J. Math.* (Oxford), **20** (1949), 65—79.
- [8] VAN DER CORPUT, Une inegalité au nombre des diviseurs, Nederl. Wetensch. Proc., 42 (1939), 547—553.

(Received May 2, 1967, revised December 30, 1967)