On interpolation functions. II

By J. PEETRE in Lund (Sweden)

The purpose of this note is to indicate a certain simplification of the results of [2]. (We use throughout the terminology of that note.)

If h = h(u) is a positive Borel measurable function on $(0, \infty)$ we agree to say that h is pseudo-concave if it is equivalent to a concave function, i.e. if there exist a concave function h_0 and a constant C such that $C^{-1}h_0(u) \leq h(u) \leq Ch_0(u)$ for all u.

Lemma. h is pseudo-concave if and only if for some C holds

$$h(v) \leq C \max(1, v/u) h(u) \quad for \ all \quad u, v.$$

Proof (necessity). It suffices to show that (1) holds for h_0 . But from the concavity it follows that $h_0(u)$ is increasing [but $\frac{h_0(u)}{u}$ is decreasing. Therefore (1) follows with C = 1.

Proof (sufficiency). Let $\alpha_i \ge 0$, $\sum \alpha_i = 1$, $u = \sum \alpha_i u_i$ (finite sums). Using (1) we obtain

$$\Sigma \alpha_i h(u_i) \leq C \Sigma \alpha_i \max\left(1, \frac{u_i}{u}\right) h(u) \leq C \left(\Sigma \alpha_i + \Sigma \frac{\alpha_i u_i}{u}\right) h(u) \leq 2Ch(u).$$

This establishes the pseudo-concavity because we may now take

$$h_0(u) = \sup \sum \alpha_i h(u_i),$$

which is by the way the least concave majorant of h.

Corollary. If h(u) is pseudo-concave so is $k(u) = (h(u^r))^{\frac{1}{r}}$ where $r_{1,s}$ any real number $\neq 0$.

Proof. Obvious. - This corollary was obtained in [2] as a by-product of the main result there which we now reformulate as follows.

Theorem. A function $H = H(z_0, z_1)$ homogeneous of degree |1 and satisfying condition (2) in [2] is an interpolation function (of any power p) if and only if it is of the form $H(z_0, z_1) = z_0 h(z_1/z_0)$ with h pseudo-concave.

Proof (necessity). Consider the space $X = \{x, y\}$ provided with the measure μ such that each of the two points x and y carries the mass 1. Take

$$\zeta_0(x) = 1, \ \zeta_0(y) = 1; \ \zeta_1(x) = u, \ \zeta_1(y) = v$$

and define a linear mapping π by $\pi a(x) = 0$, $\pi a(y) = a(x)$. The corresponding operator norms of π (considered as a mapping from $L_{\zeta_0}^p$ into $L_{\zeta_0}^p$ etc.) are

$$M_0 = 1, \quad M_1 = \frac{v}{u}, \quad M = \frac{h(v)}{h(u)}.$$

By the inequality (cf. inequality (1) in [2]) $M \leq C \max(M_0, M_1)$ we now get

$$\frac{h(v)}{h(u)} \leq C \max\left(1, \frac{v}{u}\right)^{-1}$$

which establishes (1).

Proof (sufficiency). By the lemma H is equivalent to a function of the form (4) in [2]. Therefore we may use the corresponding part of the proof of theorem 1 in [2] (cf. in particular pp. 168—169).

We conclude by illustrating our new result in a concrete case (cf. [1]). Let $X=(0,\infty)$, $\mu=$ Haar measure, $\zeta_0(x)=1$, $\zeta_1(x)=e^{x^a}$ ($\alpha>0$). With

$$h(u) = e^{(\log u)^{\lambda}}, \quad \lambda = \frac{\beta}{\alpha} \qquad (\alpha > \beta > 0)$$

we then have

$$e^{x^{\beta}} = h(e^{x^{\alpha}}) = \zeta_0 h\left(\frac{\zeta_1}{\zeta_0}\right).$$

We claim that h is pseudo-concave. It is clear that h(u) is increasing. It suffices therefore to show that $\frac{h(u)}{u}$ is decreasing if u is large, since the values u < 1 do not interfere. To this end we consider the corresponding logarithmic derivative; we have

$$\frac{d}{du}\log(h(u)/u) = (\lambda(\log u)^{\lambda-1} - 1)/u$$

which, since $\lambda < 1$, eventually becomes < 0. Applying now our theorem we thus get the following interpolation theorem: If π is a continuous linear mapping from L_0^p into L_α^p into L_α^p it is also a continuous linear mapping from $|L_\beta^p$ into L_β^p ($\alpha > \beta > 0$). Here we have set $L_\gamma^p = L_{(e^{\alpha\gamma})}^p$ with $\gamma = 0$, α , β .

References

 [1] C. GOULAOUIC, Interpolation entre les espaces L^p avec poids, C. R. Acad. Sci. Paris, 262 (1966), 333-336.

[2] J. PEETRE, On interpolation functions, Acta Sci. Math., 27 (1966), 167-171.

(Received April 5, 1967)