The spectrum of the'Ce.siu'd operator
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Introduction

- Suppose that x is a locally integrable function on R+ =|[0, ) and that the

Cesaro average of x is defined by
14

o . Px(t)=%fx(s)ds.

0

In [3}, BRowN, HaLMOs and SHIELDs considered the operator P as a bounded operator
from L*(R*) to itself and showed that the spectrum in this case is the circle '

@)  e(PLH) = {AA-1] =1}

In this paper, we examine P as an opefator in LP(R*) when p=2 and show
that the spectrum in this case is the following set:

3y o(P; L) = {A:Re(1/2) = (p—1)/p},

which, for p>1, is a circle with centre 2(p —1)/p and the same radius, and for p=1,
is the imaginary axis.

The result can.be extended to 1nclude certain rearran gement invariant spaces X,
in which case the spectrum becomes the following lune:

(@) o(P;X)={A:1-B=Re(1/D) = 1 —q},

where « and § are the indices associated with the space X as in [I]. The proof for
~ this will appear elsewhere.

The method of proof is to exhibit integral operators which are proved to be
the resolvents of P for Re (1/))<(p—1)/p and Re (1/2)=>(p—1)/p, respectively.
A short additional argument then shows that the spectrum is indeed given by (3).

*) The author is presently at the California Institute of Technology, Pasadena.
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Preliminary Lemmas

Let x be a locally integrable function, and let { be a complex number. Define
the operators P, and Q; by
) 4 L
) , Px@) = [ s~ix(st)ds,
]
whenever

1
f [s~¢x(st)|ds < > a.e.,
0 o

and

o

(6) ' Q)= f s¢x(st) ds,
wheneve_r !

o

f [s= x(st)|ds <= == a.e.

1 ®
We denote the space of bounded linear operators on L? by B(LP) and the spectral
radius and norm of T€B(LP) by r(T; L?) and || T|| . Tespectively.

Lemma 1. Letl= p§ oo, and the operators P, and Q, be defined by (5) and (6).
(@) P,€B(LP) with domain all of L? if and only if

- Rel<(p=D)fp (=1, if p=co).
In this case,
-1 :
® - 1P, = r(Pg; L?) = [‘i]}l—Re c] .
(b)' Q. € B(LP) with domain all of L? if and only if

©) Re{>(p—1)/p.
In this case, '

_11-t
(10) “Qillp.z r(QgQ Lry = [ReC——p—P—l] .

Proof. The proof that (7) implies that P, € B(L?) and that (9) implies that
Q€ B(L?) can be derived from ([4], Th. 318). The other pafits are given for real
{ in ([2], Theorem 2 and introductory remarks), and the proofs given there ‘are
easily extended to complex (.

Lemma 2. Let 1=p=o. Let x€LP be such that PxelLP, .
(@) If P€B(L®), then PP x€LP, and '

(11) . [PPx=[PPx=(P—P)x,
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(6) If Q,€B(L), then POx€L?, and
(12) . (PQx={QPx=(P+Q)x.

Proof. (a) Since Px¢€L?, and P, € B(L?), PPx¢L?, and
) 1

(13) _ i : f ls‘g(Px)(_st)lds <o, t=>0. - _ o

0

We can write (13) as an iterated integral using the definition of P to show that
) ' .

(14) S [ s Rec—ldsf|x(m)|du<oo >0,
g .
~and ‘then apply FuBINT’s theorem to the followmg 1terated mtegral

1

CP;Px(tj = Cf-s‘g‘lds fx(ut)du = Cf x(ut) dufS‘C‘lds =

(15) _
| f (l—u‘c)x(ut)du = Px(t)— P.x(0).

Also changing variables in another way and usmg (14) to justify the interchange

of order of integration,
1 1

.(16) P.Px(f) = fs Edsfx(sut)du— fdufs Sx(sur)du = PP.x(t), 1> 0.

This proves (11). (Note that Re{<1 is necessary for P;EB(L") by Lemma 1,
so we have used this fact freely.)
(b) The proof of (12) follows the same pattern as in (a) and we leave the

* appropriate manipulations to the reader.

The resolventjof P

By Lemma 1, applied to { =0, it is clear that P B(L?) iff 1 < p< e, Of course,

_this is a well known result of HARDY. In case p =1 we can define P as a closed linear

operator with range L' and domain D(P; L') dense in L' by the 51mp1e expedient
of defining :

: : 1 1. '
1" D(P;LY) = {x€L1 : f dtf |x(st)| ds < oo}.
o] 0 :

To show D(P; L!) is dense in L!, we note that it contains all functions in L!
vanishing in a neighbourhood of 0. Since convergence in norm in L! implies con-
vergence a.e., it is €asy to prove that P is closed as an operator D(P; L') -~ L!,

3 A
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For p>1, we define D(P;LP)=L". :
_The resolvent set of P considered as an operator D(P; LP) —»LP will be denot-
ed o(P; L”) and the spectrum by o(P; L?).

Theorem 1. Let A be a complex number satisfying

as Re (1/2)<(p—D/p or Re(l//l)>(1)—1)/1)
Then, A€o(P; LF) and for each x¢L?,

a9 @A—P)y'x =@ +4" 21"1/,1)36, Re(1/2) < (p—1)/p,
(20) (A—P)'x=(A"1=2720Q,)x, Re(l/d) > (p—Dp.

Proof. Let {=4'. And Re()<(p—1)/p. From Lemma I, _we Have
P e B(L?), and from Lemma 2,

ey - (A=P)C+{Px =l LP+{P — c2PP¢1x =X,

and also
22 . , (C+CZP;)(/1 P)x=x,

for every xED(P LP). But D(P; LP) is dense in L” and hence (21) and (22) are’
enough to show that (1 — P) has the bonnded inverse { +{2P,, for Re O<(p—~ D/p. .
Similarly, (4 — P) has the bounded inverse given in (20) for Re © >( p—1/p.

Theorem 2. Let A be a complex number satlsfymg Re (1//1) (p—l)/p
_Then A€ao(P; LP).

- Proof. Let A be a sequence of complex numbers with Re (1 /A )<(p— 1)/p,‘
approachmg A Then by Lemma 1 if C =1

v IIC,.+C P, =N Py )l = 1] = [ 12 [(p—1)/p—Re C,.]‘ — [Cal = o
as. {,~{. Hence 1€0(P; L).
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