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1. Introduction 

Let A denote a continuous self-adjoint operator in a J-space H (for definitions 
see Sections 2 and 3 below). In the present paper we give a necessary and sufficient 
condition (Theorem 1) for the existence of a continuous linear operator C in H 
such that 

(1) A = C*C. 

In the special case when the space H is of type Hk we obtain (in Theorems 2 
and 3) the solution of a problem proposed in [1]. Partial answers to other questions 
contained in [1] are to be found in the communications [2]—[5]. 

We mention that Theorem 2 is equivalent to an early result of POTAPOV ([6], 

Chapter 2, Theorem 2). . 
In /-spaces whose positive and negative components are of equal infinite dimen-

sion it turns out that the representation (1) is always possible (Theorem 4). 
In some ./-spaces property (1) is known [1] to be less restrictive than the existence 

of a self-adjoint square root: 

(2) A = B2 (B*=B). 

Therefore we do not hope that our conditions would have a significance similar 
to that of positivity in Hilbert space. However, they are so simple comparatively 
to the criteria for (2), contained in [2] that it seems desirable to use the factorization 
(1) instead of (2) as far as possible. 

Lemmas 1—3 are known; Lemmas A—7 slightly generalize some results of 
GINZBURG, JOHVIDOV and WITTSTOCK. It should be noted that Lemmas 5 and 6 

show the invariant character of some of the notions applied, but actually they 
are not used in the following. 
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2. Basic facts concerning /-spaces 

We consider a complex vector space H and a hermitian form (• , •) defined 
on H x H . The corresponding quadratic form is not assumed to be positive definite. 
We shall say that (x, y) is the inner product of the elements x, y£H. 

Two elements, x and y are orthogonal to each other if (x, y) = 0. Two sets 
F, GczH are said to be orthogonal if any element of F is orthogonal to any element 
of G. 

An element x£H is called positive if (x, x) >0, neutral if (x, x)=0, and negative 
if (x, x) < 0. A subspace (linear manifold) L a H is said to be positive (neutral, 
negative) if all its elements except 0 are positive (neutral, negative). 

The positive (negative) subspace L is intrinsically complete if it is complete 
with respect to the intrinsic norm 

(3) \x\L-=\(xrx)\* (x€L). • 

In the following we assume that H is a J-space i. e. H is an orthogonal direct sum 

(4) H=H+®H~ 

of an intrinsically complete positive subspace H+ and an- intrinsically complete 
negative subspace H~. 

In the special case dim H~ we say that H is a space of type Hk. Spaces 
with dim H+ < co have essentially the same properties. 

In a /-space H we put 

(5) [x,y] = (x+,y+)-(x-,y~) (x,y£H) 

where x = x + + x~, y—y+ +y~ denote the decompositions of x and y corresponding 
to (4). 

It is evident that [x, x ] > 0 if x^O. Therefore the hermitian form (5) may be 
called the definite inner product belonging to the decomposition (4). By definition, 
the /-space is a Hilbert space with respect to this definite inner product. The functional 

(6) \\x\\=[x,x]i (xeH) 

is called the norm belonging to (4). 
The norm (6) defines a topology in H. In the following the words "closed", 

"continuous", etc. will always refer to this topology. 

Lemma 1. For any x,y^H we have |(x, S||x|| ||y||. 

P r o o f . We shall use the same notations as in (5). By the orthogonality of 
H+ and H~ we have 

( x + , j - ) = ( x - , j + ) = 0. 
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On the other hand, it follows from (5) that 

[*+,*-].= [y+,y-] = 0. 
Thus we can write 

| ( * , j 0 | ^ | ( x + , j + ) | + [ (x- j " ) | = + == | | * + | | l b + | | - + | | * - | | | | ; r l l ^ 

s (I|x+II2 + n * - | | 2 ) * ( l b + 1 | 2 ' + lb-1 | 2 )± = M M . 

Let T be a continuous (everywhere defined) linear operator in the /-space H 
By virtue of Lemma 1 (Tx , y) is a continuous linear form in x and the Riesz repre-
sentation theorem assures the existence of an element y ^ ^ H such that 

(J7*,» = [x,y*] (x£H). 
Setting 

T*y = yt-y¿ (yíH) 

where y*=y£ +y* (;y* £H+, y¿ £H~) we obtain 

(Tx, y) = (x, Ty) (x, y £ H). 
One verifies easily that T* is a single-valued continuous linear operator. We call 

T* the adjoint of T. The operator T is said to be self-adjoint provided T* = T. 
For a continuous self-adjoint operator A one can define the A-inner product by 

(7) (x,y)A = (Ax,y) (x,y£H). 

The form (• , -)A is hermitian and continuous (Lemma 1). In the special case A=I 
it turns into the original inner product (- ,-)• 

Using the ^-inner product the notions of A-orthogonality, A-positivity, intrinsic 
A-completeness etc. can be introduced in the same way as orthogonality, positivity, 
intrinsic completeness have been defined with the help of the original inner product. 
The intrinsic A-norm on an ^4-positive or yl-negative subspace L has the form 

(8) I*Ul=I(*,*)AI* (X€L). 

An A-fundamental decomposition is a representation of H as the ^4-orthogonal 
direct sum of an ^-neutral subspace HA, an ^-positive subspace HA and an A-
negative subspace HA : 
(9) H = H°A+HX+H-A. 

In the case A = I we speak of a fundamental decomposition. E. g. the decomposition 
(4) appearing in the definition of a /-space is a fundamental one. 

An yá-fundamental decomposition (9) is regular if HA + HA is closed. 

Lemma 2. (See e.g. [7], § 3, section 2.) Let A be a continuous self-adjoint 
operator in the J-space H. Then H admits at least one regular A-fundamental de-
composition. 
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Lemma 3. The A-neutral component HA of an arbitrary A-fundamental de-
composition (9) consists of all elements in H that are A-orthogonal to H: 

(10) H°A = {x:(x, y)A = 0 for every y£H}. 

Proo f . If x£HA then x is ^4-orthogonal to H\ and HA by the definition of 
the ^-fundamental decomposition. Furthermore, ( • , Ox is a semi-definite form 
on HA, hence the Schwarz inequality |(x, y)A\2 = (x, x)A(y, y)A (x, ydHA) is valid. 
It follows that x is ^-orthogonal to HA. 

If, conversely, the element 

(11) x = x°A + xi+xA (x°AíH°A, x+AíH+
A, xAíHA) 

is ^-orthogonal to H then (x, x\)A = (x+
A, x j ) x = 0 and (x, X2)a = (Xa, xA)A = 0 

But Hi is ^4-positive and HA is ^-negative. Therefore x¿¡ and xA must be 0. 
As a corollary we obtain that every fundamental decomposition of a /-space 

is of the form (4). 

Lemma 4. Each component of a regular A-fundamental decomposition (9) 
is closed. 

Proo f . HA is closed by Lemma 3 and the continuity of the v4-inner product 
(cf. Lemma 1). 

Denote by HA the relative closure of H% in HX + HA. If HX then H% , 
has a non-trivial intersection with the ^-negative subspace HA. But this is impossible, 
since it follows from the continuity of the dinner product that HA is ^4-non-negative. 
Hence HX is closed in H\ + H'A and, the decomposition (9) being regular, in H 
as well. 

For HA the argument is similar. 

3. Invariant properties. Intrinsic ^-dimension 

We consider an /4-fundamental decomposition (9) and define 

(12) [x,y]A = (xX,yi)A-(x2,yl)A (x,yZH). 
Here 

x = x°A + xX+xA, y — y¿+yi +y¿ 

are the decompositions corresponding to (9). 
It is clear that [x, x]A S 0 for every xdH. We call [ •, -]A the semi-definite A-inner 

product belonging to (9). The corresponding A-semi-norm is 

(13) \\x\\Á=[x,xfA (xiH). 
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Lemma 5. The A-semi-norms belonging to any two A-fundamental decompo-
sitions are topologically equivalent. 

Proof . Let H°A be defined by (10), and put 

HW = {x:[x,y] = 0 for every y£Hl}. 

Then H ^ is a closed subspace and we have 

(14) H = H ° A + H P . 

We consider an arbitrary .¿-fundamental decomposition (9), and set 

(15) Vx = x°A + x^ (x<=H) 

wherejx° is defined by (11), and xV> is the component of x in H ^ corresponding 
to the decomposition (14): 

(16) x = *<?) + x p (*</» € , > € H p ) . 

It is evident that V is a one-to-one linear mapping of H onto H which leaves 

the elements of HA fixed, and carries HX + Hj into H^. Moreover, according 
to (15), (16) and (10) the identity 

(17) (Vx,Vy)A = (x, y)A (x,ydH) 

holds. Introducing the notations 

(18) VHX = H^K VHA = H<A~> 

we obtain an /i-fundamental decomposition 

(19) H = H ° A + H ^ + H ^ 
where 
(20) + = 

Let 
(21) VxX=x^\ VxA = *<f>. 

Then in virtue of (18) we have x(
A

+) <=H(
A

+\ x ^ ^ H ^ and the relations 
(11), (21) imply that 

(22) Vx = x°A + x(
A

+) + x(
AK 

Comparing (22) with (15) we obtain: 

(23) . = 

The equalities (23) and (16) yield: 
. (24) x = x¡°> + + xi"> (*<?> 6 H i , €H</\*<f > € #<f>). 
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The ^-semi-norm belonging to (19) is 

(25) M l ^ =№>,x<A
+>)A-(x<r\x<r>)A¥ (xtH). 

Taking the analogous definition (13), (12) of ||jt||A and the relations (21), (17) into 
account we see that 

M i x = M l i > 

But, according to (23), (24) and (25), 

M i > = II*™ > (pc€H). 
Hence 

M L = tó^lli } (xZH). 

Consequently, it is sufficient to show that for any two ^-fundamental de-
compositions, which are of the form (19) and satisfy (20), the corresponding ^4-semi-
norms (25) are topologically equivalent on the closed subspace H (

A \ As, by virtue 
of (10) and (14), the ^4-inner product is non-degenerate on H(

A\ i.e. for 
(x jt 0) there is an element y 6 H^ such that (x, y)A ^ 0, the statement of our temma 
follows from WITTSTOCK'S theorem ([8], Theorem 15; cf. also [9]). 

In the special case A = I Lemma 5 (or WITTSTOCK'S theorem itself) asserts 
that the topology of H does not depend on the choice of the fundamental decomposi-
tion (4). 

Lemma 6. If the component H^ (H^) of an A-fundamental decomposition 
(19) is intrinsically A-complete then the respective component HA (HA) of any other 
A-fundamental decomposition (9) is also intrinsically A-complete. 

P r o o f . We denote by P the projection operator belonging to the subspace 
HA and the decomposition (9), i. e. 

Px = x\ (x£H) 
where xA is defined by (11). 

According to (12) and (13) we have 

(26) MÑ+\\XLÑ = ML {XZH). 

On the other hand, \\xX\\A-\\xA\\2
A = (x, x)As=0 for x£H(

A
+\ so that 

(27) O s l t o l l i s l la l l i ( x O Í ^ ) . " 

Using (27) we obtain from (26) 

(28) _ \\xi\\A^\\x\\A^Y2\\xt\\A 

Since || . || ¿ is a norm on both of the yi-positive subspaces H(
A

+\ HA , the 
relations (28) and the definition of P imply that with respect to || . the operator 
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P induces a topological isomorphism (a linear, one-to-one, bicontinuous mapping) 
between H^ and the subspace PHl

A
+) aHX (cf. [7]). 

If H[4+) is intrinsically ^-complete then it is complete in the norm 

(see (8) and (25)) and, as a consequence of Lemma 5, in the norm || . Therefore 
the image P H i s also complete in the norm 

MA = MA,H+ = \X\A.P„^ XxtPHP). 

In other words, the subspace is intrinsically .¿-complete. 
We shall show that PH<^ ) =H%. Assuming the contrary, the intrinsic A-

completeness of PH(
A

+) would imply the existence of an element x0 6 HA (xO7±0) 
which is ^-orthogonal to PH(/K Then x0 is. ̂ 4-orthogonal to so -that the 
span of x0 and HA

+) is an A-positive extension of H'A
) . But this is impossible 

because, in virtue of (19), any subspace properly containing H h a s a non-trivial 
intersection with the /i-non-positive subspace HA 4- H(

AK 
For an intrinsically A-complete B(

A~> the proof is similar. 
In the special case A = I we obtain that the components of any fundamental 

decomposition of a ./-space are intrinsically complete. 
Consider an -positive or ^-negative subspace I c f f . The dimension of the 

completion of L with respect to the intrinsic /1-norm (8) will be called the intrinsic 
A-dimension of L. It is equal to the minimal power of those systems in L which 
are complete in L with respect to (8). The equivalence of the two definitions follows 
essentially by the same argument as the separability of the subsets of a separable 
metric space (see [10], Section 33). 

Ju. L . SMUL'JAN called our attention to the fact that for a closed ^-positive 
or ^-negative subspace L the intrinsic ^-dimension coincides with the usual Hilbert 
dimension. This can be seen as follows. 

L is a Hilbert space with respect to the definite inner product (5). Let L be 
^-positive. Then (Ax, y) is a continuous positive form on L, and there exists a 
continuous positive operator B acting in the Hilbert space L such that 

(Ax, y) = [Bx, y] (x, ydL). 

Taking the positive square root B* we have 

(Ax, y))=[Bix, Biy] (x,yeL). 

Therefore if a system {ey}yir is complete in L with respect to the y4-inner product 
then {S^Jygj-is complete in BiL with respect to the definite inner product. As BiL 
is dense in L we obtain that the Hilbert dimension of L is not greater than the 
intrinsic ^-dimension of L. The converse inequality is trivial. 
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Instead of "intrinsic /-dimension" we shall use the term intrinsic dimension. 

L e m m a 7. Let L+(L~) be an A-positive (A-negative) subspace of the J-space 
H, and let (9) denote any A-fundamental decomposition of H. Denote the intrinsic 
A-dimensions of L+ and HA (L~ and HA) by d+ and kA (d~ and k~A) respectively. 
Then d+ ^kA (d~ ^kA). In particular, the cardinal numbers kA, kA do not depend 
on the choice of the A-fundamental decomposition. 

P r o o f . In the same way as it has been done in the first half of the preceding 
proof one can show that, with respect to the ,4-seminorm || . ||A belonging to the 
decomposition (9), L+ is topologically isomorphic to a subspace of HA- Observ-
ing that 

we obtain the inequality df s. kX where df t stands for the dimension of the completion 
of L+ with respect to || . i. e. for the minimal power of systems in L+ which 
are complete in L+ with respect to || . 

On the other hand, for x £ L + we have 

1*11= (*>*)¿ = ixX,xi)A + {xA,xX)A (.X%,XZ)a-(X2,XX)a = \\x\\\. 

Therefor e d + ^ d f . 
We have proved that d+ ^kA. The inequality d~ ^kA can be verified similarly. 

4. The representation A = C*C 

T h e o r e m 1. Consider a continuous self-adjoint operator A in the J-space H. 
Denote by k+ and k~ the intrinsic dimension of the positive resp. negative component 
of a fundamental decomposition, and by kA and kA,_ the intrinsic A-dimension of the 
A-positive resp. A-negative component of an A-fundamental decomposition of H. 
Then A admits a representation (1) with a continuous linear operator C if and onlv if 

(29) kX 
and 

(30) ¿ ¡ s r . 

P r o o f . First we remark that (1) is equivalent to the identity 

(31) (Ax,y) = (Cx,Cy) (x,y£H). 
Now we assume that A and C satisfy (31). Applying Lemma 2 we choose some 

^-fundamental decomposition (9) and put CHA=R+. Then, in virtue of (31), 
R+ is a positive subspace, and C is a linear one-to-one mapping of HX onto R+. 
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Applying the relation (31) once again we obtain that the intrinsic dimension r+ of 
R+ is equal to the intrinsic ¿-dimension k\ of HX- But, according to Lemma 7, 
r + Therefore (29) is valid. The inequality (30) can be proved in the same way. 

i Conversely, let the operator A satisfy the relations (29), (30). Consider a regular 
¿-canonical decomposition (9) (Lemma 2) and a fundamental decomposition (4) 
of the space H. 

The completion -R% of H% with respect to the ¿-inner product is a Hilbert 
space of dimension kX (Lemma 7). On the other hand, H+ is a Hilbert space of 
dimension k+ with respect to the original inner product (Lemmas 6 and 7). It follows 
from (29) that there exists a linear isometric imbedding of HA into H+. Restricting 
the imbedding operator to HX we obtain a linear operator C + such that 

(32) (Ax,y) = (C+x, C + j ) (x,y£HX). 

Analogously, one can find a linear operator C~, which maps HA into H~ 
and has the property 

(33) (Ax,y) = (C~x,C-y) (x,yeH2). 

For an arbitrary element (11) we define 
(34) Cx = C+xX+C~xA (x£H). 

C is a linear operator of H to itself. Moreover, as a consequence of (32), (33), the 
orthogonality of the decomposition (4), the ¿-orthogonality of the decomposition 
(9), and the ¿-orthogonality of H°A to H (Lemma 3), C fulfils the relation (31). 

It remains to prove that C is continuous. For this purpose we apply the norm 
(6) which belongs to the fundamental decomposition (4) occuring in the above 
construction (cf. Lemma 5). We have 

\\Cx\\2 = (CxX,CxX)-(CxA,CxX) = (AXX,XX)-(AXA,XA). 

Therefore, by Lemma 1, one obtains 

(35) ||Cx||2=i \\A\\(IW||2-r||2). 

As we are considering a regular ¿-fundamental decomposition, HA and HA + HA 

are closed subspaces of the complete space H (Lemma 4). Thus, according to a 
well-known corollary .to BANACH'S theorem, xA + xA, depends continuously on x. 
On the other hand, HX and HA! are closed subspaces of H (Lemma 4) and, conse-
quently, they are closed subspaces . of HX + HA . A second application of the Banach 
theorem yields that xX and xA, depend continuously on x^ + xA .f As a result, 
xX and xA are continuous functions of the element x. This fact together with the 
relation (35) implies the continuity of the operator C. 

The theorem is proved. 
In the following we consider some consequences of Theorem 1. 
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Theorem 2. Let A denote a self-adjoint operator in an n-dimensional space 
H of type Hk (Os^«<co). Then A admits a representation (1) with a linear C 
if and only if the following two conditions are fulfilled: 

<x) H contains an A-non-positive subspace of dimension k; 
(i) H does not contain any A-negative subspace of dimension k+ 1. 

P r o o f . With the notations of Theorem 1 we have: 

(36) k~=k, k+=n-k. 

Consider an ^-fundamental decomposition (9) and put dim H°A = kA. If L is 
a subspace and dimL>k°A + kA, then L has a non-trivial intersection with the 
^4-positive subspace HA. Analogously, if dim then L has a non-trivial 
intersection with the A-non-negative subspace HA + HA. Therefore kA + kA (kA) 
is equal to the maximal dimension of ^-non-positive (resp. ^-negative) subspaces. 

It follows from the foregoing that the conditions a), /i) can be written in the form 

(37) ' tt + k j ^ k , 
resp. 
(38) k 2 * k . 

By virtue of (36) the relations (37), (38) are equivalent to the conditions (29), (30) 
in Theorem 1. 

Theo rem 3. Consider an infinite-dimensional space H of type Hk, and a 
continuous self-adjoint operator A in H. The representation (1), where C denotes 
a continuous linear operator, is possible if and only if A satisfies condition ft) of 
Theorem 2. 

P r o o f . One of the statements of the preceding proof remains valid for the 
present situation in the modified form that kA is equal to the maximal dimension 
of ^-negative subspaces, provided that one of these numbers is finite. Consequently, 
P) is equivalent to (38) or, what is the same, to (30) even now. 

On the other hand, the ordinary dimension (i. e. the dimension with respect 
to a norm (6)) of H is k+ + k~ = k+ + k= k+. As the continuity of the .¿-inner 
product (see Lemma 1) implies that the intrinsic ^(-dimension of the component 
HA of an yl-fundamental decomposition (9) is not greater than the ordinary dimen-
sion of Hi, in our case the inequality (29) holds for every A. 

Now the conclusion of our theorem follows from Theorem 1. 

Theo rem 4. If the J-space H has infinite dimension, and the cardinal numbers 
k+ and k~ defined in Theorem 1 are equal to each other, then any,continuous self-
adjoint operator A in H admits the representation (1) with a continuous linear C. 
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P r o o f . In the present case both of the relations (29), (30) are always satisfied, 
since the ordinary dimension of H is equal to k+ +k~ =k+ =k~, and any ordinary 
dimension in H, a fortiori (see Lemma 1) any intrinsic ¿-dimension in H, does 
not exceed this common value. Therefore our theorem is a consequence of Theorem 1. 
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