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1. Introduction

Let A4 denote a continuous self-adjoint operator in a J-space H (for definitions
see Sections 2 and 3 below). In the present paper we give a necessary and sufficient
condition (Theorem 1) for the existence of a continuous linear operator C in H
such that '

()] , A=C*C.’

In the special case when the space H is of type H, we obtain (in Theorems 2
‘and 3) the solution of a problem proposed in [1]. Partial answers to other questions
contained in [1] are to be found in the communications [2]—{5].

We mention that Theorem 2 is equivalent to an early result of PotApov ([6],
Chapter 2, Theorem 2).

In J-spaces whose positive and negative components are of equal infinite dimen-
sion it turns out that the representation (1) is always pbssible (Theorem 4).

In some J-spaces property (1) is known [1] to be less restrictive than the existence
of a seif-adjoint square root:

V) A A=B?* . (B*=B).

Therefore” we do not hope that our conditions would have a significance similar
to that of positivity in Hilbert space. However, they are so simple comparatively
to the criteria for (2), contained in [2] that it seems desirable to use the factorization
(1) instead of (2) as far as possible.

Lemmas 1—3 are known; Lemmas 4—7 shghtly generalize some results of
GINZBURG, JoHvIDOV and WITTSTOCK. It should be noted that Lemmas 5 and 6
show the invariant character of some of the notions applied, but actually they
are not used in the followmg
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2. Basic facts concerning J-spaces

We consider a complex vector space H and a hermitian form (-, -) defined
on H X H. The corresponding quadratic form is not assumed to be positive definite.
We shall say that (x, y) is the inner product of the elements x, y€ H.

‘Two elements, x and y are orthogonal to each other if (x, y)=0. Two sets
F, G H are said to be orthogonal if any element of F is orthogonal to any element
of G. :

An clement x € H is called posztwe if (x, x) >0, neutral if (x, x)=0, and negative
if (x, x)<0 A subspace (linear manifold) L c H is said to be positive (neutral,
negative) if all its elements except 0 are positive (neutral, negative).

The positive (negative) subspace L is mtrmszcally complete if it is complete
with respect to the intrinsic norm

3 [xlL=Ix, ) (x€l). -
In the following we assume that H is a J-space i. e. H is an orthogonal direct sum
©) ' H=H*oH~

of an intrinsically complete positive subspace H* and an- intrinsically complete
negative subspace H-. » ’

In the special case dim H- =k<oowe say that H i is a space of type H,. Spaces
with dim H* << have essentially the same propertles

In a J-space H we put

¢ [x, 9] = x*,yF)=(x",y7)  (x,y€H)
where x =x* + x~, y=y* + y~ denote the decompositions of x and y corresponding
to (4).

It is evident that [x, x] =0 if x 0. Therefore the hermitian form (5) may be
called the definite inner product belonging to the decomposition (4). By definition,
the J-space is a Hilbert space with respect to this definite inner product. The functional

(©) Il =[x, xF (xeH)

is called the norm belonging to (4).
The norm (6) defines a topology in H. In the following the words “closed”,
“continuous™, etc. will always refer to this topology.

Lemma 1. For any x, yEH we have |(x, y)[§l|x|[ Ivll.

Proof. We shall use the same notations as in (5). By the orthogonality of
H* and H- we have
» (x*,37) = (7,7%) = 0.
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On the other hand, it follows from (5) that

[x*,x7]=[y*,y7] = 0.
Thus we can write :
[Ge, I = 1Ge*, y 0+ (= y7)| = e+, 1+ =, y71 = ety i+ x- Tyl =
= (IeF I+ 112Uy 12+ 1y~ 12 = D] iy]- ‘
Let-T be a continuous (everywhere defined) linear operator in the J-space H

By virtue of Lemma 1 (Tx, y) is a continuous linear form in x and the Riesz repre-
sentation theorem assures the existence of an element y, € H such that

(Tx,y) =[x, y:]  (x€H).
. Try=yi-yi (yEH)
where y,=y§ +yi (vi €H*, yx €H~) we obtain
(Tx, p)=(x, T*y)  (x,y€H).

" One verifies easily that T* is a single-valued continuous linear operator. We call
T* the adjoint of T. The operator T is said to be self-adjoint provided T*=T.
For a continuous self-adjoint operator 4 one can define the A-inner product by

™ (6 9a=(4x,3) (5, yEH).

The form (-, -)4 is hermitian and continuous (Lemma 1). In the special case 4=1
it turns into the original inner product (-,:). )

Using the A-inner product the notions of A-orthogonality, A-positivity, intrinsic
A-completeness etc. can be introduced in the same way as orthogonality, positivity,
intrinsic completeness have been defined with the help of the original inner product.
The intrinsic A-norm on an A-positive or A-negative subspace L has the form

® IXIA =10 x4t (xeD).

An A-fundamental decomposition is a representation of H as the A4-orthogonal
direct sum of an A-neutral subspace HY, an A- posmve subspace H} and an A4-
negative subspace Hy :
® _ H=H{+H};+Hj;.

Setting

In the case A =1 we speak of a fundamental decomposition. E. g. the decomposition
(4) appearing in the definition of a J-space is a fundamental one.
An A-fundamental decomposition (9) is regular if H} -+ Hy is closed.

Lemma 2. (See e.g. [7], § 3, section 2.) Let A be a continuous self-adjoint
operator in the J-space H. Then H admits at least one regular A-fundamental de-
composition.
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Lemma 3. The A-neutral component HS of an arbitrary A-fundamental de-
composition (9) consists of all elements in H that are A-orthogonal to H:

(10)  HY ={x:(x,). =0 for évery y€H}.

Proof. If x¢ HY then x is A-orthogonal to H] and H by the definition of
the A-fundamental decomposition. Furthermore, (-,-), is a semi-definite form
on HY, hence the Schwarz inequality |(x, y)4|* = (x, X)4(), )4 (x, y€ HY) is valid.
It follows that x is A-orthogonal to HY.

If, conversely, the element

an x=xY+xi+xy . (Y€HY, xicHj, x3€HY)

is A-orthogonal to. H then (x, x}),=(x}, x{)4=0 and (x, x1)4=(x7, x4 =0
But HY is A-positive and H; is A-negative. Therefore x}| and x5 must be 0.

As a corollary we obtain that every fundamental decomposition of a J-space
is of the form (4).

Lemma 4. Each component of a regular A-fundamental decomposition . (9)
is closed.

Proof. HY is closed by Lemma 3 and the continuity of the A -inner product
(cf: Lemma 1). :

Denote by H the relative closure of H} in H} +Hj. If H} ~H + then H}
has a non-trivial intersection with the A-negative subspace H . But this is impossible,
since it follows from the continuity of the A-inner product that H} is A-non-negative.

Hence HY is closed in H} + Hj and, the decomposmon (9) being regular, in H
as well.

For H; the argument is similar.

3. Invariant properties. Intrinsic A-dimension

We consider an A-fundamental decomposition (9) and define

(12) B, y]a = 54, yDa— (3, ¥2)a (%, yEH).
Here ' .
x=x3+xi+x1, y=yi+yi+ya
are the decompositions corresponding to (9).-
It is clear that [x, x], =0 for every x¢ H. We call [ -, -], the semi-definite A-inner
product belonging to (9). The corresponding A-semi-norm is

(13) Ixla=[x.xli  (x€H).
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Lemma 5. The A-semi-norms belonging to any two A-fﬁndamental decompo-
sitions are topologically equivalent.

Proof. Let HY be defined by (10), and put

HP ={x:[x,y] =0 for every y€Hj}.

Then HYY is a closed subspace and we have |
(14) : H=H{+HP. »

We consider an arbitrary A-fundamental decomposition (9), and set
5 | Vx=x%+x0  (xeH)

where}x$ is defined by (11), and x4 is the component of x in H{) corresponding
to the decomposition (14):

1) = XD PP P CHS, XD CHY).

It is evident that ¥ is a one-to-one linear mapping of H onto H which leaves
the elements of HY fixed, and carries H} + H into H(l) Moreover, accordmg

. to (15), (16) and (10) the identity

a7 - X Va= a0 (xyeH)
holds. Introducing the notations
(18) VH} = H{", VH7 =H{) -

we obtain an A-fundamental decomposition -

(19) ' H=H}+HP+HY

where ‘ :

Qo) HP LHE = HY.
Let N

@n Vxi =x, Vxi=x{).

Then in virtue of (18) we have x{" e H{, x4 )EH( ) and the relatlons
(11), (21) imply that .
(22) _ Vx = x5+ x+x7.

Comparing (22) with (15) we obtain:
(23) o X ex) =X
The equalities (23) and (16) yield:

) x = xP+x0 + x40 (x(°)€HA xPeHP, x{) € HY).
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The A-semi-norm belonging to (19) is
(25) Ixlé ? = (5P, xiNa— (57, x50))E (xeH).

Taking the analogous definition (13), (12) of x|l , and the relations (21) (17) into

account we see that
lxlle = IIx1 ? (x€ H).

But, according to (23), (24) and (25),

Ixfig 2 = Ix{P05 0 (x€ H).
Hence
Ixle = 1xS205 (x€H).

Consequently, it is sufficient to show that for any two A-fundamental de-
compositions, which are of the form (19) and satisfy (20), the corresponding A4-semi-
norms (25) are topologically equivalent on the closed subspace H{). As, by virtue
of (10) and (14), the A-inner product is non-degenerate on H'D, i.e. for x¢ H{D
(x #0) there is an element y ¢ H' such that (x, y), #0, the statement of our lemma
follows from WITTSTOCK’s theorem ([8], Theorem 15; cf. also [9]).

In the special case 4 =1 Lemma 5 (or WITTSTOCK’s theorem itself) asserts
that the topology of H does not depend on the choice of the fundamental decomposi-
tion (4).

Lemma 6. If the component HY (HS)) of an A-fundamental decomposition
(19) is intrinsically A-complete then the respective component H} (H7) of any other
A-fundamental decomposition (9) is also intrinsically A-complete.

Proof. We denote by P the projection operator belonging to the subspace -
H} and the decomposition (9), i.e. '

Px=x} (xeH)
where x} is defined by (11).
According to (12) and (13) we have

(26) )%+ lIxz 1% = 1% (x€ H).
On the other hand, |x3 ||A—l|xA||A (x,x), =0 for x€ H{, so that
27 0= xzld = Ix{li (x€ H{P).

Using (27) we obtain from (26)

(28) ) Ixils = lxla = V2 Ix} 4 (x€H{).
Since | .4 is a norm on both of the A:positive subspaces HGP), H}, the

relations (28) and the definition of P imply that with respect to || .|, the operator '



Operators of the form C*C : 25

P induces a topolog1cal isomorphism (a hnear one-to-one, blcontmuous mapplng)
between HY") and the subspace PHYH < H (cf. (7). '
If H{" is intrinsically 4-complete then it is complete in the norm

IXlanr = lxly’ - (x€HED)

(see (8) and (25)) and, as a consequence of Lemma 5, in the norm | . || . Therefore
the image PH{ is also complete in the norm

Cixla = lxlA,H: = IXIA,PH;” (xe PH{D).

In other words, the subspace PH{") is intrinsically A-complete.

We shall show that PH{") =H}. Assumjng the contrary, the intrinsic 4- -
completeness of PH{") would imply the existence of an element xo€ H} (x,7#0)
which is A-orthogonal to PH{). Then x, is.A-orthogonal to HY", so that the
span of x, and H{") is an A-positive extension of H{). But this is impossible
because, in virtue of (19), any subspace properly containing H¢*? has a non-trivial
intersection with the A-non-positive subspace HY -+ H({.

For an intrinsically 4-complete H{™’ the proof is similar.

In the special case 4 =17 we obtain that the components of any fundamental
decomposition of a J-space are intrinsically complete.

Consider an A-positive or A4-negative subspace Lc H. The dimension of the
completion of L with respect to the intrinsic 4-norm (8) will be called the intrinsic
A-dimension of L. It is equal to the minimal power of those systems in L which
are complete in L with respect to (8). The equivalence of the two definitions follows
essentially by the same argument as the separability of the subsets of a separable
metric space (see [10], Section 33).

Ju. L. SMUL’JAN called our attention to the fact that for a closed A-positive
or A-negative subspace L the intrinsic 4A-dimension coincides with the usual Hilbert
dimension. This can be seen as follows.

L is a Hilbert space with respect to the definite inner product (5). Let L be
A-positive. Then (4x, y) is a continuous positive form on L, and there exists a
continuous positive operator B acting in the Hilbert space L such that

(Ax, p)=[Bx,y]  (x, y€L)
Taking the positive square root B* we have
(4x, y))=[B*x, Bty]  (x, y€L).

Therefore if a system {e,},¢r is complete in L with respect to the A-inner product
then {B%ey}ye riscomplete in B*L with respect to the definite inner product. As B*L
is dense in L we obtain that the Hilbert dimension of L is not greater than the
intrinsic A-dimension of L. The converse inequality is trivial.
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Instead of “intrinsic I-dimension” we shall use the term intrinsic dimension.

Lemma 7. Let L*(L~) be an A-positive ( A-negative) subspace of the J-space
H, and let (9) denote any A-fundamental decomposition of H. Denote the intrinsic
A-dimensions of L* and HY (L~ and H;) by d* and k} (d~ and k) respectively.
Then d* =k} (d~ =k3). In particular, the cardinal numbers k, k; do not depend
on the choice of the A-fundamental decomposition.

Proof. In the same way as it has been done in the first half of the preceding
proof one can show that, with respect to the A-seminorm | .|, belonging to the
decomposition (9), L* is topologically isomorphic to a subspace of Hf. Observ-
. ing that '

Ixlla=x]4,m4 (xeHY)

we obtain the inequality di =k where dy, stands for the dimension of the completion
of L* with respect to || .||, i. e. for the minimal power of systems in L* which
are complete-in L* with respect to | . |i.

On the other hand, for x€ L* we have

|xl:24.L+ = (x’ x)A = (xI’xI)A'{'(xZ’ xZ)A = (x.Z’ xI)A.—(x;’ x;)A = ”x”i-

Therefore d* =dj.
We have proved that d+ =k}. The inequality 4~ =% can be verified similarly.

4. The representation 4 =C*C

- Theorem 1. Consider a continuous self-adjoint operator A in the J-space H.
Denote by k* and k= the intrinsic dimension of the positive resp. negative component
of a fundamental decomposition, and by k} and kj, the intrinsic A-dimension of the
A-positive resp. A-negative component of an A-fundamental decomposition of H.
Then A admits a representation (1) with a continuous linear operator C if and onlv if

(29) ki =kt
and . -
(30) ki =k

Proof. First we remark that (1) is equivalent to the identity
€2y (Ax, y)=(Cx,Cy)  (x,y€H).

Now we assume that 4 and C satisfy (31). Applying Lemma 2 we choose some
A-fundamental decomposition (9) and put CH} =R*. Then, in virtue of (31),
R* is a positive subspace, and C is a linear one-to-one mapping of H; onto R*.
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Applying the relation (31) once again we obtain that the intrinsic dimension r* of
R* is equal to the intrinsic 4-dimension k} of Hj}. But, according to Lemma 7,
r*=k*. Therefore (29) is valid. The inequality (30) can be proved in the same way. -

« Conversely, let the operator A4 satisfy the relations (29), (30). Consider a regular
A-canonical decomposition (9) (Lemma 2) and a fundamental decomposition (4)

of the.space H.
The completion- A} of H} with respect to the A-inner product is a Hilbert

space of dimension k} (Lemma 7). On the other hand, H* is a Hilbert space of
dimension k* with respect to the original inner product (Lemmas 6 and 7). It follows
from (29) that there exists a linear isometric imbedding of A7 into H*. Restricting
the imbedding operator to H} we obtain a linear operator C* such that

(32 (4x, y)=(C*x, C*y)  (x, y€HJ).

Analogously, one can find a linear operator C~, Wthh maps H; into H-
and has the property

(33) (4%,3)=(C"x, C7y)  (x, y€H2).
For an arbitrary element (11) we define '
(34) Cx=C*xi+Cx; (x€H).

C is a linear operator of H to itself. Moreover, as a consequence of (32), (33), the
orthogonality of the decomposition (4), the 4-orthogonality of the decomposition
(9), and the A4-orthogonality of HS to H (Lemma 3), C fulfils the relation (31).

It remains to prove that C is continuous. For this purpose we apply the norm
(6) which belongs to the fundamental decomposition (4) occuring in the above |
construction (cf. Lemma 5). We have

ICxl? = (Cx¥, Cx})—(Cx%, Cx3) = (Axi, x}) —(4xZ, x3).
Therefore, by Lemma 1, one obtains
-(3%) ICx)? = 4N lxfh? + lxa IIZ)

As we are considering a regular A-fundamental decomposition, H§ and H} + H;
are closed subspaces of the complete space H (Lemma 4). Thus, according to a
well-known corollary_to BANACH’s theorem, x} 4+ xj, depends continuously on x.
_ On the other hand, H} and H, are closed subépaces of H (Lemma 4) and, conse-
quently, they are closed subspaces.of H} + H; . A second application of the Banach
theorem yields that xj and xj depend continuously on xj +x7; §As a result,
x} and x7 are continuous functions of the element x. This fact together with the
relation (35) implies the continuity of the operator C.

The theorem is proved. :

In the following we consider some consequences of Theorem 1.
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Theorem 2. Let A denote a self-adjoint operator in an n-dimensional space
H of type H, 0=k =n<<o). Then A admits a representation (1) with a linear C
if and only if the following two conditions are fulfilled:

o) H contains an A-non-positive subspace of dimension k;

B) H does not contain any A-negative subspace of dimension k1.

Proof. With the notations of Theorem 1 we have:
(36) k—=k, kt=n—k.

Consider an A-fundamental decomposition (9) and put dim H{=k3. If L is
a subspace and dim L>kS% +k;, then L has a non-trivial intersection with the
A-positive subspace H}. Analogously, if dim L=k, then L has a non-trivial
intersection with the A4-non-negative subspace HY-+ HJ. Therefore k% +k5 (k3)
is equal to the maximal dimension of A-non-positive (resp. A-negative) subspaces.
It follows from the foregoing that the conditions «), §) can be written in the form

37 ‘ Ko+ k3 =k,
resp. : :
- (38) ‘ kz=k.

By virtue of (36) the relations (37), (38) are equivalent to the conditions (29), (30)
in Theorem 1. -

Theorem 3. Consider an infinite-dimensional space H of type H,, and a
continuous self-adjoint operator A in H. The representation (1), where C denotes
a continuous linear operator, is possible if and only if A satisfies condition B) of
Theorem 2.

Proof. One of the statements of the preceding proof remains valid for the
present situation in the modified form that k; is equal to the maximal dimension
of A-negative subspaces, provided that one of these numbers is finite. Consequently,
B) is equivalent to (38) or, what is the same, to (30) even now. o

On the other hand, the ordinary dimension (i. e. the dimension with respect
to a norm (6)) of H is k* +k~=k* +k=k*. As the continuity of the A-inner
product (see Lemma 1) implies that the intrinsic A-dimension of the component
H} of an A-fundamental decomposition (9) is not greater than the ordinary dimen-
sion of H}, in our case the inequality (29) holds for every A.

Now the conclusion of our theorem follows from Theorem 1.

Theorem 4. If the J-space H has infinite dimension, and the cardinal numbers
k* and k= defined in Theorem 1 are equal to each other, then any continuous self-
adjoint operator A in H admits the representation (1) with a continuous linear C.

2
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Proof. In the present case both of the relations (29), (30) are always satisfied,
since the ordinary dimension of H is equal to k* +k~ =k* =k, and any ordinary
dimension in H, a fortiori (see Lemma 1) any intrinsic 4-dimension in H, does
not exceed this common value. Therefore our theorem is a consequence of Theorem 1.
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