Homomorphisms of partially ordered semigroups onto groups

By R. McFADDEN in Belfast (N. Ireland)

In a recent paper [1] L. Fuchs considered the order preserving homomorphisms of a partially ordered semigroup S with identity e onto a partially ordered group G. Assuming that the partial order in G is determined in a natural way by that in S, that the congruence classes are convex, and that e is greater than or equal to any element of S whose class is less than or equal to that of e, Fuchs determined all such homomorphisms. He showed that whenever S is generalized residuated (see below), the solution is a generalization of Artin's equivalence, which provided the answer for a commutative, residuated, semilattice semigroup with identity. (See [2], [3], [4]). The purpose of the present paper is to show that similar results may be obtained even if S has no identity, and even if S is not generalized residuated.

The results described here were presented in Dr. R. J. Косн's seminar at Louisiana State University, and I should like to thank the members of the seminar for their comments.

Let S be a partially ordered semigroup. That is, S is a semigroup on which defined a partial order \leqq with the property that for all $a, b, c \in S, a \leqq b$ implies $a c \leqq b c$ and $c a \leqq c b$. For $a, b \in S$ define the generalized left residual of a by b to be the set $\langle a \cdot . b\rangle=[x \in S \mid x b \leqq a]$, and the generalized right residual of a by b to be the set $\langle a . \cdot b\rangle=[x \in S \mid b x \leqq a]$. Using \varnothing to denote the empty set, call S generalized left (right) residuated if $\langle a \cdot . b\rangle \neq \varnothing(\langle a \cdot \cdot b\rangle \neq \varnothing)$ for all $a, b \in S$. If S is both right and left generalized residuated, call S generalized residuated.

If for $a, b \in S$ the set $\langle a \cdot . b\rangle(\langle a \cdot \cdot b\rangle)$ is not empty and contains a maximum element, this element is called the left (right) residual of $a b y b$, and is written $a \cdot b(a \cdot \cdot b)$; if $a \cdot . b(a . \cdot b)$ exists for all $a, b \in S$ then S is called left (right) residuated.

Define a congruence relation θ on S to be an equivalence relation satisfying, for all $a, b \in S$:

1. $a \equiv b(\theta)$ implies $a c \equiv b c(\theta)$ and $c a \equiv c b(\theta)$.

The set of congruence classes $\theta(a), a \in S$, forms a semigroup S / θ if we define $\theta(a) \theta(b)=\theta(a b)$, but if we define an order relation \leqq^{\prime} on S / θ by setting:

$$
\theta(a) \leqq \begin{aligned}
& \prime \\
& \theta(b)
\end{aligned} \text { if and only if there exist } \quad a^{\prime} \in \theta(a), \quad b^{\prime} \in \theta(b) \quad \text { such that } a^{\prime} \leqq b^{\prime},
$$

then in general $\leqq{ }^{\prime}$ is not a partial order on S / θ. However, \leqq^{\prime} is compatible with the multiplication defined above, in the sense that for any $\theta(a), \theta(b), \theta(c) \in S / \theta$, $\theta(a) \leqq^{\prime} \theta(b)$ implies $\theta(a) \theta(c) \leqq \leqq^{\prime} \theta(b) \theta(c)$ and $\theta(c) \theta(a) \leqq^{\prime} \theta(c) \theta(b)$; for if $a \in \theta(a), b \in \theta(b)$,
$c \in \theta(c)$ with $a \leqq b$, then $a c \leqq b c$ implies $\theta(a) \theta(c) \leqq \leqq^{\prime} \theta(b) \theta(c)$, and similarly for multiplication on the left.

If θ is a congruence relation on S which satisfies
2. $a \leqq c \leqq b$ and $a \equiv b(\theta)$ imply $a \equiv c(\theta)$,
we shall call θ a convex congruence relation on S.
Whenever θ is a convex congruence relation on S, with the properties that S / θ is a group and the identity class of S / θ contains an element f such that θ satisfies also:
3. $\theta(a) \leqq \begin{aligned} & \\ & \prime\end{aligned}(f)$ implies $a \leqq f$,
it is true that \leqq is a partial order (so that $S / 0$ is then a partially ordered group). For if now $\theta(a) \leqq \leqq^{\prime} \theta(b) \leqq \leqq^{\prime} \theta(a)$, choose $a^{\prime} \in S$ such that $a a^{\prime} \equiv f(\theta)$. Then since \leqq^{\prime} is compatible with multiplication in $S / \theta, \theta(f)=\theta\left(a a^{\prime}\right) \leqq^{\prime} \theta\left(b a^{\prime}\right) \leqq \leqq^{\prime} \theta\left(a a^{\prime}\right)$, and so there exist $f^{\prime} \in \theta(f)$ and $b a^{\prime} \in \theta\left(b a^{\prime}\right)$ such that $f^{\prime} \leqq b a^{\prime} \leqq f$. By 2 . it follows that $b a^{\prime} \equiv f$, whence $\theta(b)=\theta(a)$. Thus \leqq^{\prime} is antisymmetric, and, similarly, transitive.

Note that we do not require that f be the identity of S, nor even that S have identity; in fact, f may not be idempotent.

Lemma 1. The identity class of the group $S / 0$ contains an element f satisfying 3. if and only if S contains an element $f=f \cdot f=f \cdot f$ satisfying 3.

Proof. If $\theta(f)$ is the identity of S / θ, then $f^{2} \in \theta(f) \theta(f)=\theta(f)$ implies $f^{2} \leqq f$, while if $f x \leqq f$ then $\theta(f x)=\theta(f) \theta(x)=\theta(x) \leqq{ }^{\prime} \theta(f)$ implies that $x \leqq f$, so $f=f . f$; similarly, $f=f \cdot . f$. Conversely, if $f=f \cdot f=f \cdot f \in S$ satisfies 3., let $\theta(a)$ be the identity of S / θ. Then $\theta(f)=\theta(a) \theta(f)=\theta(a f)$ implies $a f \leqq f$, using 3. once more, and so $a \leqq f \cdot f=f$. Hence $\theta(a) \leqq{ }^{\prime} \theta(f)$. Now $f=f \cdot f$ satisfies $f^{2} \leqq f$, whence $\theta(f) \theta(f) \leqq \leqq^{\prime} \theta(f)$ and $\theta(f) \leqq^{\prime} \theta(a)$ in the group S / θ. As above, it follows that $\theta(a)=\theta(f)$.

If now $a \in S$ and $\langle f . \cdot a\rangle \neq \varnothing\left(\langle f \cdot a\rangle \neq \varnothing\right.$), call $a^{\prime} \in\langle f \cdot \cdot a\rangle(\langle f \cdot a\rangle)$ right (left) multiplicatively maximal in $\langle f \cdot \cdot a\rangle(\langle f \cdot a\rangle)$ if $x \in S$ and $a^{\prime} x \in\langle f \cdot a\rangle\left(x a^{\prime} \in\left\langle f^{\cdot} \cdot a\right\rangle\right)$ imply $x \leqq f$. (See [1].)

Theorem 1. Let S be a partially ordered semigroup containing an element $f=f . f=f \cdot f$, and let θ be an equivalence relation on S satisfying 1. and 2. If S / θ is a group and θ satisfies 3. then:
(i) for any $a \in S,\langle f . \cdot a\rangle \neq \varnothing,\langle f \cdot a\rangle \neq \varnothing,\langle f \cdot \cdot a\rangle=\langle f \cdot a\rangle$,
(ii) for any $a \in S,\langle f \cdot a\rangle$ contains left multiplicatively maximal elements.
(iii) $\left\langle f^{\cdot} \cdot a\right\rangle=\langle f \cdot . b\rangle$ if and only if $a \equiv b(\theta)$.

Using Lemma 1 , the proof is almost the same as that of Theorem 1 of [1], and we omit it. See also [5], p. 107.

Under the present hypotheses one cannot prove that S is generalized residuated; in general there may exist $a, b \in S$ such that $\langle a \cdot \cdot b\rangle=\varnothing$.

Theorem 2. For any $a \in S, a \cdot \cdot a=f$ if and only if $a f \leqq a$.
Proof. For $a \in S$, the elements $a^{\prime} \in S$ such that $a a^{\prime} \equiv f(\theta)$ are right multiplicatively maximal in $\langle f \cdot a\rangle$, because $a a^{\prime} \leqq f$ by 3 ., while if $a^{\prime} x \in\langle f . \cdot a\rangle$ for some $x \in S$ then $a a^{\prime} x \leqq f$ implies $\theta(x)=\theta\left(a a^{\prime}\right) \theta(x) \leqq{ }^{\prime} \theta(f)$, so by 3. again, $x \leqq f$. Since $a a^{\prime} \equiv f(\theta)$ is equivalent to $a^{\prime} a \equiv f(\theta)$, and since $\left\langle f^{\prime} \cdot a\right\rangle=\left\langle f^{\cdot} . a\right\rangle, a^{\prime}$ is also left multiplicatively maximal in $\langle f \cdot a\rangle$. Now $a \in\left\langle f \cdot \cdot a^{\prime}\right\rangle$, and if $a x \in\left\langle f \cdot a^{\prime}\right\rangle=\left\langle f \cdot a^{\prime}\right\rangle$ then $a x a^{\prime} \leqq f$, so $x a^{\prime} \in\langle f \cdot \cdot a\rangle=\langle f \cdot . a\rangle$. Since a^{\prime} is left multiplicatively maximal in $\langle f \cdot . a\rangle$
it follows that $x \leqq f$, and that a is then right, and similarly left, multiplicatively maximal in $\left\langle f . \cdot a^{\prime}\right\rangle$.

Now suppose that $a x \leqq a$. For a^{\prime} as above, $a x a^{\prime} \leqq a a^{\prime} \leqq f$, so $x a^{\prime} \in\langle f . \cdot a\rangle$; but a^{\prime} is left multiplicatively maximal in this set, and therefore $x \leqq f$. Hence if $a f \leqq a$ then the residual $a \cdot a$ exists, and $a \cdot a=f$; conversely, if $a \cdot \cdot a=f$ then $a f \leqq a$.

It may happen that the only $a \in S$ for which $a f \leqq a$ is $a=f$.
For the case considered in [1], where f is the identity of $S, a \cdot a=a \cdot a=f$ for every $a \in S$; I am indebted to Mr. J. E. l'Heureux for this remark. Mme DubreilJacotin points out [5], Lemma 5 , that since $a f f \leqq a f$, one has $a f$. $a f=f$ for every $a \in S$.

Theorem 3. Let S be a partially ordered semigroup containing an element $f=f \cdot f=f \cdot f$, and let (i) and (ii) hold. Define a relation θ on S by (iii). Then θ satisfies 1., 2. and 3., and S / θ is a group.

Proof. From the obvious properties of generalized residuals, θ satisfies 1 and 2. For 3., let $\theta(a) \leqq(f)$; there exist $a^{\prime} \in \theta(a), f^{\prime} \in \theta(f)$ such that $a^{\prime} \leqq f^{\prime}$, and then $f \in\left\langle f^{\cdot} \cdot f\right\rangle=\left\langle f^{\cdot} \cdot f^{\prime}\right\rangle \subseteq\left\langle f^{\cdot} \cdot a^{\prime}\right\rangle=\left\langle f^{\cdot} \cdot a\right\rangle$, so $f a \leqq f, a \leqq f \cdot f=f$. To show that S / θ is a group, note first that $\theta(f)$ is the identity of S / θ, for the following are equivalent: $\quad x \in\langle f \cdot a\rangle, x a \leqq f, x a f \leqq f, x \in\langle f \cdot a f\rangle$; that is, $\theta(a)=\theta(a f)=0(a) \theta(f)$. Using $\langle f . a\rangle=\langle f \cdot a\rangle, \theta(f)$ is also a left identity for S / θ. Now let $a^{\prime} \in S$ be left multiplicatively maximal in $\left\langle f^{\cdot} \cdot a\right\rangle$, and let $x \in\left\langle f^{\prime} \cdot a^{\prime} a\right\rangle$. Then $x a^{\prime} a \leqq f$ implies $x a^{\prime} \in\left\langle f^{\cdot} \cdot a\right\rangle$, so $x \leqq f$ and $x f \leqq f^{2} \leqq f$; that is, $x \in\left\langle f^{\cdot} \cdot f\right\rangle$. Conversely, if $x \in\left\langle f^{\cdot} . f\right\rangle$ then $\quad x f \leqq f, x \leqq f \cdot f=f, \quad x a^{\prime} a \leqq f^{2} \leqq f, x \in\left\langle f^{\cdot} \cdot a^{\prime} a\right\rangle$. Hence $a^{\prime} a \equiv f(\theta)$ and S / θ is a group, completing the proof.

A subset X of a semigroup S is said to be reflective if $a b \in X$ implies $b a \in X$. When S is partially ordered, an element $x \in S$ is called reflective if $a b \leqq x$ implies $b a \leqq x$. Mme. Dubreil-Jacotin proves [5], Theorem 7, that under the present hypotheses, f is reflective, and conversely, [5], Lemma 8, that if f is reflective, then $\langle f \cdot \cdot a\rangle=\langle f \cdot a\rangle$ for any $a \in S$.

Let $H=[x \in S \mid x \leqq f]$. Clearly H is a subsemigroup of $S, x \in H$ and $y \leqq x$ imply $y \in H, H$ is reflective, and for any $a \in S$ there exists $a^{\prime} \in S$ such that $a a^{\prime} x \in H$ implies $x \in H$. Thus H satisfies the conditions of Theorem 1 of [6], and so. $\theta(a)=\theta(b)$ if and only if $H: a=H: b$, where $H: a=[x \in S \mid a x \in H]=[x \in S \mid x a \in H]$.

Recalling that the identity of a partially ordered group G is the maximum $x \in G$ satisfying $x^{2} \leqq x$ in G, we note that with the present hypotheses the element f above is the maximum element of S which satisfies $x^{2} \leqq x$ in S. For since $f=f \cdot f$, certainly $f^{2} \leqq f$; while if $x^{2} \leqq x$ in S then $\theta(x) \theta(x) \leqq(\theta(x)$ in the group S / θ, so $\theta(x) \leqq \leqq^{\prime} \theta(f)$, and by 3 ., $x \leqq f$. If S has identity e, then of course $e \equiv f(\theta)$, and also $e \leqq f=f^{2}$. Mme. Dubreil-Jacotin notes [5], Theorem 5, that f is maximum in each of the sets $U\langle a \cdot \cdot a\rangle, U\langle a \cdot a\rangle$, where the unions are over all those $a \in S$ for which $\langle a \cdot \cdot a\rangle \neq \varnothing,\langle a \cdot a\rangle \neq \varnothing$.

The following example may illustrate the situation. Let T be the set of points (p, i) in the plane, where $-\infty<p<0$ and i is an integer, together with the point (0,0). Write $a_{p i}$ for the point (p, i). Partially order T by setting $a_{p i} \leqq a_{q j}$ if and only if $p \leqq q$ and $i \leqq j$.

Define a multiplication (•) on T by setting

$$
a_{p i} \cdot a_{q j}=a_{q j} \cdot a_{p i}=a_{\min (p, q), i+j}
$$

Then $S=T^{*}(\cdot)$ is a commutative generalized residuated semigroup with identity $f=a_{00}$, where.

$$
\left\langle a_{p i} \cdot a_{q j}\right\rangle=\left[a_{r k} \in S \mid k \leqq i-j \text { and (i) }-\infty<r \leqq 0 \text { if } q \leqq p \text {, (ii) } r \leqq p \text { if } q>p\right] \text {. }
$$

For $i \neq j$ and $q \leqq p,\left\langle a_{p i} \cdot . a_{q j}\right\rangle$ does not contain a maximum element, so S is not residuated; yet for any $a_{p i} \in S, a_{p i} \cdot a_{p i}=a_{p i} \cdot a_{p i}=f$. If we define θ on S by (iii), then $a_{p i} \forall a_{q j}$ if and only if $i=j$, and θ satisfies $1 ., 2$. and 3. The θ-classes are lines parallel to the x-axis, and S / θ is isomorphic to the additive, linearly ordered group of the integers. The multiplicatively maximal elements in $\left\langle a_{00} \cdot a_{p i}\right\rangle$ are the elements $a_{q,-i}$, where $-\infty<q \leqq 0$, and these are exactly the elements $a^{\prime} \in S$ such that $a^{\prime} a_{p i} \equiv f(\theta)$. Except when $i=0$, the set $\left[a_{q,-i} \mid-\infty<q \leqq 0\right.$] has no maximum element.

Now define ($*$) on T by: $a_{p i} * a_{q j}=a_{q j} * a_{p i}=a_{-1, i+j}$.
Then $S^{\prime}=T(*)$ is a commutative partially ordered semigroup without identity. Write $f=a_{00}$. We have

$$
\begin{aligned}
\left\langle a_{p i} \cdot \cdot a_{q j}\right\rangle & =\varnothing \text { if } p<-1= \\
& =\left[a_{r k} \in S \mid k \leqq i-j,-\infty<r \leqq 0 \text { if } p \geqq-1\right] .
\end{aligned}
$$

Clearly S^{\prime} is not generalized residuated, but $f=f \cdot f=f . f \in S^{\prime}$ and $\left\langle f \cdot a_{p i}\right\rangle$ is non-empty for $a_{p i} \in S^{\prime}$. If θ is defined by (iii), conditions $1 ., 2$. and 3 . are satisfied, the θ-classes are the same as those in S, and S^{\prime} / θ is isomorphic to the integers. The multiplicatively maximal elements in $\left\langle a_{00} \cdot . a_{p i}\right\rangle$ are as in S. For $p \geqq-1$, $f a_{p i} \leqq a_{p i}$ and $a_{p i} \cdot . a_{p i}=f$, but for $p<-1,\left\langle a_{p i} \cdot a_{p i}\right\rangle=\varnothing$. Finally, $f^{2}=a_{-1,0}<f$.

References

[1] L. Fuchs, On group homomorphic images of partially ordered semigroups, Acta Sci. Math., 25 (1964), 139—142.
[2] __ Partially ordered algebraic systems (Oxford—London-New York—Paris, 1963).
[3] M. L. Dubreil-Jacotin, L. Lesieur et R. Croisot, Théorie des treillis, des structures algébriques ordonnées et des treillis géométriques (Paris, 1953).
[4] I. Molinaro, Demi-groupes résidutifs. I, J. math. pures appl., (9) 39 (1960), 319-356.
[5] Mme. Dubreil-Jacotin, Sur les images homomorphes d'un demi-groupe ordonné, Bull. Sóc. Math. France, 92 (1964), 101-115.
[6] A. Bigard, Sur les images homomorphes d'un demi-groupe ordonné, C. R: Acad. Sc. Paris, 260 (1965), 5987-5988.

QUEENS' UNIVERSITY, BELFAST,
AND
LOUISIANA STATE UNIVERSITY, BATON ROUGE.

