" On homomorphisms of partially ordered semigroups

By R. McFADDEN in Belfast (N. Ireland)

In attempting to describe the order preserving homomorphisms of a partially
ordered semigroup G onto a partially ordered semigroup G, it has proved necessary
to impose conditions on G, on G’, on the congruence ¢ determined by the homo-
morphism, or on a combination of these [7], [3], [1]. The approach used here is to
assume that G/g is residuated in such a way that each element of G/g is both a left
and a right residual of itself, and that the g-class of each element of G contains a
maximum element. Without assuming that G is residuated, as in [4], or even general-
ized residuated, [3], it is shown that if 7 is maximum in its g-class, the residuals ¢. ' a
and ¢ . q exist for any « € G, and that g is determined by a subset of all such residuals.

When. G/¢ is a group the form of ¢ has been determined by Mme. DUBREIL-
JacoTiN [1]; since a group is residuated, her result may be deduced from those
described here. As an extension of this, the condition that G/p be a group is replaced
by the condition that G/g be an integrally closed semigroup, and the structure of
o is then determined.

I .
Let G be a partially ordered set. That is, a set in which is defined a relation =,
which is reflexive, antisymmetric and transitive. For x, y € G, the greatest lower bound
of x and y, if it exists, is denoted by xAy, and the least upper bound, if it exists, -

is denoted by xVy. An equivalence relation ¢ on G is called an m-equivalence if ¢
satisfies the following conditions:

() for any x€G, the g-class x¢ of x contams a maxtmum element t_,
(i) for x,y€@G, x=y implies t, =t

The following notation will be used:
T(o)={t€G| t is maximum in its g-class}.

For an equivalence relation ¢ satisfying (i), it is easily seen that (ii) is equivalent to:

i) x, yE G, x< Y, x;é y(e), x'ox rmply that there exists in G an element
Y such that y’ o y and xX'<y'. (Condition (ii)’ is the property (S) discussed in (2, 5).)
When g is an m- equlvalence the set G/g = {xg|x € G} may be partially ordered by:

xQEyQ in G/g ifandonlyif 7,=¢, in G.

We use the same notation for the partial orders in G and GY/g; it is clear that G/g
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is the order homomorphic image of G, in the sense that x = y in G implies X0=y0
in G/g Note that xg=yg in G/g if and only if there exist x"€xg and 3’ €yg such
that x’=)". Further, the g-classes are convex, for if x, y, z€ G with x=y=z and
xgz, then t,=t,=t =1, implies 1, =¢,, or xgy.

A partially ordered groupozd is a partially ordered set G on which is defined
a binary operation, which will be written multlpllcatlvely, such that for a, b, x€G,
a=b implies ax=bx and xa=xb. If multiplication is associative, G is called a
partially ordered semigroup. If for a, b€ G the set of all x€G such that ax=b
(xa=b) is non-empty and contains a maximum element, this element is called the
right (left) residual of b by a, and is written b."a (b*.a). If b."a (b" . a) exists for
all g, b€ G, then G is called right (left) residuated, and if G is both right and left
residuated, it is said to be residuated.

A congruence relation on a partially ordered groupoid G IS an equ1valence
relation ¢ on G which satisfies:

(11_1) for x, y, zEG, x oy implies xz oyz and zx ¢ zy.

An m-congruence on G is an m-equivalence on G which satisfies (iii).

When ¢ is an m-congruence, G/g is a groupoid, and a homomorphic image
of G, if multiplication in G/ is defined by ag-bg=(ab)g. Further, G/¢ is a parti-
ally ordered groupoid with the partial order defined above, for if xg, yo, zgeG/Q
with xo =g, then ¢, =¢, implies ¢,f, =t,1,, whence by (1) and (iii), ¢,,=1,,; simi-
larly for multlpllcatlon on the rlght

Lemma 1. Let ¢ bé an m-congruence on a partially ordered groupoid G.
Then G| is right residuated if and only if t. " a exists for every t € T(g) and for every
a€G. In this case t.acT(o) (t. a)o=tg. ag, and & ¢ a implies t. a=t. o

Proof. Sufficiency: Let ap, bo€Glo, and let a€ag. Since a(t,. a)=t,,
it follows that ago(z,. a)o =bg; on the other hand, if ag xg=bg then at, =1,
1.=t,."a, xo=(t,. a)p. Hence bp. ag exists, equal to (1,. a)g.

Necessity: Let a€ G, t€ T(g). Consider t9. ag in G/g, and let u be the max-
imum element in the class tg. ao. Then ao(tg. ag)=tg implies au=t; but if
‘ax=t then agxg=ig, x0=to. ag, x=t,=u. Hence t. a exists, equal to wu.

Since ¢. a is the maximum element in fg. " ag, it follows that if &’¢ a then
t.cad'=t. a=u. '

Lemma 1 will be used as stated, but it may be noted that the following holds:
the residual bg. - ag exists in G/g if and only if ¢,. a exists for some (and hence
all) a€ap. '

It follows from Lemma 1 that if G/g is right residuated, then for any x€G, t. " x
exists for any right residual ¢[=t,. " d] of any element of T'(g); for ¢€ T (o).

Residuals obey the following rules, quoted here without proof (see [2]); it
is not necessary to assume that the groupoid G concerned is residuated, but only
that the residuals concerned exist.

1. b=a. (a .b), with equality if and only if b=a."x for some x€G.

2. If G is a semigroup, a.'bc=(a."b).'c and a° bc—(a .¢c) .b.

3. a=b implies a."c=b."¢ and c.'b=c. a.

The existence of an identity element e in G, together with Rule 1, implies that
a=a’v(a. a)=a."(a".a) for any a€G, since a=a’.e=a. e.- However, even
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if G does not have an identity, it may still be true that a=a*.(a."a)=a. (@ .0)
for any a€ G; this is the case if and only if every element of G is both a left and a
right residual of itself, in the sense that for every a€ G there exists x€ G such that
a=a’ .x(a=a." x). We shall call self-residuated a groupoid having this property (5).

" Theorem 1. Let G be a partially ordered semigroup, and let T be a non-empty
subset of G satisfying, the following conditions:
(«) For any t€T and for any a, x€G there exist:
t.ha, t.a, ANto.(t.ca), (At .(t. a)."x, (At .. a) .x
teT teT . teT
(B) For any t€T and for any acG, t."acT.
(y) Each t¢T, and each A\t .(t."a), for a€G, is both a left and a right

(€T
residual of itself.
Define the relation g on G by

aorb ifandonlyif t.ca=t.'b forevery t¢T.

Then oy is an m-congruence on G, and G|gy is residuated and self-residuated.
Conversely, if ¢ is an m-congruence on G such that G| is residuated and self-.
residuated, then T (o) satisfies (), (B) and (y), and ¢ = @r(y-

Proof. Clearly ¢; is an equivalence relation. For a,x€G and €T,

"a€ T (by (B)), and this implies, by (), that (¢."a). " x exists; by («) again, . ax

ex1sts, and then (¢t.°a@).'x=t. ax, each bemg the maximum z€G such that

axz=t. (It is here that we use the fact that G is a semigroup). Hence if b€ G and
a g b, then

t.cax=(t. a). x=(."b)y. x=t. bx,

t.'xa=(i.'x_).'a=t’.'a=t".'b=(t.'x).'b=t.'xb

where t'=t. x€T, by (). Thus ¢; is a congruence relation. To see that g is an
m-congruence, we note that by Rule 1, g=¢".(¢. " a); this implies that

a= /\t'.(t.'a)ét'.(t.'a) for any t€T7T,

and since (by Rule .1 again), (t ‘a))=t."a it follows from Rule 2 that
_t (/\t At a)) That is, aQT(/\t .(t.7a)). Clearly /\t t.ra) is

maximum 1n agr. Using Rule 3 twice, we see that a=c¢ in G 1mp11es that
t . (t.;a)=t" .(t."c) for any t€T, and hence that At .(t. @)= At .(«
teT teT
so that ¢ is indeed an m-congruence.

By (a), ¢ satisfies the conditions of Lemma 1, and so G/oy is residuated. For
aor€Gloy, write t,= At .(t. a); then
€T
or' .(aQr. agr)=1,01" . (t,0r. " t.01) =
= (ta ‘. (ta . ta))QT =1,01 (USing (y)) =agy,
and similarly @o; =agr: (agr".agr), so that G/og:is self-residuated.
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. "Conversély, let G and ¢ be as stated; write T=1T(g). Lemma 1 implies the
existence:'of r.'d and t'.q, and that ¢t. a€T; for the rest, it is enough to show
tha’c each +€ T is both a left and a right residual of 1tself and that A 2. (t."a@)=1,.

teT
Let aQEG/Q, since G/Q is self-residuated, we have from Lemma 1 that
‘ a0=1.0=1,0" (10 1) =t (o 10 =(ta" - (- " 1)

Since t .(t,."t,) is maximum in its g-class (Lemma 1 agaln), we deduce 1,=1¢,".
L (t,. a) similarly ¢,=t,."(t,.¢,). By Rule 2, t,=¢ .(¢t."t,) for any tcT;
in particular, f,=¢£,".(t,."t,). Hence t,= A\ ¢ .(¢t."t,), and since, by Lemma 1

€T
again, ¢.°t,=t."a, it follows that 7,= A ¢ .(t. a).
teT

€

"V By the first part of the Theorem, we now have that g, is an m-congruence
on G such that G/g is residuated and self-residuated, and it only remains to -show
that ¢ =g;. By Lemma 1, ¢ is finer than g;. Let a=5(g); then with 7, maximum
inag, t,. t,=t,. a= ta. "b=t,."t,, (using Lemmad 1), implies t, (¢,. 1) =t,, which
in turn implies #,=1,°.(,. 1) =1,, using (y) for the last equality. Similarly 1,=1,,
whence ¢, =1; that is, a ) b. We conclude that ¢ =g+, and the theorem is proved

) ”Cor'ollary 1.1 If o and ¢ are m- congruences on a parttally ordered semi-
group G such thar Glg and Glo are residuated and self-residuated, then g is finer
than o tfand only if T(o)& T(o).

Proof If g is finer than o, any element of G maximum in its - class must be
maxlmum in.its g-class. Conversely, if T(6)ST(0), then a @ b implies . a=t."b
for any ‘1€ T(g), and therefore for any 1€7(c); by Theorem I, a ¢ b.

Definition. An element a of a partially ordered groupoid G is called equi-
residual if whenever one of a. x;, a'.x exists for x€G, so does the other, and
a."x=a'.x. We shall denote their common value by a:x.

Corollary 1. 2 Let G, g be as in Theorem 1. Then G/Q is commutative if and
only if each t€T (Q) is equzreszdual

Proof. Let ag, bo€Glg, and suppose that each 1€ T(p) is equ1res1dual Then
bo. ag=(t,."a)o=(t," .a@)o=bo".ap, by Lemma 1. Since Gf¢ is residuated
and  self-residuated, aobg. aobg = ao bo' .ag bg = (ag bg* . bo)’ .ap =
=(agbg. ba). ag=ag bg. bg ag, using Rule 2, and so bp ag (a¢ be. ag bg)=
=ag bo. Hence bgag=ag bo".(ag bo. ap bg)=ag bg. Similarly ag bo=bg ag,
=bg ap, whence equality.

Conversely, if Gfg is commutatlve, (ty. a)o=bo. ap=bg .ap=(t," .a)e.
Since each of #,.°a, f,° .« is maximum in its g-class, equality follows. -

It follows from the proof of Corollary 1.2 that a residuated, self-residuated
semigroup G is commutative if and only if every element of G is equiresidual.

Note 1. If each t€T is equiresidual, and if G is residuated, («) and (y) are
enough to ensure that g in Theorem 1 is an m-congruence. Condition () was
used only to show that ¢ is regular on the left with respect to multiplication;
but for a, b, x€G with- a=b(gy), we now have

tooxa=t . xa=@".a) . x=@".b) . x=t".xb=t."xb.
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For a discussion of the case where T consists of a single equiresidual -element in
a residuated semigroup with idéntity, and where G/gy is a group, see- MAURY.[6].

Note 2. Condition (y) is not necessary if G has an identity element.

Thus in a commutative, residuated semlgroup G with identity, ahy non-empty
subset T of G defines an m-congruence or as, in Theorem 1, prov1ded only that for
any acga, /\t .(t:a) exists. Then G/o; is a residuated semlgroup with 1dent1ty,

the max1mum element in the gy class of @ is A :(¢: a) In part1cular if x is a ﬁxed

teT
element of G, let T={x}, and write @, = 0. Then -

agxb if and only if xwa=x:ib, = o
and T(Qx) {/\ x:(x:a), aeG} {x (x: a) aE G}, so that g, is MOLINARO’s
congruence relatlon A, (7) (see below) ' ,

Note 3. There is a difference between the two parts of Theorem 1. Given
that ‘o is an m-congruence such that G/g is residuated and self-residuated, it follows
that ¢=g07,, and that for. any acG, A t.(t. a)ET(Q)_, Yet given gTEG

teT(o) . .
satlsfymg (), (B) and (y), to estabhsh that g, is an m-congruence and that G/QT
is residuated and self-residuated, it is not necessary to assume that 1y= /\ t 'a)

is, in T for every acG, but only that 7, 7," . x and lo. X ex1st for any xEG Then
the set of elements maximum in their QT-classes is T(QT) { /\ t'.(t. a), for. aEG}

of which T is a subset, in general a proper subset. Even the faet that. z,7a€T
does not force the equality of T and T(gr); in the semigroup G ={e, a,b,.¢, z},
with e=a>c¢>z, e=b>c>z and xy=xAy for all x,y€G, let T={e, a, b}.
Then G is a residuated, commutative semigroup with identity e; T satisfies («), (f)
and (y), so Theorem 1 holds. Yet T(¢;)={e, a, b, c} which properly contains T.
Hence in general the representation of ¢ described in Theorem 1 is nét unique.

Note 4. Although T is closed under residuation; in the sense that () holds,
in general T is not closed under multiplication. In the example above, a, ‘I_JET
but-ab=c¢T. '

Note 5. Given g satisfying the conditions of Theorem 1, it follows by sym-
metry that T(g)=T satisfies:

(0)) For any teT and for any a, x€G there extst

t.a, t.'a,/\t. (/\t (t'.a@) .x and (/\t (t a)) x
teT

T

(BY For any t€T and for any aEG t'.acT. :
(y) Each t€T, and each /\ t.(t.a), for acgG, is both a left and a rzght
residual of itself.

Although this argument applies to T(g), it does not apply to any T satisfying
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(), (B) and (y); for example, T may satisfy («) without satisfying («)’. If T satisfies
(@), (B) and (y) as well as (o0)’, (B)" and (y)’, then

agb,t.ca=t."b forall te€T,t .a=1t".b for'all teT,
are all equivalent.

Note 6. 1In [7], 1. MOLINARO considered equivalence relations on a residuated
semigroup S. He showed that for 7€ S, the relation A4, (,4) defined by a=b(4,)
(a=b(A)) if and only if 7. a=¢."b (t'.a=t".b) is an m-equivalence, regular
on the right (left) with respect to multiplication.

If a subset T of a partially ordered semigroup G satisfies (), (f) and (y), one
may still define the relation A, as above, since, by (@), the residuals concerned exist;
obviously A4, is an equivalence relation. Further, as in the proof of Theorem 1,
A, is regular on the right with respect to multiplication Finally, ¢. x . (t.0x)})
1mplles that 4, is an m-equlvalence the maximum element in the class of xEG
being ¢°.(¢. x) ‘By (y), the maximum element in the class containing 7 is 7 itself.
. Thus an m-congruence ¢ on G, which satisfies the conditions of Theorem 1, may
be expressed as the intersection of the m-equivalences A4, (,4) for €T, each A4, (,4)
being regular on the right (left) with respect to multlpllcatlon

When ¢ is equiresidual A, is a congruence relation, and several papers (cf
[4], [6], [7]) have been written about the situation where A, is defined on residuated
gerbiers, where by definition a gerbier is a semigroup G in Which every two elements
-x, ¥ have a least upper bound xVy satisfying a(xVy)=axVay, (xVy)a=xaVya
for all x, y¢G. If in addition every pair x, y€G have a greatest lower bound
xAy, G is called a lattice semigroup.

Note 7. If x and y are equiresidual elements of a residuated lattice semi-
group G, then ¢ =A4,MN 4, is an m-congruence on G, with

T(={t,=x: (x ta)Ay :(y : a), foracG}.
For g is certainly a congruence on G, while
asx:(x:aAy: (y:a)=x:(x:a)

implies a =¢,(4,), by convexity, and similarly e=1¢,(4,), so a ¢ ¢,. Clearly a=1,, ¢,
is maximum in its g-class, and a =b implies 1, =1,

Example. Let S={x|x is a real number and x= —2}U{—1}U{0}, with
the usual ordering. If x = —2, define xy=yx = —2forany y€ §, and forx, y > —2,
define xy =yx=min {x, y}. Then S is a partially ordered semigroup without identity
element. Let Z denote the integers under addition, with the usual ordering; as an
ordered group, Z is residuated, with i:j=i—j for i,jeZ. Let G=SXZ, with
co-ordinatewise multiplication and ordering. For a, b€ S and a < —2, there is
no x€ S such that bx=ga, so S is not residuated. It is easy to see that the direct
product of residuated semigroups is residuated if and only if each factor is residuated,
so G is not residuated. Yet for x€S, 0:x=0, —-1:0=—-1, —1:x=0 if
x=—-1, -2:0=-2, —=2:—-1=-2, =2:x=0 if x = —2. It follows that

T={ni)|n=-2, —1 or 0,icZ}
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is a subset of G satisfying the first two parts of («), (and satisfying (B)). Consider
a=(x,j)€G, forx = —2. For t=(n, )ET, t:(¢t:a)=(n,j) and so /\t (t:a)=

=(-2,)€T. For a=(—1, j) and r=(0,i) or t=(—2,0), t:(¢t: a) (0 J), while
for t=(—1,1), t: (¢t : @)=(—1,)).. Thus /\t (t:a)=(—1,/)¢T. Similarly, for

a=(0,)), /\t (t:a0)=(0,))eT. Hence T satlsﬁes (). Finally, for r=(n, l)ET

t:(t:t)= (n i) : (0, 0)=(n, z)—t so T satisfies (y). By Theorem I, G/g, is a
residuated, self-residuated semigroup. The formulae above show that the or-classes
consist of the points {(0, i)} and {(—1, i)}, i€ Z, and the lines {(x, i)[x = —2,i€Z}.
If U={-2, —1, 0}, with the usual ordering and xy=yx=min {x, y} for x,y€ U,
then G/gr is isomorphic to the residuated, self-residuated semigroup UXZ.
- The formulae above also show that A, =4, ; for any i,j€Z, so that
Cor=Ap0)NA-1,00NA=20y; since Ay 0 =Apo and A, 0=Age), in
fact or=4_,, O)QA ~1,0)> though g7 is not a congruence of the A type. Thus
the representation of an m-congruence is not in general umque
' The situation illustrated in this example is typical of that in general One may
show that if ¢=g¢; and T"E T satisfies

ANt .@.ca)= AN(@ .(t."a) forany acgG,
teT

veT

then ¢ = g4, using the fact that g, is an m-congruence such that T(o;-) = T (o).

11

A. residuated semigroup G, with identity e, for which a. a=a .a=e for
every non-zero a€ G, is called integrally closed. We now investigate under what
conditions a partially ordered semigroup G has an integrally closed homomorphic
image, under the hypothesis that each congruénce class contains a maximum element.

Let ¢ be an m-congruence on a partially ordered semigroup G such that G/
is integrally closed. Then G/¢ has an identity element fg; let f be the element max-
imum in this class. Since G/g is then self-residuated, Theorem 1 and its dual hold,
and we have :

(@) f."a and f*.a exist for any a€QG.
Further, f satisfies the following conditions:

(b) f is equiresidual.

(©) fis a residual of itself. . ‘ :

DG (f:a=f=(:a) .(f:a) for any acG. In particular, f=f:f.
For (b), (f.'a)o=fo. ag (by Lemma 1)=(ag’.ag). ag (since G/g is integrally
closed)=(ag. ag) .ae=fo .ap=(f".a)o; by Lemma 1, f*.a=f. a, each being
maximum in its class. The third condition follows at once from Theorem 1. Finally,
for any xp€G/o, xo. xp=fo=x0°.x¢ implies that ¢.. ¢t ,=f=t." .t; then
f:a€T(o) implies (d). In particular, f=(f:f). ()= (1)) .[=1:F.

We have now proved the first part of the following Theorem.

Theorem 2. A necessary and sufficient condition that there exist an m-con-
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gruence ¢ on a partially ordered semigroup G such that Glo is uztegrally closed, is
‘that G contain an element f satisfying (a), (b), (c) and (d).

For the second part, we require the following Lemma.

Lemma 2. Let G, o, T(o) be as in Theorem 1. Then G/o has an identity element
if and only if there exists f€G such that t. f=t=t".f for every t€ T(p).

Proof. The necessity is obvious, so let f€ G be such that ¢. f=¢=¢".f for all
te T(g). Then for ap€Glo, ap. fo=(t,. fle=1t,0=ag implics fo ap=ap. On the
other hand, ag=(fe ag). fo=fo ap, so that ag=fp ap. Similarly fo is a right
identity for G/o. -

Proof of sufficiency of Theorem 2. Let f¢G satisfy (a), (b), (c) and
(d), and consider T={r=f":ala€G}; we show that T satisfies the conditions of
Theorem 1. First, for any x, a€G, f:a and f:ax exist, and so therefore does
(f:a)."x=t. x; similarly ¢*.x exists. Both these residuals are elements of T,
so () is satisfied. Next, for any y€G,

(f:9 (0. 0= (f:ya)=
=) (o)=L {(Fa) vy (fa).

But f=(f:f)."(f: f)=(f:(f:f))'.f=f=f, so (f:f) A :f).a}=f:(f:0a), .
whence f:(f:a)= /\ .(t."a)€T. Condition (o) follows at once. For (y), we

use Rule 2 and the fact that f=1: fis equiresidual to obtain
t=fra=(f:f)ra=f:fa=(f:a) .f=f:af=(f:q). ).

. By Theorem 1, g =g, is an m-congruence on G such that G/g is residuated
and self-residuated. To show that G/g is integrally closed, we prove that in fact
G/e is a group. Since a ¢ b if and only if 1, =1,, and since 1,=1: (f : a) (see above),
we may use Rule 1 to obtain; aob i and only if f: a-f b. Then for any
teT, t.f=(f:a). f=(f:f) .a=f:a=t=t".f, and Lemma 2 shows that
Jo is the identity element of G/g. Finally, a(f:a) —f(g) for ‘any a€G, since
faf:a)=(f:a). (f:a)=f"f, so G/Q is a group, and is a fortiori integrally
closed. The Theorem is proved '
~ Since we do not require that G is a residuated semigroup, Theorem 2 gener-
alizes the result of MAURY [6]. One may deduce from Theorem 2 the result ([1], p.
107), of Mme. DUBREIL-JACOTIN, that any m-congruence g on G resulting in a group
image G/g is necessarily defined by: agb if and only if (f:a)=(f:b)= "
= {x€G|ax=f}, where f is the maximum element in the identity class of G/g.
See also L. Fuchs [3].

Note 8. It is not necessary to assume that f is idempotent. It does follow
from f=f: f that f2=f, but it may happen that f?<f. Nevertheless fis the max-
imum element satisfying x> =x in G, for if x> =x then

fixsfix?*=(f:x). ximplies (f:x)x=f:x,

so x=(f:x)".(f:x)=f A
If G has an identity element e, then e ¢ f and e=f. We note also (cf. [1],
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Theorem 5), that f is the maximum element of the form x. x or x".x in G, for
Sf=ff, while f=(f:x).(f:0)=(f:(f:x) . x=x".x

In the example above, the element f=(0, 0) satisfies (a), (b), (¢) and (d), and
G/g is isomorphic to Z. Here f2=f, though G has no identity element,

Theorem 2 makes use of the fact that if a partially ordered semigroup G has
an integrally closed image by means of an m-congruence g, then G has a group image
by means of an m-congruence. However, G may have an integrally closed image
G/e which is not a group. An additional condition on T(g) necessary (and sufficient)
for G/p to be integrally closed is described in the following Theorem.

Theorem 3. Let G, g, T=T(0) be as in Theorem 1. Then Glg is mtegrally
closed if and only if

(0) there exists f€T such that t. t=t".t=f for any tET.

Proof. Suppose G/¢ integrally closed, and let f be the maximum element
in the identity class of G/g. Then fo=tg. to=(t. t)g implies f=t¢."¢t; similarly
f=t".t. Conversely, let T satisfy (§). Then

to.'te=0. tYo=fo=tg" .to.
Since G/ is self-residuated,
to=tg."(to".to)=to. fo=te .(to. to)=tg" .feo.

By Lemma 2, fp is the identity element of G/g, whence G/g is integrally closed.
In the example above, T satisfies (6), for f=(0, 0)€ T is such that ¢:t=f
for any 1€ T. The semigroup G/o=U X Z is integrally closed, but is not a group.

*

. The referee’s comments on the presentation of this péper have been very helpful,
and I should like to thank him for his advice. -
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