On a generalization of completely ¢-simple semigroups

By OTTO STEINFELD in Budapest

. § 1. Introduction

"The well-known theorem of REEs characterizes the completely O-simiple semi-
groups with the help of matrix semigroups over a group with zero. In this paper
we generalize this theorem by giving a class of semigroups that are characterized
as matrix semigroups over, a semigroup with zero and identity.

In §2 we introduce the notion of left (right) S-translation between two left .
(right) ideals of a semigroup S with 0. This notion is a generalization of right (left)
translation of .S in the sense of CLiFFORD—PRESTON [1]. Two left (right) ideals
a;, a, of S are called left (right) S-similar if there exists a one-to-one left (right)
-S-translation from a, onto a,. In Proposition 2. 1 a necessary and sufficient condi-
tion is given in order that the leftideals Se,, Se, (e? =e;; i=1,2) of S be S-similar.

In § 3 we show that all O-minimal left (right) ideals of a completely O-simple
seémigroup are left (right) S-similar. Proposition 3.4 gives the following. characte-

_rization of the completely 0-simple semigroups: a semigroup S with zero is completely
0-51mple if and only if S has the form.§= lJ Se, with idempotents e, where Se;,

AcA
are O-minimal, left ‘S-similar left ideals of S. In view of this result we define -the
following generalization of the completely O-simple semigroups. Let .S be a semi-
group with O such that

S=USe,=UeS (el=e;, el=e¢; 1€INA),
ieA iel

where Se; (e;S) are left (right) ‘S-similar left (right) ideals of S with Se, ﬂSe =
(u, veA; u#v) and e,5MgS=0 (j, k€l; jk). These semigroups are called'
S-similarly deqomposable

The theorem of REES states that a semigroup is completely O-simple if and
only if it is 1somorph1c to a regular Rees matrix semigroup over a group -with
zero.. In order to give an analogous characterization of the S-similarly decomposable
semigroups, we introduce the notion of the locally regular Rees matrix semigroup
M°(H; I, A; P) over a semigroup H with zero and identity. (See at the end of §3.)
The regular_ Rees matrix semigroups are locally regular. Then we have: a semi-
group S with zero is S-similarly decomposable if and only if it is isomorphic to
a locally regular Rees matrix semigroup over a semigroup with zero and identity.
(See Theorem 4. 1.) We intend to deal with the homomorphisms of a locally regular
Rees matrix semigroup in another paper.
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It is known that the Brandt semigroups are just the completely 0-simple inverse
semlgroups therefore they have representations by special regular Rees ‘matrix
semigroups. (See Theorem 3.9 in [1].) In §5 we define the special S-51m11arly
decomposable semlgroups and we prove an analogous theorem concerning them.
(See Theorem 5.1.) It is interesting that these semigroups have an application
in the theory of codes and finite-state transducers.

§ 2. On the translations

Let S be a semigroup with zero and [, I, left ideals of S. By a left S—translatton
of'l, into 1, we mean a single valued mapping ¢ of I, into [, such that

(2.1 xp€l,, s(x<p) =(x)p  (for all x€l; and s€5).
If w is a left S-translation such that for every element x of [, °
xw=0 (x€l)

holds, then w is called the zero left S-translation of 1 into I,
Let a, be a fixed element of [;. Then the mapping

(2.2 X —~Xa, (x€l;; az€ly)

is a left S-translation of [, into I,.
In the case [, =1, = S the left S-translation of S into itself and the right trans-
lation of § in the sense of CLIFFORD—PRESTON [1] are the same notions. '
Analogously, one can define the right S-translation of the rtght ideal v, into
the right ideal x, of S. _
We say that the left ideals [,, [, of S are left S-similar !) if there exists a one-to-
one left S-translation ¢ of [, onto I,. It is easy to see that this notion defines an
equivalence relation among the left ideals of S.
One can define dually the right S-similarity of right ideals.

Proposition 2. 1. Let S be a semigroup with O and e, 0, e, 0 rdempoients
in S. Then the left ideals Se, and Se, are left S-similar if and only if there exist elements
q., and g, in S such that

(2.3) . €1q412€2 =43, €2921€1={(3,
2.4 ' q12921 =€y, 921 qi2=e;.
Proof. Let Se, and Se, be left' S-similar and.¢ a one-to-one left S-translation
of Se, onto Se,. Set e, =q,,(€Se,), e;0~1=4q,,(€ Se;). Then in view of (2. 1)
and e?=e,, €2 =¢, the relations (2. 3) hold. Furthermore,
e,=(e,9)e~"'=4q107" =(‘112€2)(P'71.=412(92(/’_1)=‘1|2‘121 .
Similarly ¢,,¢,2=€,.

- -1 In his paper [2], H.-J. HoeuNKE defines a more general, analogous notion for the S-systems.
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Conversely, assume that some ¢, , and g, in S satisfy the relations (2. 3), (2. 4).
Let ¢ be the mapping of Se, into Se, satisfying (sel)q)_selq12 (seleSel) Then- .
(se))o=(te,) ¢ (se, and te € Se|) and (2. 4,) imply :

seiqia=1"1e q;; = Se,q12qy =1€1412q5 = Se;=le,.

If ue, is an arbitrary element of Se, then because of (2.4,) (ug;,e)p=
=Uq,.€,q12=UG,,q,,=Ue,. Thus ¢ is a one-to-one mapping of Se; onto Se,
. with property (2. 1), i.e. Se, and Se, are left S-similar.

A dual proposition holds on the right S-similar right ideals e,S, e,S of S.

Remark 1. 1t is easy to show that the conditions (2. 4) alone are sufficient
to assure the left S-similarity of Se, and Se,.

Since the conditions on e, and e, of Proposition 2 1 are left rlght symmetric,
. it is clear that we have the following

Corollary 2.2. Let S be a semigroup with zero and e; #0, e, #0 idempotents
in S. Then the left ideals Se, and Se, are left S-similar 1f and only if the right ideals
e,S and e,S are right S-similar.

A Proposmon 2.1 and Corollary 2 2 are analogous to Proposition HI. 7. 4 and.
its Corollary in JacoBson [3].
An other consequence of Proposmon 2.1 is the following

Corollary 2. 3 (Cf. STEINFELD [6] Theorem 5.4). If the left ideals Sel, Se,.
(e? =e,; #0, e2=e, #0) of a semigroup S with zero are left S-similur, then the sub-
semigroups e,Se, and e,Se, of S are isomorphic.

Proof. Since the left ideals. Se,, Se, are left S-51m11ar elements q:, and q”
with properties (2 3), (2. 4): exist. We shall show that :

(2.5 K ' elsel"(hlsqiz (e se, Eelsel)

is an isomorphism of e,Se, onto ez'Sez. For, let e,se, and e,te, €e,Se,; then
in view of (2. 5) and (2. 4,)

elsel'eltel '*‘lzrserIQ12=‘]215‘]12"121“I£2-

So (2. 5) is a homomorphlsm Furthermore, if the images q21sq12 and ¢q,,19,,
of e;se; and e, te, are equal, then

(2' 6) ' 31591:412'4215‘112'4212412’QZ1f412'421:elter-'

Fmally, let e,ue, €e,Se,. In view of (2. 4,) the element €1qi2€2U€3q,5 €y Of elSe1
is mapped by (2. 5) upon the element g, - q,,U4q,, 4,2 = €,ue,. Thus (2. 5) is am
isomorphic mapping of e;Se, onto e, Se,, indeed.
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§ 3. On the completely O-Simble semigroups -

Now we need the following

Proposition 3.1 (STEINFELD [5] Satz 6). Let [ bhe a O-minimal left ideal of
«a semigroup S with zero and e 0 an idempotent) in |. Then el is a group with zero.

Let Se,, Se, (el=e,; e3=e,) be two O-minimal left ideals of a semigroup
.S with 0, and a€ S. By the O-minimality of Se, either Se,ae, = Se, or Se,ae, =0"
holds. A

The first possibility implies the existence of an element be, € Se, such that
.be,ae; =e,. Hence e,be,-¢,ae, =e3=e,. From this we get

eae,-e,be e aey-ebe,=¢ ae, e, e,be, =e ae,-eybe,,

‘that is e, ae,-e,be, €e,Se, is an idempotent. Since e,Se, is a group with zero

.and e ae,-e,be, #0, we obtain e,ae,-e;be; =e,. By Proposition 2.1 and the

properties of the elements ¢, ae,, e, be,, the left ideals Se, and Se, are left S-similar.
The second possibility implies that the mapping

se; ~se,-e,ae, =0 (se, € Se,)

‘is the zero left S-translation of Se, into Se,.

Thus we have: if an element ae, (€ Se,) exists such that Se,ae, = Se,, then
Se, and Se, are left S-similar; if such an element does not exist, then the only
left S-translation between Se, and Se, is the zero S-translation. Therefore:

Proposition 3.2. Let Se,, Se, (el=e,; e3=¢,) be O-minimal left ideals
-of a semigroup S with zero. Then either Se,, Se, are left S-similar or the only left
S-translation between Se, and Se, is the zero left S-translation. :

These imply

Corollary 3.3. All O-minimal left (right) ideals of a completely O-simple
semigroup S are left (right) S-similar.

Proof. Let[,, [, two O-minimal left ideals of the completely 0-simple semi-
group S. It is known that [; has the form [;=Se; (¢ =e;; i=1, 2). In view of the
0-minimality of Se, the product Se,-ae,(a € S) is either 0 or Se,. As S is a O-simple
semigroup Se, S = S holds. Thus at least one element ae, ( € Se,) exists with Se, ae, =
=Se,. This and Proposition 3. 2 imply our assertion.

We shall prove the following characterization of completely O-simple semi-
groups. '

Proposmon 3.4 (cf STEINFELD [7] Theorem 15). A4 sengroup S with zero
ds completely O-simple if and only if S has the form

(3.1) S = U Se; (e =¢;)

A€A

where Se; are pairwise left S-similar O-iminimal left ideals of S.



Completely 0-simple semigroups ] 139

v Proof.-By Corollary 2.49 of [1], a completely O-simple semigroup S is the
union of its O-minimal left idecals I, (1€ A). As S is a regular semigroup we can
write [;= Se, (e? =e;; A€ A). Thus, by Corollary 3.-3; the nece551ty of the stated
condition follows. .

Conversely, let S be a semigroup with: the stated propertles In view of Exercise
12 for §2.7 of [1] it is enough to prove that S is O-simple. As § has at least one
non-zero 1dempotent we have §20. By (3. 1), any 1deal a(#O) of S has a non-
zero element of the form ae, Ca(u€ ). Hence

0 ae, GaSe (e eu).

Because of the 0- mlmmahty of Se,, this implies Se, =a Se, ga. As Se, and every
Se; (A€ A) are left- S-similar, 0- mlmmal_left ideals of S in view of Proposition 2. 1

Se,=Se,Se,Ca-Se,Ca  (A€A).

holds. This and (3. 1) imply
s S=Se, &S a
AEA

establlshmg the O-simplicity of S .

~The ‘dual- characterization of the completely O-simple semlgroup S holds by<
the rlght S-similar, 0-minimal right ideals e,S (e? =e;; i€1) of S. :

It is easy to show that the left ideal Se (e =e##0) of the completely 0- 51mple
semlgroup S is. 0-minimal if and only if ¢S is a O-miinimal right 1deal of S, therefore
one can suppose that in the decomposmons '

S = U Sel U €; S
AEA icl
1€IN A holds. Naturdlly the O- mm1ma1 Teft 1deals Se, (A€ A) in (3. 1) are different,
therefore Se, N Se, =0 if uv and y, veA. -
We: now generallze the notion of completely O-simple semlgroups
- Let S be a semigroup with 0 such that ,
3.2) S=" Se;, = ¢S (el=¢e;; el=¢;
€A i€l ) .
where Se, (A€ A)[e;S(icl)] are left [right] O-similar left [right] ideals of S such
that Se NSe,=0 (u, veA; us=v) and ¢;SMNeé,S=0 (j, kel; 1¢k) We call a
semlgroup w1th these properties S—s1mzlarly decomposable.
By Proposition 3. 4 and its dual, the completely O-simple semigroups are
- S-similarly decomposable. - ]
" The well-known theorem of REEs (CLIFFORD—PRESTON [1], Theorem 3. 5)
characterizes the completely 0-simple semigroups by the regular Rees matrix semi-
groups over a group with 0. In the next § we wish to give an analogous characteri-
zation of. the S-=similarly decomposable semigroups. For this characterization
we need to generalize the notion of the regular Rees matrix semigroup. .
~ Let H be a semigroup with 0 and with the identity element e. Let M°(H; I, A; P)
denote the Rees matrix semigroup over H with ‘a sandwich matrix P=(p,;) ()LEA
i€l; p;;€ H). Denote the elements of M° by (a);, with a in H, iin I and 2 in A.
The product of the matrices (a);;, (b)m is defined by 4

(3.3) (@;0 (b)j,l =(ap;;b)i, (a,b€H; i, jEI; A, u€ A).

1eINA)
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We say that M°(H; I, A; P) is locally regular if P=(p,;) has the following
properties

1) in every row 4 of P there exists an element p; ;) (j(2) €7) which has a right
inverse pj ;) in H, that is
3.4 Pajin P:u(;)

2) in every column i of P there exists an element p,;; (u(z)EA) which has
" a left inverse p,;); in H, that is

(3.5 ' Potizi Puciyi = €3
3) there exists at least one element p,; in P which has a (right and left) inverse
in H.

A regular Rees matrix semigroup M°(G; I, A; P) over a group G with zero
is locally regular.

§ 4. A generalization of the Rees theorem

Theorem 4. 1. A semigroup S with zero is S-similarly decomposable if and
only if it is isomorphic to a locally regular Rees matrix semigroup over a semigroup
with zero and identity. :

Proof. Let S be a S-similarly decomposable semigroup. Then S has a de-
composition (3.2). In view of (3.2) an arbitrary element a0 of S belongs to.
exactly one rlght ideal ¢;S (i€/l) and to exactly one left ideal Se, (1€ A). Hence -

@.n , a=e;ae, (lE[ A€ A). . v

As every left ideal Se; (A€ A) is left S-similar to Se, (1 €/ A) and every right
ideal ¢; S (i€l) is right S-similar to e¢,S (1 €IN A), by Proposition 2. 1 there exist
elements q,, (€e,Se;), q;,(€e; Se;) and r ;(€e, Se,), r;;(€e;Se,) such that

4.2) G129 =€, india=¢€
and :
4.3 ryirin=eg, Fargi=e;.

Let M°(e, Se,; I, A; P) denote the Rees matrix semigroup over the semigroup
e,Se, with the sandwich matrix P=(p,;) =(q,,r;,). We shall prove that the mapping

4.4 . @:a=e;ae;—~(r;aq;) (ae S;i€l; A€ )

is an isomorphism of S onto M°=M?%(e,Se,; I, A; P=(gy,r;))- First we show
that ¢ is one-to-one. If the images (r,;aq;,),;, and (r“bq,,l)ju of the elements a =e,ae,
and b=e;be, (i, j€l; A, ji€ A) are equal, then i=j; A=p and ryaq;,=r;bq;, .
Hence, by (4 2) and (4. 3),

a=e;ae,=ryr;aqy "4, =ririibg; g, =c;be;=0b.

¢ i1s a homomorphism. For, let a=e;ae, and c=e;ce, (i, jeI; A, u€A) be
two elements of S. By (4. 4), (4.2), (4. 3) and (3. 3) we get

ac=e;ae;e;jce, —~(r iae,lej'cq‘,,),-u=

=(ry;aq;, qd1aljs rljcqul)iu=("1iafl;.x)ix"("ljc‘lm)ju-
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¢ maps S onto M°. For, an arbitrary element (e, uel),, of M° is- the image
- of the element r; ug,; of S:

(riiri ugy:90)i= (e uey);; .

We 'still have to prove that the Rees matrix semigroup is locally regular, that
is, the sandwich matrix P=(p;;) =(q,,r;) fulfils the properties 1), 2) and 3). Let us
consider the idempotent e, € Se, (1 E/l) In view of (3.2) there exists a j=j(A)el
such that ¢;€e;S. Hence

(4 5 e,=e;e; (jEI;/lEA).

‘The element p;;=q,,r; €e, Se, in the A-th row of the matrix P has a right inverse
element pj;=r,;q;, €e, Se,, since because of (4.2), (4.3) and (4. 5)

’ . _ _ _ — —
PiPai=q127 i1 Tjq9i1 =912€9 —‘Iueje/lq/n =4d1.6:9:1 =491,9,1 =€ -

Similarly, in the i-th column (i€/) of the matrix P the element p,“—q,u i
(n=n(@)€A) has a left inverse p,,=r,;q,, €e;Se,.

By the assumption 1€/ A, the matrix P= (pM) (g,;r;1) has the entry
Pi1=4q ;. From (4.2) and (4. 3) it follows that p¥, =r,,q,, satisfies Pibti=
=qyy7y T g =e; and pi(py =r( 4 -guiri=e, . Thus pj =q,,r €e; Se
has an inverse. Consequently, for the sandwich matrix P=(p,;) =(q;,r;;) conditions
1), 2) and 3) are fulfilled.

Conversely, fet S be 1somorphlc to the locally regular Rees matrix semi-
group M°(H; I, A; P) over the semigroup. H with 0 and with identity e. Denote
the elements of M° by (a);; (@€ H; i€l; A€ A). Let; (1€ A) be the set of the matrices
{a);; for all a€ H and i€/ From (3. 3) it follows that [, is a left ideal of M°. The
decomposition
(4. 6) : M°=U], (Ilﬂl =0 if A%

- )EA
trivially holds. Because of the local regularity of M®= M°(H; I, A; P) the sandwich
‘matrix P=(p,;) (A€ A;i€l) has in every row 4 an element Paitn (J(A)€I) such
that for a suitable pj;,, € H

“.7 , PrjPijoy=¢.

For every )EA let a palr of elements p,;y, p“u)EH with the property (4.7) be
chosen.

By the property 3) of the local regularlty of M° we can assume that for some
v(€A), priy is an inverse of p, ;..

We shall prove that the elements (pi,m)J(m_E of M° are 1dempotent and
the left ideals [, have the form [, = M°E,. In view of (3. 3) and (4 7) we have

E,0E;, = (piicn)ini®(Prja) i =
= (Piju) Pu(;.)P;.j(z))j(z);. = (P;.j(z))j(A)A =E;.

From the definition of I, and E, it follows that E,€l, whence M°E,<I,. On the
other hand, if (a),, is an element of {;, then by (3. 3) and (4. 7) we get

. (@), 0E; = (a)iio(p),.j().))j(}.)l = (al’u(A) P:u(z))u_z (@), .
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that is,.(a);, € M°E,, and thus 1, = M°E;,. This and (4. 6) imply .
(4. 8) M° = | MPE, (M°E,NM°E,=0 if ip).

i€A

In order to show that the left ideals M°E;, and M°E, (4, ,ue/l) are left M°-
similar, let E;, =(p};i)) oy, and E, = (pu,\(w)k(u)u(/(/l) k(u)EI) In view of Proposition
2.1 and Remark 1 the mentloned similarity follows from the existence of the
elements

. (Pri)son € MPE, and  (plrgy) s € M° E,
satisfying

d (puk(u))k(u)lo(p}.j(l))j(}.)u = (p, k(u)l?Aj(A)P;.j(z))k(,,)u = (p;:k(u))k(u)u = E, o '
an . .

(Prien)iom® (Puxiwdraws = (P PukawPuiny) e = (Pri)ions = Ey.
Analogously, one can show that M° has a dual decomposition

4.8) M° =) EM° (EEMPNE;M° = if i#j)
iel
where E; (i€I) are idempotents and E;M° are right M°-similar ﬁght ideals of M°.
Fmally, one can assume by a. sultable ordering of the indices that for some
vEA and j(v)€rl
v=j(v)=1€INA.

" From Theorem 4. 1 we get the Rees theorem as a special case:

Theorem 4.2 (REES). A semigroup is completely O-simple if and only if it is
isomorphic to a regular Rees matrix semigroup over a group with zero.

1t is possible to prove the Rees theorem with the help of Theorem 4. 1, but this
proof is more complicated than the direct one.

§ 5. A generalization of Brandt semigroups

In Theorem 3.9 of [1] the Brandt semigroups are characterized by special
regular Rees matrix semigroups. We shall give a generalization of this result.

A semigroup S with 0 having the following property: if a, b, ¢ are elements
of § such that ac=bhc=0 or ca=cbh =0, then a=b, is called O-cancellative.

A generalized Brandt semigroup is a semigroup S with 0 satisfying the followmg
conditions:

() S is O-cancellative;

(B) toeach element a of S there corresponds an element e of S such that ge=a
and an element f of S such that fa=a;

(v) if e; and e; are idempotents of S then e;e;=e¢je;;

(5) for all palrs e;, e; of non-zero 1dempotents of S there exmt elements Gij» 9j1
in S such that :

qij.(lji=ei and ¢;4;;=e;.

Later we shall show that Brandt semigroups are generalized Brandt semigroups.
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- By a special S-similarly decomposab}e selmg/oup we mean a semigroup S with.
0 havmg the properties -

@  S=USe=UeaS (=i ee,=0 for i=j; ijel);
icl codeTl
(b)- Se (i€l) :are left S-similar;

(c)y There exists at least one ldempotent e, (k€l) such that the semlgroup ekSe,(‘
is O-cancellative.

Remark 2. In his paper [4] A. E. LAEMMEL has shown that semigroups S’
having properties (a), (b) and (c) play an 1mportant role in the mathematical theory
of codes and finite-state transducers.

© It is easy to see that these semlgroups are special cases of the S—SImllarly de--
‘composable semigroups defined in the foregoing §:

Theorem 5.1. The fol[owing three conditions on a semigroup S with zero-
are equwalenr Co '
‘(i) S is a generalized Biandt semigroup;
(i) S is a special S-similarly decomposable semigroup;
(it S is isomorphic with a (locally regular) Rees I'X1 matrix semigroup
MP(H; I, I; A) .over a O-cancellative semigroup H with zero and identity and with
the I X I-ldentlty matrix A as sandwich matrix. -

Proof. (i) implies (ii) 2). Let a(30) be an element of S. From (f) it follows~
the existence of an element e(€S) with ae=a. Hence ae 2=ge=a0 and in view"
of (&) this implies-e? =e.

Let e; (i€l) denote the idempotent elements of S. Then S= U Sé; holds..

iel
From xe;=ye;#0 (x,y€S;i,jel) it follows xeiei:xei=yej=yejej, whencé-
because of («) we get e;=e¢;. Thus Se;( Se;=0 for ¢;e;. This and (y)-imply
ee;=eje; =0 if izj. -

In VleW of Proposition 2. 1 and Remark 1 the condltlon (5) implies that thé
left ideals Se; (i€I) are left S-similar.

As condmon (c) is an immediate consequence of (¢) we have only to prove:
that S= U e;S. If a(0) is an element of S then because of (ﬁ) there exists an..

elementf( E S) such that fa =a. But we can show — as above — thatfls idempotent,.
therefore a€e;S for a suitable e;.

(ii) Imphes (iii). Assume (ii). From the assumption (a) it follows that an arbitrary
element a of S has the form ,

(5.1 _ a=e;ae; (i, jel). »

Let e, (k€1) be a fixed idempotent of S with property (c). By (B) the left ideals.
Sé; and Se; (i ¢ 1) are left S-similar, therefore by Proposition 2. 1 there ex1st elements‘
g (€Ee Se) gy (€e;Se,) such that

(52) .  dudw=e. and guqu=e; (k,icl).

2) Cf. this part of the proof and Théorem 2 of LAEMMEL [4].
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" Let M°(e, Se,; I, I; P) denote the Rees matrix semigroup over the semigroup
., Se, with the sandwich matrix P=(p;;) =(q,;¢;)- e Se, is a semigroup with 0
.and with the identity e, ; furthermore by (c), ¢, Se, is O-cancellative. As in the proof
.of Theorem 4. 1 we can show that the mapping

«5.3) a=eiaej"(‘1kia4ljk)ij (@csS; i, jel)

is an isomorphism of S onto M°=M"(e,Se,; I, I; P=(q,;q;))- In view of (5.2)
.and the assumption e;e; =0 for i=j we get for g,; (€¢,Se;) and g, (€e; Se,)

_ ek lf I=./a
Gri9jx = { 0 if i)
.Hence '
‘.ek 0..- I
0e, 0
P =

l 0
-4s the identity matrix, -indeed.

(iii) implies (i). Assume (iii) and let S=M°(H; I, [; 4). Denote the elements
of S by (a);; (a€H; i, jel). If e is the identity of H then (e);;0(a);;=(ea);;=(a);; -
-and (a),lo(e)“—(ae)u—(a),l hold. Thus condition () is fulfilled.

To prove (), let (a);;, (b)y> (C)mn be elements of S such that (a);;0(b)y=
_(a)uo(c),,,,,¢(0) This holds if and only if j=k=m, /=n and ab=ac=0. As H
is O-cancellative, this implies b=c whence (b),; =(b);;=(c);;={(C)mn- Slmllarly from
B0 (@)ij=(C)mno(@;;4(0) it follows (b)y=(c)ms- So condition (x) is proved.

Let (a);; be a non-zero idempotent of S. Then (a);;o(a);; =(a);; #(0) if and -
only if j=i and a®>=a=0. Hence (a)”o(a),,—(a),,o(a),,-(a),,-—(e),,o(a),, whence

by (@)
@i; =@ =(e)-
If (e);; and (e)y, (J, kK€1) are non-zero idempotents of S then

' _ @y if j=k
(€50 (O = { ) if jk;

‘this proves condition (y). Furthermore, from
' (@jo(e);=(e);; and (&);o(e)u=(u
{6) follows. :

The proof is finished. .

In Theorem 3. 9 of [1], it is proved that the following three conditions on a semi-
group S with zero are equivalent:

(") S is a Brandt semigroup;

(ii’) S is a completely O-simple inverse semigroup;

(iii) S is isomorphic to a (regular) Rees IXI matrix semigroup
M®(G; I, I; 4) over a group with zero G and with the /X I-identity matrix 4 as
:sandwich matrix.

€
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We shall show that the conditions (i’) and (ii") and (iii") are special cases of
conditions. (i) and (ii) and (iii) of Theorem 5.1, respectlvely

It is trivial that (iii") is a special case of (m)_ In view of Theorem 5. | and
Theorem 3. 9 of [1] this implies that (i) [(ii")] is a special case of (i) [(ii)].

We remark that it is possible to prove Theorem 3.9 of [1] with the help of
. Theorem 5. 1, but this proof is more complicated than the original.
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