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§ 1. Introduction 

The well-known theorem of REES characterizes the completely 0-simple semi-
groups with the help of matrix semigroups over a group with zero. In this paper 
we generalize this theorem by giving a class of semigroups that are characterized 
as matrix semigroups over a semigroup with zero and identity. 

In §2 we introduce the notion of left (right) ¿-translation between two left, 
(right) ideals of a semigroup 5" with 0. This notion is a generalization of right (left) 
translation of S in the sense of CLIFFORD—PRESTON [1]. Two left (right) ideals 
«[ , a2 of S are called left (right) ¿'-similar if there exists a one-to-one left (right) 
¿•-translation from o, onto a 2 . In Proposition 2. 1 a necessary and sufficient condi-
tion is given in order that the left ideals Set, Se2 (ef=ei; / = 1,2) of S be ¿»-similar. 

In § 3 we show that all 0-minimal left (right) ideals of a completely 0-simple 
semigroup are left (right) ¿-similar. Proposition 3 :4 gives the following characte-
rization of the completely 0-simple semigroups: a semigroup ¿ with zero is completely 
0-simple if and only if S has the form 5 = [J Sek with idempotents eA where Sex 

are 0-minimal, left '¿-similar left ideals of S. In view of this result we define the 
following generalization of the completely 0-simple semigroups. Let ¿' be a semi-
group with 0 such that 

' S=\JSel = \JelS (e2
x = ex, ef = et; lg/rW), HI 

where Se} (etS) are left (right) ¿-similar left (right) ideals of ¿ with Sefl D Se, = 0 
(n, v€/1; ^ v) and ejSC\ekS = 0 ( / , k(L/; j^k). These semigroups are called 
¿"-similarly decomposable. 

The theorem of REES states that a semigroup is completely 0-simple if and 
only if it is isomorphic to a regular Rees matrix semigroup over a group with 
zero. In;order to give an analogous characterization of the ¿-similarly decomposable 
semigroups, we introduce the notion of the locally regular Rees matrix semigroup 
M°(H; I, A; P) over a semigroup H with zero and identity. (See at the end of § 3.) 
The regular Rees matrix semigroups are locally regular. Then we have: a semi-
group S with zero is ¿"-similarly decomposable if and only if it is isomorphic to 
a locally regular Rees matrix semigroup over a semigroup with zero and identity. 
(See Theorem 4. 1.) We intend to deal with the homomorphisms of a locally regular 
Rees matrix semigroup in another paper. 
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It is known that the Brandt semigroups are just the completely 0-simple inverse 
semigroups, therefore they have representations by special regular Rees matrix 
semigroups. (See Theorem 3. 9 in [1].) In § 5 we define the special S-similarly 
decomposable semigroups and we prove an analogous theorem concerning them. 
(See Theorem 5. 1.) It is interesting that these semigroups have an application 
in the theory of codes and finite-state transducers. 

§ 2. On the translations 

Let S be a semigroup with zero and I, , l2 left ideals of S. By a left S-translation 
ofl1 into I2 we mean a single valued mapping <p of I, into I2 such that 

(2. 1) xcp 612, s(x<p) = (sx)<p (for all x 61] and s £ S). 

If co is a left S-translation such that for every element i of I, 

xco = 0 (x£l , ) 

holds, then co is called the zero left S-translation of I, into 12. 
Let a2 be a fixed element of I2. Then the mapping 

(2.2) x— xa2 ; a 2 €l2) 

is a left S-translation of I, into I2. 
In the case I, = I 2 = S the left S-translation of S into itself and the right trans-

lation of S in the sense of CLIFFORD—PRESTON [1] are the same notions. 
Analogously, one can define the right S-translation of the right ideal r-j into 

the right ideal r2 of S. 
We say that the left ideals I , , 12 of S are left S-similar 1) if there exists a one-to-

one left S-translation <p of onto I2. It is easy to see that this notion defines an 
equivalence relation among the left ideals of S. 

One can define dually the right S-similarity of right ideals. 

P r o p o s i t i o n 2. 1. Let S be a semigroup with 0 and e{ ^ 0 , e2 F̂ O idempotents 
in S. Then the left ideals Se, and Se2 are left S-similar if and only if there exist elements 
<712 and cj2 j in S such that 

(2.3) . elql2e2 = ql2, e2q2lel = qzl, 

(2.4) 9i202i = ei> qi \q\2 = e2-

P r o o f . Let Se, and Se2 be left S-similar and.<p a one-to-one left S-translation 
of Se, onto Se2. Set elq> = ql2(€Se2), e2<p~1 = q2i(€ Sej). Then in view of (2. 1) 
and e] = e , , e2=e2 the relations (2. 3) hold. Furthermore, 

ei^(el(p)(p-l=ql2(p-1 =(q{2e2)(p-1^qi2(e2(p-1) = qi2q2]. 

Similarly <72,#i2 = e 2 . 

') In his paper [2], H.-J . HOEHNKE defines a more general, analogous notion for the S-systems. 
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Conversely, assume that some g1 2 and q2i in ¿ satisfy the relations (2. 3), (2. 4). 
Let (p be the mapping of Se1 into Se2 satisfying (se1)<p=se1ql2 (sel € Se^. Then. 
(sel)<p = (tel)(p (sel and r e ^ S e , ) and (2. 4 t ) imply 

selql2 = teiql2 => seiq12q2i = teiql2q21 => sel=tel. 

If ue2 is an arbitrary element of Se2 then because of (2. 42) (uq2lex)cp— 
= uq2leiql2 = uq2iql2=ue2. Thus cp is a one-to-one mapping of Se^ onto Se2-
with property (2. 1), i.e. Se, and Se2 are left ¿-similar. 

A dual proposition holds on the right ¿-similar right ideals e2S of S. 

R e m a r k 1. It is easy to show that the conditions (2. 4) alone are sufficient 
to assure the left ¿-similarity of Se{ and Se2. 

Since the conditions on ei and e2 of Proposition 2. 1 are left-right symmetric, 
it is clear that we have the following 

C o r o l l a r y 2. 2. Let S be a semigroup with zero and ei ^ 0 , e2^0 idempotents 
in S. Then the left ideals :Sel and Se2 are left S-similar if and only if the right ideals 
eYS and e2S are right S-similar. 

Proposition 2. 1 and Corollary 2. 2 are analogous to Proposition III. 7. 4 and 
its Corollary in JACOBSON [3]. 

An other consequence of Proposition 2. 1 is the following 

C o r o l l a r y 2. 3 (Cf. STEINFELD [6] Theorem 5. 4). If the left ideals Se{, Se2 
=e19£0, e\ = e2 t^ 0) of a semigroup S with zero are left S-similar, then the sub-

semigroups etSei and e2Se2 of S are isomorphic. 

P r o o f . Since the left ideals Set, Se2 are left ¿-similar, elements q12 and q2[! 
with properties (2. 3), (2. 4) exist. We shall show that 

(2.5) elsel-»q2isq12 (else1£eiSei) 

is an isomorphism of elSel onto e2Se2. For, let e^sei and eite1£elSel; then 
in view of (2. 5) and (2. 4,) 

e1sel-e1tel -~q2lse1tq12=q2lsql2-q2ltql2. 

So (2.5) is a homomorphism. Furthermore, if the images q21sqi2 and q2itqiZ 
of e1se1 and eltei are equal, then 

(2.6) eisel = ql2-q2isqx2-q2i=q12-q2ltql2-q21=eite1: 

Finally, let e2ue2£e2Se2. In view of (2. 42) the element e1q12e2ue2q21e1 of e1Se1 
is mapped by (2. 5) upon the element q2x • q^2uq2l • qi2 = e2ue2. Thus (2. 5) is art 
isomorphic mapping of e^Sex onto e2Se2, indeed. 
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§ 3. On the completely 0-simple semigroups 

Now we need the following 

P r o p o s i t i o n 3 . 1 (STEINFELD [5] Satz 6 ) . Let I be a 0-minimal left ideal of 
vd semigroup S with zero and e^O an idempotent) in I. Then el is a group with zero. 

Let S<?,, Se2 (e2 = e , ; e 2 = e 2 ) be two 0-minimal left ideals of a semigroup 
S with 0, and a£S. By the 0-minimality of Se2 either Se1ae2; — Se2 or Setae2 — 0 
holds. 

The first possibility implies the existence of an element /;>e,€Se, such that 
belae2—e2. Hence e2be{ •e,ae2 — e\ = e2 . From this we get 

e, ae2 • e2bel • e,ae2 • e2be, = e, ae7 • e2- e 26e, = ex ae2 • e2bet, 

that is e, ae2 • e 26e, £e,Se, is an idempotent. Since e,Se, is a group with zero 
.and elae2-e2bel ^ 0 , we obtain etae2-e2bel =e,. By Proposition 2 .1 and the 
properties of the elements e, ae2, e2be{, the left ideals Se, and Se2 are left S-similar. 

The second possibility implies that the mapping 

set—sei-elae2=0 (set£Se,) 

is the zero left S-translation of Se, into Se2. 
Thus we have: if an element ae2 (£ Se2) exists such that Selae2 = Se2, then 

.Se, and Se2 are left S-similar; if such an element does not exist, then the only 
left ¿"-translation between Se, and Se2 is the zero ¿"-translation. Therefore: 

P r o p o s i t i o n 3.2. Let Se, , Se2 (e, = e , ; e2 = e2) be 0-minimal left ideals 
•of a semigroup S with zero. Then either Se,, Se2 are left S-similar or the only left 
S-translation between Se, and Se2 is the zero left S-translation. 

These imply 

C o r o l l a r y 3. 3. All 0-minimal left (right) ideals of a completely 0-simple 
.semigroup S are left (right) S-similar. 

P r o o f . Let (, , I2 two 0-minimal left ideals of the completely 0-simple semi-
.group S. It is known that has the form I; = Se; ( e f = e i \ / = 1 , 2). In view of the 
0-minimality of Se2 the product Se, •ae2(a £ S) is either 0 or Se2 . As S is a 0-simple 
semigroup Se, S = S holds. Thus at least one element ae2 (£ Se2) exists with Se, ae2 = 
= Se2. This and Proposition 3. 2 imply our assertion. 

We shall prove the following characterization of completely O-siinple semi-
groups. 

P r o p o s i t i o n 3. 4 (cf. STEINFELD [7] Theorem 15). A semigroup S with zero 
.is completely 0-simple if and only if S has the form 

<3.1) {el = ex) 
X£A 

-.where Sex are pairwise left S-similar 0-minimal left ideals of S. 
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, P r o o f . By Corollary 2. 49 of [1], a completely 0-simple semigroup ¿ is the 
union of its 0-minimal left ideals 1; (/„ € A). As S is a regular semigroup we can 
write lk = Sex (ej = ex; X£A). Thus, by Corollary 3. 3,! the necessity of the stated 
condition follows. 

Conversely, let ¿ be a semigroup with- the stated properties. In view of Exercise 
12 for § 2. 7 of- [1] it is enough to prove that S is 0-simple. As S has at least one 
non-zero idempotent, we have S2 ¿¿0. By (3. 1), any ideal 0 ( ^ 0 ) of S has a non-
zero element of the form a e ^ d a ^ ^ A ) . Hence 

O^ae^daSe^ = 

Because of the O-minimality of Sefl, this implies Sefl = aSellQa. As ¿e„ and every 
Sex(X(iA) are left ¿'-similar, 0-minimal left ideals of ¿ in view of Proposition 2. 1 

Sex= Se^-SexQa-SexQa (A 6 /1) 

holds. This and (3. 1) imply 
5 U L. d 

AG A 
establishing the O-simplicity of S. 
• • The dual-characterization of the completely 0-simple semigroup S holds by 
the right ¿"-similar, 0-minimal right ideals etS i£l) of S. 

It is easy to show that the left ideal Se (e2 = e^0) of the. completely 0-simple 
semigroup S is 0-minimal if and only if eS is a 0-minimal right ideal of ¿, therefore 
one can'suppose that in the decompositions 

.•V • U \Je:S A€/l HI 

1 € / r i / l holds. Naturally the 0-minimal left ideals Sex (HA) in (3. 1) are different, 
therefore ¿ ^ • ¿ e v = = 0 if p^v and n, v£A. ' ' 

We: now generalize the notion of completely 0-simple semigroups. 
Let ¿ be a semigroup with 0 such that 

(3.2) (e2
x = ex; e? = ei; . I tin A) 

I E A I E I 

where Sex (Xd /l)[e,.S"('€ /)] are left [right] 0-similar left [right] ideals of ¿ such 
that Se^ H ¿"ev = 0 (p, v € A; p v) and ejSPlekS = 0 ( j , kel; j^k). We call a 
semigroup with these properties S-similarly decomposable. 

By Proposition 3. 4 and its dual, the completely 0-simple semigroups are 
¿-similarly decomposable. 

The well-known theorem of REES (CLIFFORD—PRESTON [1], Theorem 3. 5) 
characterizes the completely 0-simple semigroups by the regular Rees matrix semi-
groups over a group with 0. In the next § we wish to give an analogous characteri-
zation of. the ¿-similarly decomposable semigroups. For this characterization 
we need to generalize the notion of the regular Rees matrix semigroup. 

Let H be a semigroup with 0 and with the identity element e. Let M (H; I, A; P) 
denote the Rees matrix semigroup over H with a sandwich matrix P = (pxd (X£A; 

PM^H)- Denote the elements of M° by (a)iX with a in H, i in I and X in A. 
The product of the matrices (a)ix, (¿>)J|U is defined by 

(3. 3) (a)iX o (b)j„ = (apxjb)Hl (a, b£H; /, j€/; X, p £ A). 
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We say that M°{H\ I, A; P) is locally regular if P = (pXi) has the following 
properties: 

1) in every row X of P there exists an element pxj(x) (j{X) £ / ) which has a right 
inverse p \ j W in H, that is 
(3-4) P>.ju)Pvo.) = e; 

2) in every column i of P there exists an element p^^ (p(i)£A) which has 
a left inverse p'^i in H, that is 
(3-5) P l w i P „ w = e-t 

3) there exists at least one element pXi in P which has a (right and left) inverse 
in H. 

A regular Rees matrix semigroup M°(G; I, A; P) over a group G with zero 
is locally regular. 

§ 4. A generalization of the Rees theorem 

T h e o r e m 4. 1. A semigroup S with zero is S-similarly decomposable if and 
only if it is isomorphic to a locally regular Rees matrix semigroup over a semigroup 
with zero and identity: 

P r o o f . Let S be a S-similarly decomposable semigroup. Then S has a de-
composition (3.2). In view of (3.2) an arbitrary element a 9^0 of S belongs to . 
exactly one right ideal e ; S (/'€/) and to exactly one left ideal Sex (A 6/1). Hence 

(4.1) a = e,aex (iei;X£A). 
As every left ideal Sex (A£A) is left S-similar to Sex ( l G / f l / l ) and every right 
ideal etS ( /£ / ) is right S-similar to (1 £IC\A), by Proposition 2. 1 there exist 
elements q[X (£eiSex), qXi (£exSe{) and ru(£e i Se^), r,-t(<EeiS'ei) such that 

(4-2) «u?n=«i, <hi<lu = ex 
and 
(4.3)' r , i r u = ei. 

Let M°{ex Se, ; I, A; P) denote the Rees matrix semigroup over the semigroup 
eiSei with the sandwich matrix P = (pXi) = (qiXrn). We shall prove that the mapping 

(4.4) cp: a = eiaex~(r[iaqn)ix (a £ S; idl; Ad A) 
is an isomorphism of S onto M° = M°(e]Sel; I, A; P = (qlxrn)). First we show 
that (p is one-to-one. If the images (ruaq x t ) l x aind (r^bq^j^ of the elements a = 
and b = ejbe)t (/, /€/; X, p£A) are equal, then i=j\ X = p and ruaqxi=rubqx]. 
Hence, by (4. 2) and (4. 3), 

a = eiaex = r-n-riiaqn-qu = rn-rubqxi-qu = eibex = b. 
<p is a homomorphism. For, let a = e;aeA and c = ejcelt (i,j£I; X, p£A) be 

two elements of S. By (4. 4), (4. 2), (4. 3) and (3. 3) we get 

ac = eiaexCj cefl -~(ruaexejcq„,),-„ = 

= ( r u a q u <7IA'';I r'Jcch>i) <« = (''i;at!>-')o-°(r•JaA<Ihn • • 
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(/> maps S onto M°. For, an arbitrary element (e, uet)u of M° is the image 
of the element rnuqlk of S: 

We still have to prove that the Rees matrix semigroup is locally regular, that 
is, the sandwich matrix P = {pxd — i.q\xri\) fulfils the properties 1), 2) and 3). Let us 
consider the idempotent ekdSek (¿£/1). In view of (3. 2) there exists a j=j'(X)£I 
such that e xdejS. Hence 
(4. 5) ex = ejex ( . / £ / ; / f / 1 ) . 

The element pkj = q\xrji €e, Sel in the A-th row of the matrix P has a right inverse 
element p'kj = r^qk{ Sel, since because of (4. 2), (4. 3) and (4. 5) 

P>.jP\j = <}i>rj\'''I./= <7u<?//;.i = ciii.eje).ili.\ =qixexqn =qiXqn =e,. 

Similarly, in the i-th column (/'€/) of the matrix P the element plti = qillril 
(p =ii(i) £ A) has a left inverse p^i = rliqftl£eiSei. 

By the assumption l ^ / D / l , the matrix P = (pkl)=:(qlkrn) has the entry 
P u = q u r { l . From (4. 2) and (4.3) it follows that p*i=rnqu satisfies pitp^{ = 
-1iiru-rnqii=el and p*llpi, =rllqu •qirn =e,. Thus p, l = q, 1rll £e, Sel 
fias an inverse. Consequently, for the sandwich matrix P = (pki) = (i/u/- ; ]) conditions 
1), 2) and 3) are fulfilled. 

Conversely, let S be isomorphic to the locally regular Rees matrix semi-
group M°(H\ I, A; P) over the semigroup H with 0 and with identity e. Denote 
the elements of M° by (a) ik (a£H; X 6 A). Let IA (X £ A) be the set of the matrices 
(fl),-̂  for all a£H and /£ / . From (3. 3) it follows that \k is a left ideal of M°. The 
decomposition 
(4.6) m°= U U (Uni„ = o if X^p) 

trivially holds. Because of the local regularity of M° = M°(H; I, A; P) the sandwich 
matrix P = (pki) (A£.A\idI) has in every row X an element • pXjW such 
that for a suitable p ' x ^ m 
<4-7) .PXJWP'XJ W=e; 

For every X£A let a pair of elements pkJ(k), Pxj(xy€-ff with the property (4. 7) be 
chosen. 

By the property 3) of the local regularity of M° we can assume that for some 
v(£/t) , p'vJ(v) is an inverse of ptJ(v). 

We shall prove that the elements (p'xnx))jwx~Ex of M° are idempotent and 
the left ideals \k have the form \k = M°Ek. In view of (3. 3) and (4. 7) we have 

ExoEx = (pljU))jU)x0(P;.Hx))jU)x = 

= (PxHX)Pxj<.X)P>.j(X))j(X)X = (p'xj(»)j(x)x — Ex-

From the definition of I; and E
k
 it follows that E

x
£ l x whence M ° E

k
Q \

k
. On the 

other hand, if (a)ik is an element of lx,. then by (3. 3) and (4. 7) we get 

• (a)ikoEk = (a)iko(p^Kk))J(k)k = (apkjik)p'kJik))u = (a)u, _ 
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that is , . (a) a£M°E x , and thus \/ = M°E>. This and (4. 6) imply 

(4.8) M°=\JM°E) (М°ЕхГ\М°Еи = 0 if 

In order to show that the left ideals M°Ek and М°Ец{А,-'ц€А) are left 
similar, = = /с (/()€/)• In view of Proposition 
2. 1 and Remark 1 the mentioned similarity follows from the existence of the 
elements 

( P w . ) ) j W ^ M ° E t l and (p 'a k w ) k ( l l ) k eM°E x 
satisfying 

(Pi,k(,i))k(n)k0(PxjU))j(x)n — (РцЦц)Р.хнх) Рхцх))к(ц)р = = Ец 
and 

(Pxj(.x))j(x)fi° (Piik(v))k(n)X = (Pxj(x)P,,k(fi)Puk(ti)) j(X)X = (Pxj(X))j(X)X — Ex. 

Analogously, one can show that M° has a dual decomposition 

(4.8') M°=\JE,M° (EiM°C\EjM° — 0 if i j t j ) 

where £ г ( /£ / ) are idempotents and are right M°-similar right ideals of M°. 
Finally, one can assume by a suitable ordering of the indices that for some 

and j(v)dl 
V=;(V) = 1 6 / n i 

From Theorem 4. 1 we get the Rees theorem as a special case: 

T h e o r e m 4. 2 (RHES). A semigroup is completely 0-simple if and only if it is 
isomorphic to a regular Rees matrix semigroup over a group with zero. 

It is possible to prove the Rees theorem with the help of Theorem 4. 1, but this 
proof is more complicated than the direct one. 

§ 5. A generalization of Brandt semigroups 

In Theorem 3. 9 of [1] the Brandt semigroups are characterized by special 
regular Rees matrix semigroups. We shall give a generalization of this result. 

A semigroup £ with 0 having the following property: if a, b, c are elements 
of S such that ac — bc^O or ca = cb9i0, then a = b, is called O-cancellative. 

A generalized Brandt semigroup is a semigroup S with 0 satisfying the following 
conditions: 

(a) S is O-cancellative; 
(/?) to each element a of S there corresponds an element e of S such that ae = a 

and an element f of S such that fa = a; 
(y) if et and e} are idempotents of S then eiej = eJei;• 
(<5) for all pairs e, of non-zero idempotents of S there exist elements qji 

in S such that 
qu(iji=ei a n d qjiq>j=ej-

Later we shall show that Brandt semigroups are generalized Brandt semigroups. 
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By a special S-similarly decomposable semigroup we mean à semigroup S with. 
0 having the properties 

(a) S = U Se-t = U e,S (ef = er, e^, = 0 for //•./; i.JC /): 
HI i£I 

(b) S é r i e l ) ; a r e left ¿-similar; 
(c) There exists at least one idempotent ek (k ÇJ) such that the semigroup ekSek 

is O-cancellative. 

R e m a r k 2. In his paper [4] A. E. LAEMMEL has shown that semigroups 5" 
having properties (a), (b) and (c) play an important role in the mathematical theory 
of codes and finite-state transducers. 

It is easy to see that these semigroups are special cases of the ¿-similarly de-
composable semigroups defined in the foregoing §. 

T h e o r e m 5. 1. The following three conditions on a semigroup S with zero 
are equivalent: 

(i) S is a generalized Brandt semigroup; 
(ii) S is a special S-similarly decomposable semigroup; 

(iii) ¿ is isomorphic with a (locally regular) Rees IXI matrix semigroup 
M°(H; I, I; A) over a O-cancellative semigroup H with zero and identity and with• 
the Ixl-identity matrix A as sandwich matrix. 

P r o o f , (i) implies (ii) 2). Let a(^O) be an element of S. From ( f t ) it follows 
the existence of an element with ae = a. Hence ae2 = ae = a^0 and in view 
of (a) this implies e2= e. 

Let (idI) denote the idempotent elements of S. Then ¿ = (J Set holds. 
if 

From xe^yej^O (x, ydS; i,jdl) it follows xeiei = xei=yej=yeJej, whencé 
because of (a) we get e ; = <?j-. Thus Seir\Sej = 0 for e^ej. This and (y) imply 
e ^ j ^ e j e ^ 0 if M / 

In view of Proposition 2. 1 and Remark 1 the condition (<5) implies that thé 
left ideals ¿e ; (idI) are left ¿-similar. 

As condition (c) is an immediate consequence of (a) we have only to prove 
that S= U etS. If a(?±0) is an element of S then because of (ft) there exists an.. 

izl 
element / ( d S) such that fa = a. But we can show — as above — that / is idempotent, 
therefore adetS for a suitable 

(ii) implies (iii). Assume (ii). From the assumption (a) it follows that an arbitrary 
element o of 5 has the form 
(5. 1) a — eiOej (i,jdl). 

Let ek (k dl) be a fixed idempotent of S with property (c). By (b) the left ideals-
¿¿jt and ¿e ; ( idI) are left ¿"-similar, therefore by Proposition 2. 1 there exist elements-
Iki i^ekSei),qik (de,Sek) such that 

(5.2) ciki1ik^ek a n d qikqki = ei (k,idl). 

2) Cf. this part of the proof and Theorem 2 of LAEMMEL [4]. 
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Let M°(ek Sek; I, I; P) denote the Rees matrix semigroup over the semigroup 
ekSek with the sandwich matrix P—(Pij) = (qkiqjk). ekSek is a semigroup with 0 
.and with the identity ek; furthermore by (c), ekSek is O-cancellative. As in the proof 
of Theorem 4. 1 we can show that the mapping 

,(5. 3) a = e.ae ; '(.Rkiaijdij (a£S; /,./'€/) 

is an isomorphism of S onto M° = M°(ek Sek; I, I ; P = (qki q/k)). In view of (5.2) 
.and the assumption elej=0 for i ^ j we get for qki ( £ek Se^ and qjk (£ Cj Sek) 

qki qjk = I if 
if 

,Hence 

i=J, 
»Vy. 

P = 

ek 0 

0 e k 

0 

is the identity matrix, indeed. 
(iii) implies (i). Assume (iii) and let S = M°(H; J, / ; A). Denote the elements 

of S by (a)u (a£H; i,j£l). If e is the identity of H then (e)uo(a)iy = {ea)tj = (a) ¡j 
and (a)ijo(e)jj = (ae)u = (a)ij hold. Thus condition (/?) is fulfilled. 

To prove (a), let {a)u, (b)kl, (c)mn be elements of S such that (a ) y o(6) w = 
.= (a)ij o(c)m„?i(0). This holds if and only if j = k — m, l=n and ab = ac?i 0. As H 
is O-cancellative, this implies b = c whence (b)kl = (A)yi = (c)Jl = (c)mn. Similarly from 
<b)ki o (ct)ij = (c)nm o (a)ij ^ (0) it follows (b)M = (c)„,„. So condition (a) is proved. 

Let (a)ij be a non-zero idempotent of S. Then (a)^ o (a)^ = (a)^ (0) if and 
only if j=i and a2=a?i0. Hence (a)uo(a)ij — {a)Ho{a)H — (a)ii = {e)uo(a)il whence 
by (a) 

(a)ij = (a)ii = (e)u. 

J f (e):: and (e)kk ( j , k£l) are non-zero idempotents of S then 

(e)jj°(e)k -{ 
(e)jj 
(0) 

if 
if 

j=k, 
j^k; 

this proves condition (y). Furthermore, from 

(e)Jk°(e)kj = (e)jj and (e)kJo(e)Jk = (e)kk 
(<5) follows. 

The proof is finished. 
In Theorem 3. 9 of [1], it is proved that the following three conditions on a semi-

group 5* with zero are equivalent: 
(i') S is a Brandt semigroup; 

(ii') S is a completely 0-simple inverse semigroup; 
(iii') S is isomorphic to a (regular) Rees IXI matrix semigroup 

M°{G\ 1,1; A) over a group with zero G and with the /X/-identi ty matrix A as 
¡sandwich matrix. 
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We shall show that the conditions (i') and (ii') and (iii') are special cases of 
conditions (i) and (ii) and (iii) of Theorem 5. 1, respectively. 

It is trivial that (iii') is a special case of (iii). In view of Theorem 5. 1 and 
Theorem 3. 9 of [1] this implies that (i') [(ii')] is a special case of (i) [(ii)]. 

We remark that it is possible to prove Theorem 3. 9 of [1] with the help of 
Theorem 5. 1, but this proof is more complicated than the original. 
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