
On interpolation of Lp spaces with weight functions 
By J A A K P E E T R E in Lund (Sweden) 

0. Introduction 

According to a classical theorem of BERNSTEIN ( 1 9 1 4 ) a sufficient condition for 
a func t ion/ on the real line (— «.) to be given by an absolutely convergent Fourier 
integral. 

№ = ^ f e * i f t Q d Z , KL,, ' 

is that / € £ 2 a n d satisfies a Lipschitz condition of exponent in L2, i .e . 

| | / ( X + 0 - / ( . V ) | | L 2 = for some E > 0 and as t-0. 

A more precise condition in this sense reads: 

( 0 . 1 ) j | | / ( x + i ) -/(x)||l2 J 5 7 3 < 
o 

Now the r equ i r emen t /€¿2 ' s inessential. (Usually this theorem is given for Fourier 
series but the change to integrals is immediate; see [9], vol. 1, pp. 2 4 0 — 2 4 1 ; see 
also [8].) More recently BEURLING (see [2]) has shown that condition (0 . 1) on / is 
equivalent to the following one on / : 

(0.2) J | /'(c)[2(x>(|i|) dc < f o r some non-decreasing co with J 
o 

This is of importance in some questions of Spectral Synthesis (see [1], [2]). 
The purpose of this note is to show how this as well as some other results of 

[2] can be interpreted from the point of view of the theory of interpolation spaces. 
The plan is as follows. We first (Section 1) briefly summarize some general notions 
on interpolation spaces (A0,Al)0q which will be needed in what follows. Then 
(Section 2) we specialize to the case of spaces Lp(w), Lp space with weight function 
>v. In particular we characterize (Z,p(ir0), Lp{wi))e q when q = 1 or q = This should 
be contrasted to known results when q=p (see [7]). The applications to Fourier 
integrals finally are given Section 3. 
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1. General notions on interpolation spaces 

Let A0 and AL be two Banach spaces both continuously imbedded in the same 
topological vector space 21. 

If 0<i<°=>, f e A o + A ^ set 

K(t,f) = K{t,f-, A0,A,)= inf (H/oLo+ill/ilL,) 
/=/o+/i 

and, if 0 < i 

J ( t J ) = J(t,f; A o m a x (jl/H^, / \\f\\Al). 

There are basically two ways of obtaining interpolation spaces: 
1° We impose a "growth condition" on K(t,f) of the form 

W , / ) ] < - • , • ' .. 
where <P is a suitable functional. 

2° Upon representing / in the form 

/ = j / ( 0 - j - (non unique!) 
u 

we impose a "growth condition" on J(t, f(t)) of the form 

The most important special case is when 

= <¡>e,№ = [ J (t-e<p(t))"~ 
1/9 

, 1, 

In this case the two constructions 1° and 2° lead to the same spaces (up to an 
equivalence of norm) which we shall denote by (A 0 ,A, ) 9 ^. 

For more details about these spaces, see e. g. [6], see also [3], [4], [5]. 

2. The case of Lp spaces with weight functions 

Let Z be a locally compact space provided with a positive measure ¡x. Let w 
be a positive ^-measurable function (weight function). We denote by Lp(w), I p -< 
the space of /(-measurable function / such that \wf\p is /(-integrable and endow it 
with the norm 

n M w ) = W \ \ L p = ( S W \ ' d v ) U " . 
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Let now u'o and w, be any two fixed such functions and take 

A0 = XpOo), A, = Lp(iv,), 

Thus in what follows 

K(t,f) = K{t,f- L„( w0), ¿-p(vvj)), J(t,f)=J(t,f; Lp(u'0), £,(«',)). 

By [7] we have 
(2.1) 

(2.2) 

Put further 

* ( ' , / ) - l l / l l i . 

ll/llz. p(niax(H'o, iwi))* 

| = w0 

Uo 

0 (vv0</vw1), 

K d n f ) = \\f\\LpM, = 

(lV0<iVV!), 

(Wo^tWi), 

IIM«)' w = u ' 
(2) 

= /11'! (Wo^tW,), 

• (vt'o< t\\>i <2w0).. 
- W ) = 1 1 / 1 1 W = 0 ( e l s e w h e r e ) . 

Then holds 

T h e o r e m 2. 1. The following inequalities are valid: 

(2.3) * ( / , / ) : £ C „ ( I J A ^ / F } " ' ( / - 1 , 2 , 3 ) 

where 

= 0 ( a . 1 ) , ^ ( f f ) l = l ( a - l j , 

It follows that 

if and only if 

(p3(a) = min (i , f ) | _ j 

ML'(w0),L"(Wl))Piq (q =p) 

= a (CT<1), 

J [(-"KiitJY — ( < = 1 , 2 , 3) . 

P r o o f . For simplicity we consider the case / = 1 only; the other two cases cart-
he treated in a similar fashion. The inequality to the left in (2. 3) 

KJt,f)^CK{t,f) 
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is trivial, by (2. 1), since clearly iv(1) Smin (iv0, / t e j . Remains the inequality to 
the right. But we get, again by (2. 1), 

{K(t,f))p ^C'J |min O o , tWi)f\' dp 
z 

f \w0f\Pdn + 2-r f \w0f\'dfi + 
»•0<2<tt'i 2t»'iS»'o<22Iivi 

• +2~2p f \w0f\'dn+..]* 
2!WiS»'o<23rwi 

3S C'[[Kl(2t,f)]' + 2-p[Ki(2*t,f)]' + 2-*'[Kl{2*t,f№+...] ^ 

^K^taJ) 
a 

and this inequality too follows. 
If /€(£p(w0) , Lp(wx)\q the trivial half of (2. 3) shows that 

©e 

/ dt HP 

•Conversely, if this condition holds and moreover q~.p, upon writing the other half 
of (2. 3) as 

[t-°K(t,f)]p =s C' foi°- »'[{otyoKt (<x t j ) ] ' — 
. o 

• we get by MINKOWSKI 'S inequality 

[t-°K{t,f)Y> 
dt pli 

[t-0KL(t,f)]< 
dt HI 

• which shows f€(Lp(w0), Lp(wx))0q. 
Next we prove — this is our main new contribution 

T h e o r e m 2 .2 We have 
••(2.4) f£(Lp(w0\Lp(wx))9A 

Jf and only if 

..(2.5) ^ ^ ( " ^ f e ) ) 

for some non-decreasing <p such that 

i UJ± J UwJ > 1 + 1 = 1 p p 
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P r o o f i) Assume that (2. 5) holds true. Put 

f / (w0<2«w1^2w0), 
10 (elsewhere). 

UP 

w0f\'dn\ 
wo<2'*>VI3 2M'O 

Then, by (2. 2), 

J \Wof\>d»]
l% 

S c 
1 

<p{ 2~k) / bfek wq< 2k wi ̂ 2wo 
dfi 

UP 

the last estimate because cp is non-decreasing. It follows by HOLDER'S inequality 
that 

^ 2~ke J(2k,fk) ^ C| | / | | 

^ C ii/II. 

Z [cp(2-x) 

/ 

HP1 

If we put 

this gives 
/ ( 0 = ( l o g 2 ) - 1 / 

dt 

UP' 

r j(t,m) dt 
J t° t 

and, since also / = Jf(t) — , we have established (2. 4). 
o { 

ii) Conversely assume (2. 4) holds true. Then 

dt 

or, in view of (2. 1), 

with 

f K(t,f) di 
J te t o 

<p(A) 

oo 

= f [ dt 
~ [J t9[K{t,f)]"-1 t . 

UP 

which is obviously non-decreasing. But 

K(t,f) s max( l , tX)k\-^, f 

5 A 
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Hence 

(<P(V)P S 
xe r 

H P K \ j , f 

[min (1, ?A)]P dt 
(AO®[max (1, tX)]p T C 

A® 

K h ' f \ 

p - 1 

or 
A° 

<p(A) 

and it follows at once the crucial condition: 

[ ( A" Y 
J U(A)J 

dX_ 
A 

Thus we have shown that / satisfies (2. 5). 
We conclude by mentioning a sort of dual result. 

T h e o r e m 2. 3. We have 
(2-6) / £ ( L p K ) , £>•,)),,, 
if and only if 

f I w 
w0(p (2.7) Ï» for all non-decreasing <p such that 

Prof , i) Assume that (2. 7) holds true. We claim that then 

(2.8) sup 11/11, 

Indeed if this is not the case there is a sequence of non-decreasing functions 
such that 

f H - / , , , f i v M P d t 1 J
 W o ( P v

 - ] / d,= l, 
x o 

Jf we set 
(<p(0)" = 2(<PM)Y 

v 

then <p is obviously non-decreasing too and 

q>(t)Y dt_ 
M 

< y 
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but 

I\Wo(p^r}f\dfl = ?1 = co-
Thus we get a contradiction1)-Upon taking <p(i) = min (1 ,1t 0 ) in (2.8) we get 

f\mm(w0,t0Wl)f\Pdn C't'o", 
z 

so by (2. 1) we get (2. 6). 
ii) Conversely asume (2. 6) holds true. Then by (2. 1) 

f\m'm(w0, twJf¡"dp S Ct9". 
z 

Multiply by |r/> and integrate! We get 

/ [ M h min(vv0, iWj) 
L t 1 J 

z o 

But, since (p in non^decreasing, 

dt dt 

№ 
1»0 
»1 

min(iv0, nvj) 
p dl 

t - /['few 
WO 

2u>i 

Thus we have established (2. 7). 

R e m a r k 2. 1. Theorem 2. 2 and 2. 3 should be compared to the known result 
([see [7]) 

It would be inteiesting to have a characterization of (Lp(w„), Lp(ir i))0j9 which 
covers the remaining case 1<<?<°°, q ^ p too. 

3. Applications to Fourier integrals 

We consider the space Wpq of functions / on ( - » , <») such that 

J | f(x + Nt) - ]/(.v + (N- 1)t) + ... + (-1 y f{x) 
d t 

LvtS"+ 1 

1/9 

') We owe the above argument to N I L S - O L O F WALLIN. 
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where 1 S i / 5 » , 0 < s < N . This definition is essentially independent 
of N. In view of [3], [5], [6] we have 

iv;-" = H»)s 

where Hp is the space of functions whose JVth order derivative is in Lp (with respect 
to Haar measure). 

Now take p = 2. By PARSEVAL'S formula we then get 

(3.1) fcwr if and only if / e [ M l ) ; L 2 ( m ] . v 

W" 

Thus we may apply the result of Section 2. 
Let us write 

• Ly = [Lp{\),L,Xm]s . 
W" 

On applying theorem 2. 1 (</ = °°, / = 1) we get: if and only if 

(3.2) [ / 1/(^)1" Ct'. 
lilai/i 

In view of the duality theorem of LIONS (see [4] or [5], chap. Ill) this is clearly related 
to [2], theorem II. 

On applying theorem 2.2 we get: f^L*; 1 if and only if 

(3.3) 

for some non-decreasing q> such that 

t> )" dt : co. 
MO) ' 0 

In particular (p = 2) we get by (3. 1): / £ fV^' if and only if 

(3.4) f i 

for some non-decreasing (p such that 

¡ [ h o ) 

2 dt 
(pit)) t 

If the condition on (p reads simply / . ^ < °° and setting (o(t) = (q>(t))2 

2 o (<P(0) 
we get (0. 2). This is essentially [2], theorem III. 

As in [2] similar results hold if is replaced by (1 + |£|)'v. 
It is also clear that we in the above fashion can treat the case of Fourier integrals 

in any number of variables. 
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