On interpolation of L, spaces with weight functions

By JAAK PEETRE in Lund (Swedgn)

0. Introduction

~ According to a classical theorem of BERNSTEIN (1914) a sufficient condition for
a function f on the real line (— =, =) to be given by an absolutely convergent Fourier
integral, ‘ .

' 1 o A
1) = 5= / e f@)de, feL,
is that f€ L, and satisfies a Lipschitz condition of exponent >%'in L,, ie.
[f(x+1)—f()l, = O@**®) for some ¢=0 and as 0.

A more precise condition in this sense reads:

0.1) B TS ST
0

Now the requirement f€ L, is inessential. (Usually this theorem is given for Fourier
series but the change to integrals is immediate; see [9], vol. 1, pp. 240—241; sce
also [8].) More recently BEURLING (see [2]) has shown that condition (0. 1) on f is
equivalent to the following one on f:

0.2) _Z |/ (&)Pw(|¢]) dé << for son;e non-decreasing withbfﬁiﬂ)<¥.

This is of importance in some questions of Spectral Synthesis (see [1], [2])."

The purpose of this note is to show how this as well as some other results of
[2] can be interpreted from the point of view of the theory of interpolation spaces.
The plan is as follows. We first (Section 1) briefly summarize some general notions
on interpolation spaces (4, 4;), , which will be needed in what follows. Then
(Section 2) we specialize to the case of spaces L (w), L, space with weight function
w. In particular we characterize (L,(1wo), L,(w,))y , When g=1 or g = ce. This should
be contrasted to known. results when g=p (see [7]). The applications to Fourier
integrals finally are given Section 3. .
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1. General notions on interpolation spaces
Let A, and A4, be two Banach spaceé both c,onti‘nuously imbedded in the same
topological vector space .
H O0<t<o, fEAy+ A, set
K@t.f) =K@, f; Ao, A1) = inf (|| follag+21/1ll4)
: f=fotf1r
and, if 0 << e, fEAoﬂAl,
J(,1)=J(t: f; Ao, Ay)-max (1 fll4,, ¢ Hf“Al)

There are basically two ways of obtaining interpolation spaces:
1° We impose a “growth condition” on K(¢,f) of the form

4’[K(t,f)] < e,
where @ is a suitable functional.
2° Upon replesentlngf in the form

f:/.f(t)g | (non.unique'!)

we impose a “growth condition” on J(1, f(¢)) of the form

o[ J(t, f(1))] < <.

The ‘most important specidl case is when

| | ' r ' dr |
Dlp] = &4 ,[0] = [ (t“’q>(t))“7] ,0<0<1, 1=g=co.

In this case the two constructions 1° and 2° lead to the same spaces (up to an
equivalence of norm) which we shall dendte by (4g, 4,),4-
For more details about these spaces, see e. g. [6], see dISO {31, [4], [5])-

2. The case of L, spaces with weight functions

Let Z be a locally compact space provided with a positive measure p. Let w .
* be a positive y-measurable function (weight function). We denote by L (w), 1 <p << e,

the space of u-measurable function fsuch that [wfl? is s lntegrdble and endow it
with the norm

1 g = D67, = ([ 1wrio )™
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Let now w, and w, be any two fixed such functions and take
Ay = L,0wvy), 4, = L,(w\), | <p=<oo.
Thus in what follows

K(t,f) =K(1f; L,(wo), L(wy)), J(t,[)=J(tf: Lp(\t’o), L(wy)).

By [7] we have -
2.bH K, ) ~ 1S I ptemintwo, w13y

(2 2) o J(”f)w ”f”L,,(mux(wo.twl))-
Put further : . .

=wp  (Wp<<tw,),
Ki(t,f) = ,owe=wtt
() = 1 e yom =0 - (wo=tw,),
‘ C =0 (wy<tw)),
K t, ) = . ] W= “](2)
2(6f) I/ ”Lp(‘v)l. =tw; (We=tw,),

= = w3 )
. _ ‘K3 (t’f) ._ ”f‘”Lp(w)s w w {ZO (elSCWhere).
Then holds _ . '

Theorem 2. 1. The following inequalities are valid:

2.3) cle,.(r,f)gk(z,f)§c{f[ [ ]K(t ,f)J d"} (i=1,2,3)

where
=g (o<l), 0 (o<,

(Pl(o){:o (O'EI), (p2(0){ 1 (O'é]),

o (a<1),
1 (aél).

SE(LP(wo), L”(‘Vl))o,q (‘1 5[’) '

1

Uz "K(rf]‘l_] <o (i=1,2,9),

@5(6) = min (l a){
It follows that

if and only if

Proof. For simplicity we consider the case i=1 only; the other two cases can.

be treated in a similar fashion. The inequality to the left in (2. 3)

Ki(t, )= CK(.f)

~wo~twy (g =<ty <2w,),.

63
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is trivial, by (2. 1), since clearly w) = min (wo, tw,). Remains the inequality to
the right. But we get, again by (2. 1),

(K@ =cv [ imin wo, w,)f 1P du =

sce[ [ twospdut2r [ sl du+

wo < 2fwy 2w Swo<22twy

[tA

22twy=wo <23ty

I

CPLIK QNP +27P[K 220, NP+ 272 [K (231, )P + ...

cr / [% Ky (to, f)] %"-
1

and this inequality too follows.
If f€(L(wo), L(wy))g,, the trivial half of (2.3) shows that

. 1/p
[ f [+ =K, (1, /)] —",i] <.
0

Conversely, if this condition holds and moreover ¢ =p, upon writing the other half
of (2.3) as

IIA

w2 [ o fedet ]
]

1A

oo

[t=°K(t, ) = ij'o(o_l)p[(g,)—eKl (m’f)]p_d?cr

1
-we get by MINKOWSKI’s inequality

nlq
[/[t "K(ff)]" éc/ ot~ l)v—[f[f K, (¢, f)qﬂ <oo

-which shows f€(L,(wo), L,(W))pq
Next we prove —- this is our main new contribution —

Theorem 2.2 We have

2.9 ' FE(L0v0), L(w))o,
Jf and only if
2.5) | feL, [uw [W—ll]

! Wo

for some non-decreasing @ such that

oo

/'[L]”i’_m [L.+L_1]
J o)) 1 p )
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Proof i) Assume that (2. 5) holds true. Put

' {f (wo < 2Fw; =2uy),
- S = 0 (elsewhere).
Then, by (2. 2),

sep=c[ |wof|vdu]”"§

wo <2k w1 =2wy
e 1/p
Wy
“oe k)[ W°"’[w0]f -d"] ’

the last estimate because ¢ 1s non- decredsmg It follows by HOLDER’s 1nequa]1ty
that

<2k W]SZWQ

— oo

%2—“’](2.",]{;‘)‘§ C_”f”L,,(ww(:_;)) [Z [%]p]up _

- éCHf“L,, (v 4(” ) [f [ t(er)] it] /pl<‘°°'.

If we put .
f)y=(Qog2)~ i (2"§t<2"“)

this Agives ’

10

/ J(t,1() dt

% -

and, since also /= [ f(t)—(i_—t, we have established (2. 4).

0
ii) Conversely assume (2. 4) holds true. Then

fK(tj) dt
9 t
0

/

m : p 1/p
o () = [/ [mm(l,tl)]_ dr

or, in view of (2. 1),
p

w
WOQD{ ;]f dp <o

with

K@ NP ¢
Awhich is obviously non-decreasing. But

K(t,f) = max (1, M)K[—}T,f].
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Hence

(e = [min(l, tA))r  dr C A9

[ [ , f]] / G Tmax (L0 © = W

-0 I’./_ 0 i
[cou)] =C"K[A’f]

and it follows at once the crucial condition:

or

ek
—_—] —<
p()) 4
0
Thus we have shown that f satisfies (2. 5).
We conclude by mentioning a sort of dual result.

Theorem 2. 3. We have

(2 6) . fe (Lp'(“’o), Lp(wl))o,m
if and only if '
2.7 - feL [wo(p[ ]] Jor all non-decreasing ¢ such that

IEE
)T

Prof. i) Assume that (2. 7) holds true. We claim that then

(2.8) sup ||f|in (ww(il_))/[/ [(pt(of)] -C_it_]"<oo.

Indeed if this is not the case there is a sequence of non-decreasing functrons o,
. p ’
wy |, _ @,(1) 1
wolelfo-1 [l
(4]

such that
(M) = Z (@, ()

then ¢ is obviously non-decreasing too and

/[(p(t)] dt _ 51 _
) T T e

oo

If we set

A
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Jrolzh

Thus we get a contradiction!). Upon taking (p(t) min (1, z¢,) in (2. 8) we get

/[mm(wo, towl)fll’ dy = CPtif

but

d,u—ZI_oo

so by (2. 1) we get (2. 6).
i) Conversely asume (2. 6) holds true. Then by (2. 1)

f!min (w'o, twy)f|Pdu = Creor,
P ‘

) I3
Multip]y by [(p (%]] and integrate! We get

oo

T i e 1 P

But, since ¢ in non-decreasing,

/[ [ ]mm(wo, rwl)]p% = / [(p [%] twl]pfii = C»r [(p [:—l]Jpwg.
. 0 ) 0

Thus we have established (2. 7).

. Remark 2. 1. Theorem 2. 2 and 2. 3 should be compared to the known result
(Isee [7)) -
(Lp(WO) Lp(wl))o P = Lp(wO _owfi)

It would be inteiesting to have a characterization of (L,(wo), L (nl))gq which
covers the remammg case 1l <g<eo, g#=p too.

3. Applications to Fourier integrals

We consider the space W"q of functionsf on (—éo,oo) such that
~ - 1/q .
oo S
o ’ .

) We owe the above argument to NiLs-OLOF WALLIN.
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where l<p<oo 1=¢=e, 0<s<N. This" deﬁmtlon is essentldlly independent
of N. In view of {3], [5], [6] we have

—_ TN
= (L H”)%.q

P>

where HY-is the space of functions whose Nth order derivative is in L, (with respect
to Haar measure). .
Now take p=2. By .Parseval’s formula we then get

(3.1) SEWST if and only if fe[Ly(1), Ly (€M),
. qu

Thus we may apply -the result of Section 2.

Let us write
L5 = (4,00, L(EMI,

N s 4

On applying theorem 2. 1 (g =o0, i=1) we get: f¢ Ly = if and only if
(3.2) { [ S 1sera]r=c

1El= 1/t

In view of the duality theorem of Lions (see {4] or [5], chap. 111) this is élearly related
to [2], theorem II. - ' )
On applying theorem 2.2 we get: f€L3y' if and only if

Gy J 1@ e de <o

for some non-decreasing ¢ such that

/o'o[ Iz ]”'a’/
o)) T
0

. In particular (p=2) we get by (3. 1): fe W' if and only if
3.4) [1/@©eqeDp de <

for some non-decreasing @ such that

f{ s ]Zdl
JGw) T

1
the condition on ¢ reads 51mply /

2 (oD ('))2
we get. (0 2). This 1s essentmlly 21, theorem HI.
' As in [2] similar results hold if [¢|Y is replaced by (1 + |E)Y.

It is also clear that we in the above fashion can treat the case of Fourier integrals
in any number of variables. : .

If s= <o and setting w(t) (o (1))?
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