On the endomorphism ring of direct sums of groups

"By L. C.-A. VAN LEEUWEN 'in Delft (Holland)

§1

In this paper we investigate the commutdtmty of endomorphlsm rings E(G)
of groups G and apply the results on the rings R, which.can be defined on G. A ring
R is said to be defined on G, in case the additive group of R, denoted by R*, is G.
In the special case that G is a discrete direct sum of groups we obtain conditions
for the uniqueness of the holomorphs of rings R, defined on G.

In [5] SzELE—SZzENDRE! have completely solved the problem of the commutativity
of E(G), in case G is a torsion group. For the case of mixed groups they have got
some partial results. We consider a group G, which is a discrete direct sum of groups
G, and obtain necessary and sufficient conditions that E(G) be commutative (Theorem
2 and 2a). As a special case we have the torsion-free completely decomposable
groups G = Z’A,, where the A4, are torsion-free ‘groups of rank 1, i e. subgroups

_of the addltlve group of all rationals M (Theorem 3, Corollaries 3 and 4). Then we
apply our result to torsion groups and obtain Theorem 4, which occurs as Theorem 1
in [5]. We also investigate the finite and finitely generated groups. A finite or a
finitely generated group G has a commutative E£(G) if and only if G is a cyclic group
(Corollaries 5and 6). For mixed groups we have Theorem 5, due to SZELE—SZENDREL
[5], and, in a special case, Corollary 7. _
"As to the holomorphs of a ring, we first prove a theorem for rings R, which
are the ring-theoretic discrete diréct sum of rings R, (1€ A). In Theorem 1 we give
.a necessary and sufficient condition that such a ring R have.one holomorph. For
the definition of holomorph we refer to our paper [3]. From Theorem 1 a result of
WEINERT—EILHAUER is easily obtained [6] (Corollary 1) and likewise: our Theorem 1
in [3], (Corollary 2). In Theorem 6 we consider a ring R which is defined on a group
G = Z'G,l (discrete direct sum) where the G, are fully invariant subgroups of G.

The ring R is the direct sum of its ideals G, (as rings). Now the uniqueness of the
holomorph of R depends only on the same property for the direct summands G,
of R. In the special case that the G, are rational groups, each G, (as a ring) has one -
“holomorph P(G,), which is 1somorph1c to the direct sum G, G, (G, as a ring)
(Theorem 7).

The groups, used in this paper, are all abehan groups, the rings are associative
rings. For the definition of group-theoretic notions such as type of an element of
a torsion-free group, divisible group, etc. .we refer to the book of L. Fuchs [2].
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§2-
Theorem 1. A ring R= 2 R, (ring-theoretic discrete direct sum) has one

holomorph if and only if each R,1 (/1 € A) has one holomorph and each R; is invariant
Jor the components of double homothetisms of R.

Proof. First suppose that R has one holomorph. Consider .the projection
n.: R— R, of R (r—r;). 1t is easily seen that (n,, ;) is @ double homothetism of R.
Now suppose that (a,, ®,) is an arbitrary double homothetism of R: As (o, o) ~
~(n;, 1) (R has one holomorph) we have o5, =n,0, or a;n,(r)=n,0,(r) or o,(r;)=
=n,{o,(r)} € R, for every r; € R;. This shows that R; is invariant for the components
of double homothetisms of R. Then take two arbitrary double homothetisms (¥, o%)
and (B%, %) of R,. Then we define o, (r)=oi(r;,) and o,(r)=ai(r;), B,(r)=pH%(r)
and B,(ry= B%(r,), for r € R and r, is the projection of r (4 is fixed). NOw one proves
easily, that (x,, ,) and (f3,, f,) are double homothetisms of R. As R has one hol-
omorph, o, ,(r) = B,o,(r) and a,f,(r)=B,2,(r) for all re€R. Or o, f5(r;) = Byori(r;)
and o, f1(r,) = po3(r;) or ofpi(r;)=p5ai(r;) and agﬁ*(";)=ﬁ*“t(r;)~ This proves
(ek, o) ~(B%, B%) and R, has one holomorph.
~ Conversely, let us suppose that each R, (1€ 4) has one holomorph and is
invariant for the components of double homothetisms of R We take two arbitrary
double homothetisms («, , a,) and (§,, §,) of R. Then a,(z ";,):Z o rando,r, € R
A A

- for each 4, [32‘(2 )= 2 Bor, and f,r, € R, for each A. And («,f5, -—ﬂza,)(z r)=
A i A
~2(°‘1ﬁz Bao)ry. where (o8, — Br0;)r, € R, for each 4. Consider a fixed direct

summand R of R and define «f(r;)=a,(r;) and o (r,l)_ozz(rl) for each r,€R,;.

Then (of, ocz) is a double homothetism of R;. Likewise (8%, %) is a double homothe-

tism of RA, if we define B¥(r;))=p,(r)), ﬁ*(rl) B,(r;) for each r,IER,l As R, has

one holomorph, one gets (oF, af) ~ (8%, %), which means off3=f4at. Therefore

(4% — Bt (r) = (¢, f—B,0,) (r,)=0 for each r; in R,. As this is the case

for each R;, we obtain that («,f, — f,%,) (Z 3) = 0. Likewise (1,8, — B12,) (2 1) =0.
A

Therefore (o, a) ~(By, B2), 1.e. R has one holomorph.

Coroltary 1. If R = R *@nyg (direct sum of the ideal geuerated by all products
in R and the annullator in R), then R has one holomorph if and only if the endo-
morphism ring of ni is commutative (see WEINERT—EILHAUER [6], Theorem 4).

1t is clear that both R? and ny are invariant for components of double homothe-
tisms of R. From R = R*@ny and n, has one holomorph it follows that R? has
one holomorph. Therefore n, has one holomorph is a necessary and. sufficient
condition for the uniqueness of the holomorph of R. As ny is a zero-ring this is the
case if and only if E(ny) is commutative (see REDE! [4]).

In the special -case that R = ZR, and Hom (R R+) 0 for =] we have
that E(R*) = Z'E(Rf) (direct sum) and each R} is a fully invariant subgroup

of R*. Partlcularly, the R, are invariant for the componénts of double homothetisms
of R. So we get:
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Corollary 2. R = 3 R, with Hom (R}, ,R;:):Ofor i#j has one holomorph
. ) 2 t J
if and only if each of the R, has one holomorph. '

Moreover the holomorph of R is the direct sum of the holomorphs of the R;,
{cf. Theorem 6). Again specializing we have that a finite ring R is the direct sum of
its p-components R, and the holomorph of R is the direct sum of the holomorphs
of the R, (cf. Theorem 1, [3]), if each of the R, has one:holomorph.

§3

In order to get further information about the holomorphs of direct sums of
rings, we have to investigate the commutativity of the endomorphlsm rings of direct
sums of groups. .

Theorem 2. The endomorphism rmg of a. discrete. (Itr ct sum G = Z'G of

groups G; is commutative if and only if each of the summands G, has a commutatwe ‘
E(G) and none of G, can be mapped homomot phically onto a non-zero subgroup of
another G,. o )

Proof. Necessity. As E(G) is commutative, it follows that every endomorphic
image of G is fully invariant (Lemma 1, [5]). As every direct summand is an endo-
morphic image, it follows that the G, are fully invariant subgroups of G (A€ A).
Suppose now that G;, is mapped homomorphically onto a subgroup (;éO) of G,,
by the homomorphmm 3cHom (G,,, G,)) (4;=4;). We define the mapping 9’ of
G into itself by: ¥g,=0if g,€G, with l;ézl,, Vg = SgA if g,,€G,,. Then § is an
endomorphism of G or 3 €E(G). But 9G, & G,,, since ¥ coincides with 9 on
G,,. Therefore G,, is not fully invariant, which is a contradiction. We conclude
that . none of G, can be mapped homomorphically orito a non-zero subrroup of
another G,. Now .let g;, g, be two arbitrary endomorphisms of G, (1 is fixed). G,
is an endomorphic image of G and let ; be the projection of G onto G;. Then we
can extend the endomorphisms o; resp. ¢, of G, to endomorphisms ¢ resp. ¢ of G
defining a(Zgu) Zo-o,, and og,=0if g,€G, with u=1, 6g,=0,g, if g,€G, and

likewise for g w1th respect to 0;. Then go(n,8) = oa(mg) (g €G), as E(G) is commu- -

tative, or ¢o,(g;)=00,(g,), -5} €G,, or 0;0,(g;)= Qloyl(g) for every g,€G,. This

means 0,0; = 0,0, or E(G,) is commutative. _
Sufficiency. Let « be an arbitrary endomorphism of G. Then oc(ZgA) Z og;.

‘Take a fixed G,1 Now rng Zaw(g,mkGu) is a finite sum and if we put 085 = Gans

. then «,, (.Iedrly belongs to Hom (G, Gu) Therefoie o, =0 for 2>y, and 8 =0
for A= pu. Then ag; = ?g,u-_g“EG,, which means that G; is a fully invariant

subgroup of G. E(G)= 2 > E(G;) (direct sum) and as each G has a commutative
i

E(G,). it follows that E(G) is commutative.
From the proof above we see that Theotem 2 a]SO may be read as:

Theorem 2a. Let G= Z G, be a discrete direct sum of groups G,. Then E(G)
‘ P . .
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is commutative if and only if eacl G, has a commutative E(G,) and is a fully invariant
subgroup of G.

Theorem 3. A4 completely decomposable torsion-frec group G = ZA 2, Where

‘the A, are torsion-free groups of rank | and G is their dzrecz sum, has a commutatwe
E(G) if and only if the types of the components A; are pairwise incomparable.

Proof. First we remark that, if 4, and 4, are two torsion-free groups of rank
1, of type a and b respectively, then A4,, is isomorphic to a subgroup of A4;, if and
only if a=b. Now suppose that the conditions of the theorem are satisfied. Then
we show, that none of the groups 4, can be mapped homomorphically onto a non-
zero subgroup ‘of another A4,. For let 4, . 4; be torsion-free groups of rank 1
(4 #4;) and Jet ¢ be a homomorphism of A, onto a subgroup (=0) of 4; . Then
it is easy to see, that Ker (¢)=0 or ¢ s a monomorphlsm (1somorphism nto).
This means A, is isomorphic to a subgroup of 4; i.e. ¢(4;), but this is impossible
by the remark above as the types of A, and 4, are mcomparable As the A, are
rational groups, they have commutatwe endomorphlsm rings, and E(G) is commu-
tative by Theorem 2.

Conversely, if F(G) is commutative, then again none of the: A4, is isomorphic
to a subgroup of another 4, by theorem 2. This means, the types of the components
A, are pairwise incomparable.

The class of completely ‘decomposable groups comprises all groups of rank 1,
all free abelian groups as well as all divisible torsion-free abelian groups. Thus we
have the corollaries:

Corollary 3. A free abelian group G has a commiitative E(G) if and Aonly' if
G = C(==) (infinite cyclic group).

Corollary 4. A4 divisible torsion-free abeliun G has a commutative EG) if
and only if G=22R, where R is the additive group of all rational numbers.

§4

a) Torsion groups. Every torsion group may be represented as a direct sum of
p-groups G, belonging to different primes p. The G,, uniquely determined by G,
are called the p-components of G. They are fully invariant subgroups of G. Therefore
by Theorem 2a, G = ZG has a commutative E(G) if and only if each G, has a

commutative E(G) Then we have to characterize the p-groups with commutatxve
endomorphism ring. Now let p be a fixed prime’ and consider the p-component
‘G, of G. The center of E(G),) lS the rmg B of p-adic integers or the residue class -
ting I/(p*) of the integers mod p¥, where [ is the ring of rational integers (12}, Theorem
56. 3). Therefore, E(G,) is commutative if and only if E(G,) is either the ring P
of p-adic integers or the ring I/(p") of integers mod p*. We now use: if 4 is a group
C(p (k=1,2,...,%), and B is a p-group such that E(B)= E(A), then B= A4,
(see [2], p. 215) Tncase E(G,) =P =E(C(p~)), we have G,= C(p~). In case E(G,) =
=/(p") = E(C(p")) we have G, = C(p*). Thus a p- component G, of G has a commu-
tative E(G,) if and only if G, is elther C(p=) or C(p*). Then G = 2 G, has a commu-
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tative E(G) if and only if G is a direct sum of groups C(pH (k—l 2, .. oo) for:
dlﬁ"erent primes p. :

‘Theorem 4. An abelian torsion group G has a commutative E(G) if and only
if G is a subgroup of C, where C is the additive gr oup of rational mimbers mod 1
(cf‘ [51, §4, Theorem 1) :

" If G is a finite abelian group, then components C(p‘”) do not occur in a direct’
decomposition of G == ZG in p- components But then G is a d1rect sum of a finite-

number of cyclic groups C(p*) for different primes p, that means, G is cyclic. So
_.we get:

Corollary 5. A finite abelzan group G has a commutatrve E(G) if and only if”
G is a cyclic group.

More generally, a finitely géneraled group G is a direct sum Aof a finite number
of cyclic groups of infinite and/or prime power order, say G = > C(w)+ 3 C(p").

. m 4
Let G have a commutative E(G). If G is torsion-free. then G = C(=0) (Corollary 3):
If G is a torsion group, then G= ZC(p") for dlfferent primes p, or G is a cyclic -

group (Corollary 5).If G is a mlxed group, then the torsion-free component of G™ -
is C(s), as none of the direct- summands can be mapped homomorphlcally onto
another one. The maximal torsion subgroup of G is > C(p") and as E(G) is comnu-

tative, ZC(p") has a commutative endomorphrsm ring (Theorem 2). Then:

Z C(p") is a subgroup of C (Theorem 4); in this case, as G is finitely generated

2 C(p") is a cyclic group C(n) (Corollary 5). Now G = C(oo) -I— C(n)is 1mpossrble,

as Hom (C(=s), C(n)) C(n) and this contradicts the commutatrvrty of E(G). There--
fore a mixed group G, which is finitely generated and has commutative E(G), is
impossible. We have proved:

Corollary a) 6. A4 finitely gencrated abelian group G has a com.mutat:'ve E@G) if”
and only if G is a cyclic (infinite or finite) group. :

Remark. a) For a torsion group G, SZELE—SZENDREI [5] have proved that G
has a commutative E(G) if' and only if G has this property locally, i. e. every finitely
generated subgroup of G has a commutative E(G). By Corollary 6, this means,
every finitely generated subgroup of G is cyclic or G is locally cyclic. Now a torsion.
group G is locally-cyclic if and only if it is a subgroup of C, which is again Theorem 4.

b) For a torsion-free group G it is clear that if every finitely generated subgroup
F of G has a commutative E(F), then G has a commutative E(G) For, according.
to Corollary 6, this means that every finitely generated subgroup is C(<=), or G is-
locally cyclic. But a locally cyclic torsion-free group G is a rational group or a sub-
group of MR, the additive group of all rationals. Therefore G has a commutative
E(G). The converse does not hold. A counter-example is: let p;. p,, ... be an infinite-
sequence of different prime¢ numbers and let R, be the additive group of those-
rationals, whose denominator is relatively przme "to p.. Then the:complete direct:
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sum G= Z*R has a commutatnve E(G) (SzeLe—SzENDREI [5]), but G is not
locally CyCllC.

c) Mixed groups. Let G be an arbitrary (mixed) group and p be an arbitrary
prime number. 1f the group G contains an element of order p, then p is called
relevant for G. Let G = T+ J be a splitting mixed group, i. e. G decomposes into
a direct sum of a torsion group T and a torsion-free group J. Here we have the
following theorem, due to SzZELE—SZENDREI [5]: '

Theorem 5. Let G = T+ J be a splitting mixed group, where T is the torsion
subgroup of G. Then E(G) is commutative if and only if T is a locally cyclic group
containing no subgroup of type C(p~) and J has a commutative E(J) and pJ=J holds
Sfor all primes p relevant for G.

Remark. Asa special case of Theorem 5 we consider the mixed groups G
with bounded maximal torsion subgroup. Let G be a mixed group with bounded
maximal torsion subgroup T (#T=0). Then G is a splitting mixed group: G = T+J
(([2]. Corollary 50. 4). Now suppose that G has a commutative £(G). By Theorem 5,
T is a locally cyclic group containing no subgroup of type C(p=). From aT=0
we infer that only those cyclic- components C(p*) can occur in T, for which pln.
As n has only a finite number of prime divisors, it follows that 7 has a finit¢ number
of direct summands, i. e. T is a cyclic group and a subgroup of C(n). We may assume,
without loss of generality, that » is the least positive integer such that #7=0. Then
we get T'==C(n). Evidently we also have T=G[n], where G[n] is the set of all g€G
with ng=0. Now it is clear that J =~ G/T=G/G[n] = nG, i.e. the set of all ng
with g €G, hence E(nG) is commutative by Theorem 5. As T=C(n), the prime
divisors p; of n are relevant for G. From Theorem 5 it follows that p,/=J for all
piln. Hence nJ=J or nG=J, as nG=nJ. Conversely, if G is a mixed group with
bounded maximal torsion subgroup T=C(n), then again T=Gln). If nG is the
torsion-free component of G, then we have the direct decomposition G = G[n] +rG.
Both G[n] and nG are fully invariant subgroups of G. Moreover T as a cyclic group
has a commutative E(T). By Theorem 2a the commutativity of E(nG) is sufficient
now for the commutativity of £(G). Thus we get:

Corollary 7. Let G be a mixed group with bounded maximal torsion subgroup
T such that nT=0 and n is the least positive integer with- this property. Then E(G)
s commutative if and only if T=C(n) and nG is the torsion free component of G and
has a commutative E(nG).

Now we want to apply these results to the investigation of rings which can be
defined on direct sums of groups. Let G be an arbitrary (abelian) group. An (associa-
tive) ring R on G is a ring R, such that R* =G. Such a ring R has one holomorph
if the endomorphism ring E(R*) = E(G) is commutative [6]. If G is a discrete direct
sum of groups, and every direct summand is a fully invariant subgroup of G, the
structure of the holomorph of a ring R on G can be described.

Theorem 6. Let G= ' G, be a discrete direct sum of groups G,, such that

. . A€EA .
..each G, is a fully invariant subgroup of G. Then in each ring R on G the G; are ideals
.and R is their direct sum in ring-theoretic sense. A ring R on G has one holomorph
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if and only if each of the G; (as ua ring) has one holomorph. If R hrzs‘ one holomorph
P(R), then P(R) is an interdirect sum of the holomorphs P(G,) (AEA).

"Proof. Let g be a fixed element of G. Then multiplication of the elements of
G from the left by g in a ring R on G induces an endomorphism of G. As G, is fully
invariant in G, we get gg, €G, for each g, €G,. Likewise we find that g, operatmg
on the right side on the elements of G, induces an endomorphism of G and there-
 foreg,g€G,for eachg, €G,. G, is a two-sided ideal in G. Moreover g; g, € G, (\ G, = (0)
-for A= por G,G, —(O) As G is a direct sum of groups G,, we infer that R is a direct
sum of its ldedls G, in rmg—theoretlc sense: Then, each G, is fully invariant in G
implies in partlcular that each G, is invariant for the components. of double homo-
thetisms of R. By Theorem 1, R has one holomorph if and only if each of the G,
(as a rmg) has one holomorph. Finally we have to prove that the holomorph P(R)
of R is an interdirect sum of the holomorps P(G,), (A€ A). Let D resp. D, be the
maximal ring of related double homothetisms of R resp. G, (1€ A4). The elements
of the holomorph P(R) are the pairs (o, @), a €D, a€R and sum and product are
obtained as follows: (o, @) + (8, b) = (o -+ f3, a+b) (o, @) (B, b) = (2B, Ba+ab+ab) .
‘with a—(oc,,oc,), B=(f,.h.). As G= ZG is the discrete direct sum of its fully

invariant subgroups G;, it is clear that E((‘) is the complete direct sum of the groups
E(G,). Likewise D is ‘the complete direct sum of the rings D,. Any o€ D induces
a well-defined double homothetism a, of D; for every 4. If a=(a;, a,)€D and «;
induces a,; in D, «, induces a,; in D,, then o; =(a,;, «,,) is a double homothetism
of D,. Every double homothetism «; € D, (A fixed) may be obtained as the “Ah
component of a double homothetism « ¢ D. The mapping (a, @) —~(..., (o}, @), -..)
is a homomorphism of P(R)=Do R into the complete direct sum of the P(G,l) =
= D, oG,. Moreover, this homomorphism ‘is an isomorphism, because if (o;, a;)= °
=(0,0) holds for all A€ A, then (a, @)==(0,0). Then P(R) is isomorphic to a
subring of the complete direct sum of the rings P(G;)=D,0G, i.e. an interdirect
sum of the rings P(G,) (1€ A). This completes the proof of Theorem 6.

Now we will give examples of groups, which satisfy the requirements of Theorem

6. In .the rorsion case, we have that every torsion group G may be represented as a

“direct sum of its p-components G,. These p-components G, are fully invariant
subgroups of G. Therefore Theorem 6 may be applied to tor51on groups. If G is a

-finite group, say of order n, then, if n=ph ...p, , G is the direct sum of r subgroups
G, of order p% (i=1, ..., r). Every ring R on G is a finite ring and the ring-theoretic
direct sum of finite p;-rings R, , which are rings on G, (i=1, ..., r) and annihilate
each other for different primes p,. The ring R has one holomorph if and only if
each of the R, has one holomorph. Moreover P(R) is the direct sum of the P(R,).
* This establishes Theorem 1 of my paper [3], (cf. also Corollary 2 of this paper).

In the torsion-free case, we consider a torsion-free group G which is the direct
sum of homogeneous groups such that the types of the components G are pairwise
incomparable. By a homogeneous group we mean a torsion-free group all of whose
elements 0 are of one and the same type a. We denote by G(a) the set of all elements
a in G for which T(a) Za. Now let G, be a fixed homogeneous component of G of
type a,. As the types of the components G, are pairwise incomparable, we get
G(a;)=G,. Now the subgroups G{a) are, for any type a, fully invariant in G. There-

fore G; is a fully invariant subgroup of. G for every 2. We do not know, however,. .
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whether a homogeneous group G, has a commutative E(G;). If the'homogeneousi

components G, are torsion-free groups of rank 1 or rational groups the group

G = 3 G, is completely decomposable. If now the types of the rational groups are
< .

pairwise incomparable, then the G, are fully invariant in. G. A ring R on G is the
direct sum of its ideals G;. In this case, any ring R on G has-one holomorph, as each
of the G, (as a ring) has one holomorph. The last result is due to the fact, that each
of the G, (as a rational group) hasa commutative £(G,) and this is a sufficient condition
for the uniqueness of the holomorph P(G;). The uniqueness of the holomorph of
R is also an easy consequence of Theorem 3, as the ring E(R*)=E(G) is commu-
tative. By Theorem 6, P(R) is an interdirect sum of the holomorphs P(G;) (A€ 1).
If G, is a rational group, “then any ring R, on G, is a subring of the ratlonal
number ﬁeld or a zero-ring [1]. Now we have the theorem: :

Theorem 7. Let G, denote a subgroup of the additive group ‘.R of all rationals
and assume that 1€G,. Let R, be a non-zero ring on G, and let 1 X1 =1 in R,.
Then the holomorph P(R;) of R, is isomorphic to R, ® R; (ring-theoretic direct sum )

Proof. Any n€ E(R})=E(G,) maps 1 upon a rational r and this r characterizes

A double endomorphism (x,, a;) of R}, a€E(R]), a, €E(R]) is a double
homothetlsm of R, if the following conditions are satisfied: o,(ab)=(x,a)b,
az(ab) a(oyb), (aa)b= a(oc b) and ozq(oc a)=a,(o,a) for all a, bERl As X1l =1
in R,, the multiplication in R, is the usual one of rational numbers. Now, if
o b =ry and ayl =r; (ry, r, €R;), it is clear that qya=r,a, a,a=r,a for all'a¢R,.
ThlS ‘means, that ozl(ab) (a,a)b, ay(ab) =a(a,b) and oy(a,a)=o,(x,a) for all
a,beR,. From (x,a)b=a(x,b) it follows that r,y(ab)=r (ab) for all a, b€ R;.
R; has no zero-divisors (R, is a subring of the rational number field), we get r, =r2
or o, =a,. The double homothetisms of R; have the form («, &), where o € E(R]).
Now R; has one maximal ring D, of related double homothetisms, as all double
homothetisms are pairwise related. The mapping (1, n) - provides an isomorphism
of D, onto E(RJ). Now every double homothetism (y, #) € D, is an inner one, i. e.
every (n,n) is induced by a rational number r€ R such that ya=ra for all a€R,.
Therefore D; =D, =ring of all inner double homothetisms of R;. It is known,
that R;/np, =D, , Wwhere ng, is the annullator of R, (RLDH [4) But ng, =(0), there-
fore R, =D —D} The elements of P(R,) are pairs (n, a), n=(y, n)€D,, a€R,.
We write these elements as (a, ), a, bER,, as R;=D,. Addition and multiplication
are defined by . : : :

(a, b)+(c,d) = (a+c,b+d), (a, b)(c, d) = (ac, bc+ ad - bd).

In this case P(R;) = D,o R, is a direct sum. For let (a, b) >~ =n(e, &) = (a, a+b)
be a permutation of the elements of R;. Then we define: (a, b)+(c, d) =
= n(n~'(a, b)+n~Yec, d)) and (a, b) X (¢, d) = n(n~(a, b)n~(c, d)), and it turns
out that (a, b)+(c, d) = (a+¢, b+d) and (q, b)>'<(c d) = (ac, bd). Then P(R;) =
= D;oR,=D,®R,=~R,®R,. Finally, let G = T+.J be a splitting mixed group,
where T is the torsion subgroup of G and both 7 and J satisfy the conditions of
Theorem 5. T is the maximal torsion subgroup of G and therefore T'is a fully invariant
subgroup of G. As pJ=J for all primes relevant for G, it is clear that the equation
p"x=a (a€J)issolvable in J for every natural number 7 and every prime p relevant
for G. Then J is a fully invariant subgroup of G. Thus G = T+ ./ is the direct sum
of its fully invariant subgroups 7 and J and we may apply Theorem 6.
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