Complete sets of unitary invariants
for compact and trace-class operators

By DON DECKARD in Houston (Texas, U. S. A.)*)

1. Introduction

A complete set of unitary invariants for operators in a family &% of operators
on a (complex) Hilbert space is an indexed collection {0,},¢, of objects attached
to each operator in & such that if 4, B€ %, then ‘4 is unitarily equivalent to B if
and only if O(4)= O.,(B) for each yEF ‘

For several families of operators complete sets of unitary invariants are known.
For example, probably the best known family is the family of normal operators,
where the theory of spectral multiplicity provides such a complete set of unitary
invariants (see [2]). However, no complete set of unitary invariants has been found
for arbitrary operators. The object of this paper is to solve the problem for compact.
operators. RADJAvVI [5] has recently given a completely different characterization
of unitary. equivalence for compact operators.

The first problem which one encounters in trying to obtain a complete set of’
unitary invariants for compact operators on a Hilbert space § is that of obtaining,
a complete set of unitary invariants for n X n matrices, that is, of solving the problem
in the special case that % is finite dimensional. Such a set of invariants was provided .
by SPeCHT [7], who obtained the following result: Let Q denote the free multiplicative:

. semigroup in the free variables x and y. Two nX#n matrices A and B are unitarily
equivalent if and only if t[cu(A A¥]=t[w(B, B¥)] for each w(x, y)€Q, where
1(A) denotes the trace of 4 in the usual sense.

PEARCY has shown in [4] that for each n there is a finite subset Q, of Q (contam-
ing at most 4" members) such that two n X n matrices 4 and B are umtarrly equiv-
alent if and only if t[w(A, A%)]=t[w(B, B¥)} for each w(x, y)€Q,. We shall refer
to the above two sets of invariants as the Specht and Specht—Pearcy invariants,
respectively.

Throughout this paper we shall denote the null space of an operator 4 by
N(A), the closure of the range of 4 by R(A), and the operator (4*A4)* by [A].

Since compact operators on a Hilbert space can be uniformly approximated -
by operators of ﬁmte rank, Wthh are essentially operators on ﬁmte dimensional
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of the requirements for the degree of Doctor of Philosophy. The author wishes to thank his thesis
director, Professor ARLEN BRownN, and also Professor CARL PEARcY for their helpful suggestions
and constructive criticism. .
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spaces, it is reasonable to expect the above sets of invariants to provide some sort
-of complete sets of unitary invariants for compact operators. This is, indeed, the
-case. In § III we show that if the appropriate approximates of two compact oper-
.ators 4 and B are unitarily equivalent and if dim [9(4) NRN(4*)] =dim [R(B) N
NN(B*)], then 4 and B are unitarily equivalent. This, together with the choice
.of approximate canonical approximating sequences, yields complete sets of unitary
Jinvariants for compact operators.

In § IV we make use of a class of compact operators on Hilbert space having
‘well defined numerical traces. This class, called the trace class, has been studied
-extensively by SCHATTEN (see [6]). We show that if fis a strictly increasing continuous
-real valued function on the non-negative reals such that f(0) =0, then

{t[f([ADw(4, AN} :o(x, p)€Q} and  dim [J(4) N R(4¥)]

form a complete set of unitary invariants for.operators 4 such that f([4)]) is a member
-of the trace class. With each compact operator A we associate a function f, such
that f4([A4)) is in the trace class and such that f, =f; if 4 and B are unitarily equi-
valent; this then extends SPECHT’s theorem to compact operators.

SPECHT’s theorem extends more directly to the trace class. For this class

- {tlo(d, 49)]: o(x, y) € Q) and  dim tm(A)mm(A¥)]

form a complete set of unitary invariants. The same result holds for the Schmidt-
class (the class of Hilbert—Schmidt operators), except that the words x and y must
be omitted.

II. Preliminaries

We say, as usual, that two operators 4 and B on a Hilbert space $ are unitarily
equivalent if there is a unitary operator U on $ such that UAU* = B.

We denote by S(A4) the subspace HO[N(A) NN(A¥)]; the subspace N(4) N
N N(A*) is the largest subspace which reduces 4 and on which A4 is the zero operator.

Definition. Two operators A and B are isometrically equiualént if there is
a partial isometry U with initial space ©(A) and final space S(B) such that UAU*=B
(or, equivalently, UA = BU).

If A and B are unitarily equivalent, say via a unitary operator U, then U maps
N(A) NN(A*) isometrically onto N(B) NN(B*) and S(A4) isometrically onto S(B),
so that 4 and B are also isometrically equivalent and dim [Jt(4) NR(4*)) =
=dim [R(B) NR(B*)]. Conversely, if 4 and B are isometrically equivalent and
if dim [N(A) NN(4¥)] =dim [i)l(B)ﬂ?l(B*)], then it is obvious that 4 and B are
unitarily equivalent,

An operator 4 on $ is said to be of finite rank if dim R(4)<eo. If {p;} is
an orthonormal basis for $, we define the trace ¢(4) of an operator A of finite
rank to be Z,(4¢,;, ¢;). The sum is finite and is independent of the basis chosen
G 1V). If H, is an m-dimensional subspace of § containing &(4), we can choose
{®;} such that ¢,, ..., @,, is a basis for $,. Then the trace of 4 is the trace of the
restriction of A4 to £, as calculated for operators on finite dimensional spaces.
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Let A and B be of finite rank and suppose that #[w(A4, A¥)]=t[w(B, B¥)] for
each w(x, y)€ Q. Then, by SPECHT’s theorem, there is a unitary operator U, de-
fined on the subspace $, spanned by S(4) and &(B) which implements the unitary
equivalence of the restrictions of 4 and B to ;. The operator U which equals
U, on'$, and which equals the identity operator on $8 9, then implements the

' umtary equivalence of 4 and.B.
If A and B are of finite rank and if dim &(4)=dim 6(B) n, there is a unitary
. operator V which maps S(4) 1sometr1ca11y onto &(B). If, in addition, the n-dimen-
sional Specht—Pearcy invariants of 4 and B are equal, the restrictions of VAV*
-and B to &(B) are unitarily equivalent as operators on &(B). Thus, as above, 4 is
unitarily equxvalent to B.
We summarize these results in the followmg

Lemma 2. 1. FEach of the following is a complete set of unitary mvartants for’
operators A of finite rank: :

1)  {t{old4, A9)]: o(x, y)GQ}
(2) dim &(4) and "{t[w(4, 4%): w(v y)EQd,mG(A)}

III. Unitary équivalence of compact operators

. In this section we establish a sort of “continuity”” property for isometric equiv-
alence and then use this result to obtain complete sets of unitary invariants for
compact operators. -

Lemma 3. 1. Suppose that P and Q are projections of finite rank and that

{P,} and {Q,} are sequences of projections converging uniformly to P and Q, respectively.

. Suppose also that for each n there is a partial isometry U, whose initial space contains

“R(P,) and whose final space contains R(Q,) such that U P,=0Q,U,. Then there is

asubsequence {U, } of {U,} such that the sequence: of the ‘restrictions of the U,’s
to R(P) converges to a linear map sending R(P) zsometrtcally onto R(Q).

Proof. Let Xy, ..., X, be an orthonormal basis of R(P). It suffices to find
a subsequence {v,} of {U } such that U, X;—~y; strongly, i=1,...,p, where
Pis ---» Vp IS sOME orthonormal ba51s of ﬂi(Q) Smce QU,x; E‘.R(Q) Wthh is finite
dlmensmnal and ‘'since

1=|QUx =IU,P,x;— U,P i+ QU | =0, Ppx; — QuUpxi + QUoxi| =
 ENGLPx] —10,Upxi — QU =11 Pxill = I(Q, ~ QU,xifl =
=|Px;+ Ppx;— Pxil = (@n — Q) Unxill =1 —(lP,—P|+1Q.— 2 ~1,

there is a subsequence {U,, } of {U,} such that QU, x;~y;, i=1, ..., p, and | y;] =1.
Moreover, ‘ )
0=(Ux,~QUx| =|UPx;—UPx;+ 0,Ux; — QU =
= ” Un(P - Pn)xin + “(Qn - Q)Unxiu »05
50 - : _ '
U,xi—y;, i=1,..,p. '
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Also,
” Unani - Unxi” = ” (/n(Pn —P).\"-” -0,
SO
U,,kP"k.\'i _byl
If i5),

|(U P Xis (]nanj)I = ](ani! anj)|=

:.l(Pn“\‘ia “\‘j)_('\‘ia xj)': I([Pn_—P]xi: Xj)l§“P,,—P|I _’0:
and hence
(yia y_[):0

Since, from [1], p. 73, if HP,,—PH <1 and |Q,— Q| <1, then
dim R(P)=dim iR(P,,) =dim R(Q,) =dim R(Q),

it follows that y,, ..., y, is a basis of R(Q). This completes the proof of the lemma.

Lemma 3.2. Suppose that {P.} and {Q,} are 3equences of projections of
finite rank and that, for each k, {P.,} and {Q,,} are sequences of projections
converging in the uniform topology to P, and Q,, respectively. Suppose also that,
Jor each n, there is a partial isometry U, whose initial space contains R(P,,) and
whose final space contains R(Q, ,) such that, for each k, U,P,,=0,,U,. Then
there is a partial isometry U such that for each k the initial space of U contains R(P,)
and the final space of U contains R(Q,) and such that UP, = Q,U.

Proof. We first choose subsequences {U"} of {U,} inductively. Let {U{®}=
={U,}, and suppose that {U?}, ..., {UP} have been chosen. By lemma 3.1,
we may choose {U{*"} to be a subsequence of {U{”} converging uniformly on
R(P, ). The diagonal sequence {U{} converges on R(L,) to a map sending R(P,)
isometrically onto R(Q,) for each k. Let 9 be the submanifold spanned by {R(P)}i-,
_and let x €M, say x=x, +... +x,, where x, ER(P,), k=1, ..., r. Since the sequence

of vectors {U{"x,}m-, converges strongly for each k=1, ..., r, and since UPx=
=U"x, + ...+ U"x,, the sequence of operators {U{™} converges strongly on
Wi to an operator U, (defined on M) such that UyP,=QU,, k=1,2,.... Also,
setting
& =lPy =P, Ml + . 1P =Pl 0,
we have
IXI =0 U,xl =1 Uy, + ..+ Uy, =

=[NP xi + oo+ Py x ]+ U (P = P )x + o+ (P =P )X =
g” Uu[>Pl.nx1 + + Pr,nxr]“ _811:||P1,nxl + "'+Pr,nxr” _—8u=
=”xl + '-'+xr+(Pl,n_Pl)Xl + .. +(Pr,vn—Pr)xr” —€, =

5Hxl + ..+ xr” —2811_'” x“ s

so || Upx|=|lx||. The extension U of U, defined by continuity on the closure of
M and defined to be zero on HOM has the desired properties.
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Theorem 1. Let A and B be compact operators on a Hilbert space. If there
exist sequences {A,} and {B,} of (not necessarily compact) operators converging
uniformly to A and B, respectively, such that, for each n, A, is isometrically equiv-
alent t0 B,, then A is isometrically equivalent to B. '

Proof. We denote by X, the spectrum of 4, by Re 4 the operator (4 + A%)/2,

and by Im A the operator (4 —A%)/2i. If A is a Borel subset of the line, we denote
E(4), E(4), F(4), F(4), G,(4), G(4), H,(4) and H(4) the spectral projections

of Re 4,, Re A,Im A,, Im 4, Re B,, Re B, Im B,, and Im B, respectively, associated
with A. Since An is isometrically equivalent to B,,, there is a partial isometry U,
with initial space ©(4,) and final space &(B,) such that U,4,=8,U,. If 4 is any
Borel subset of the line not containing zero, R[E,(4)] and R[F,(4)] are contained
in ©(4,), and R[G,(4)] and R[H,(4)] are contained in S(B,). As in the case of
unitary eqmvalence U,E(A)=G,(A)U, and U,F(4)=H,(A)U,. In order to show
that A4 is isometrically equivalent to B, it sufﬁces to show that there is-a partial
isometry U with initial space &(A4) and final space &(B) such that UE(4) = G(A)U
and UF(4)=H(A4)U for all Borel subsets of the line not containing zero. In fact,
since each non-zero member of Zy., or X,,, is isolated, it suffices to show that
2 Red = 2ReBs ZimA = 2imp, and that if A 20 then UE[(A —¢, A+ &) =G[(4 —¢, i—l—s)
and UF[(A—¢, 1+e)]=H[(A—e, A+¢)]U for all sufficiently small ¢ 0.

We first show that if A0, then /¢ Zg, 4 if and only if for each =0, E,[(1—
A+€)]70 for n>nu(e). This and the analogous- results for Z,mA, 2rep and Z,mB
guarantee that g, 4=2g.p and Ziu =2Zinp-

If 1§ Zg. 4, let £ be less than the distance d from A to Zg, 4. Then || ({ —Re A)‘ I
is bounded for | —A| <e, say by M. One can easily see by power series expansions
that if ||Re A, —Re A} <1/M, then ({ —Re A,) is invertible, so that the interval
(A—e. 2 +¢) contains no points of Zg, 4, .

- If A€ X4, 2520, let .d be the distance from A to 2y, — {A}; d is positive since
- A is compact. We shall show that E,[(1—¢, A+¢)]—~E[(A—¢, A+ ¢)] uniformly,
at least for 0 <e<d/3. As above, the intervals (A —2d/3, 1 —¢) and (1 +¢, A +2d/3)
contain no points of Xy, 4, for n sufficiently large. Thus

E (i~ 249] = (122D~ Re A)~ " dl
and . _ ¢
E[(A—¢, A+e)] = (1/2‘m)<£(¢—Re Ay dL,

‘where C is the circle |{ — | *cl/2 Since inversion is a contmuous operatnon where
it is defined,
|E (2~ ¢, 24 6)] = E[(A—e, A+ o)l] =
= (1/2m) | P1C —Re )1 — ¢ —Re )11t || =
C
= (1/271)(5 IC—~ReAd) ' —(C—ReA)~!|d|-0 as n—ee.
c

Now, let al,dz, ... and B,,f,,... be the distinct non-zero members of
Zaeq and X . respectively, 4, =(u; —d/3, o, +d/3) where d is the distance from
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oy t0 Zpoa— {2}, and A,:=(ﬁk—d/3, B +4d/3), where d is the distance from B, to
Zima— {Bi}. Set ’ '
‘ Py ?E(Ak)> T 1, n =E(4,),

Py = F(AI:), sz, n=— Fn(Allc)a
sz— 1= G(Ak)a sz- 1,n :.Gn(Ak),
: QZk = H(Allc)> sz, n= Hn(Al’t)'

An application of lemmé 3.2 completes the proof.

We now apply the preceding'results to the problem of obtaining complete
‘sets of unitary invariants for compact operators on Hilbert space. For this purpose,
let 4 and B be any two compact operators on a Hilbert space $. We order the
distinct non-zero eigenvalues of Re 4, Im 4, Re B and Im B and denote these
sequences by {o}, {8}, {y.} and {6,}, respectively. We require of the orderings
that o | = |og 4 |, that || = |y | implies that o, >0 and o, <0, and analogously
for {B:}, {r.} and {6,}. (This guarantees that if Zz.,=Zy.5, then the sequences
{o} and {,} are identical, and similarly for Xy, , and X, .) If E;, F;, G;, and H,
are the spectral projections of Re 4, Im 4, Re B and Im B corresponding to «, f.
y, and o, respectively, then A and B can be written 4= JoE,+i>fF, and

. k k .

B= Z'Yka'*'[Z&ka. We Wl'ite A"=ZakEk+i2/3ka and .Bn=2yka+i25ka 5
k k k=1 k=1 k=1 k=1

with obvious modifications if any of the sequences are finite. Then {4,} and {B,}
converge uniformly to A and B, respectively.

Now suppose that A is isometrlcally equivalent to B, say UAU*=B. Then
B= Z'ock UEU* + zZBkUFkU* Thus, since the spectral representation of an operator

is umque ock_yk, B=06., UEU*=G,, and UFU*=H, for each k. It follows
that UA4,U*=B,, so for each n, A, is unitarily equivalent to B,. On the other hand,
if, for each n, A is unitarily equlvalent to B,, then A is 1sometr1cally equivalent
to B by theorem 1 We have thus proved :

Theorem 2. Let A be compact, let the sequence {A,} be obtained from the
Cartesian decomposition of A as described above, and let I be either of the complete
sets of unitary invariants for operators of finite rank described in lemma 2. 1. Then
{I(A,)};= is a complete set of isometric invariants for A. The addition of dim [N(4) N
N ‘R(A*)] to the above collectton of isometric invariants ytelds a complete set of unitary
invariants for A.

A different complete set of unitary invariants can be obtained by using the
polar decomposition of a compact operator to obtain a canonical set of approximat-
ing operators of finite rank. Let {g,} be the non-zero eigenvalues of [A], y, =pu, >.
and let E, be the (finite dimensional) spectral projection of [A] associated with uk
Then the series ZukEk converges to [A] in the uniform topology. Let 4 = W[A]

be the polar decomposmon of A4, and denote by W, the partial 1sometry of finite
" ‘rank WE,. The series >, W= Zﬂk WE, = WZ'ykEk converges to A in the uniform
) k
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topology. Let B¥'2kak'in a similar fashion, and suppose U implements the iso--
k

metric equivalence of A and B, UAU*=B. Let- T, be the partial isometry UW, U*
and let F; be the projection on the initial space of Tj. The series ZTk converges.

in the strong operator topology to a partlal isometry 7" and
B =U(2 i )U*_ZﬂkUWkU* Z#ka ZﬂkaFk T%#ka-
k

The operator Zuka is positive, so, by the unicity of the polar decomposition of”

an operator =i and V=T, = UW,U*. Thus, 1fA Zyka and B, 2 Ve Vi

we have UA,U*=B,. Conversely, {4,} and {B,} converge uniformly to A and B,.
respectively, so, by theorem 1, we have

Theorem 3. Let A be compact, let A, Zuka be obtained from the polar

decomposition of A as described above, and let 1 be ezther of the complete sets of unitary-.
invariants for operators of finite rank described in lemma 2.1. Then {I(A,)}7-, is-
a complete set of isometric invariants for A. The addition of dim [R(4A)NN(4%)]

- to the above collection of isometric invariants yields a complete set of unitary mvarzants~ :
for A. .

IV. Unitary invariants involving traces

Before dlscussmg the Schmidt- and, trace-classes of operators we prove a lemma
whlch will be useful in the proof of theorem 4.

Lemma 4. 1. Suppose that {a,} and {b.} are sequences of complex numbers,
that {,} and {v,} are strictly decreasing sequences of real numbers converging to-
zero, and that Zlak]yk <o and Z]bklvk <o, Suppose also that, for each pos:twe

integer p, Zakyk Zbkvk Then

(1) 1If, for each k, ak,b #0, then ak—bk and pk—vk for each k.
) ]f,u,“__v,”, then a, =by,.
Proof. The series Zaky,%/(z ) converges uniformly in any domain in.

which z is uniformly bounded away from {4y} to a function which we. shall denote--
f (z), and similarly for g(z)= A,b,‘v,‘ (22— vk) /(z) has a pole of order one and

residue ilak,uk at z= + for each k such that ak¢0 a limit point of poles at.
z=0, and is holomorphic elsewhere; g(z) has a pole of order one and residue.
+% bkvk at z= Fy, for each k£ such that b, #0, a limit point of poles at z=0, and
is holomorphic elsewhere. For z in the domain {z: |z] >} we can expand w2 [(z% — pd)s

about z=-o to obtaln :
f(z) = %'akZ(ﬂk/Z)zp-
14
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In order to change the order of summation, we note that
; lal > (flz))*r = % lael /(121 ~ i) = (; lai 1)/ (2} ~ ) < ==;
14
ithus ‘
/(@) = Z’(7av ey 1/z2e.
Similarly
g(2) = Z(Z by vP)1/z2°

for |z|=v,. Thus, by hypothesis, f(z) g(2) for |z|=max (,ul , v1). By analytic
continuation, f(z) and g(z) are identical, and the conclusion of the lemma follows.
The reader is referred to [6] for the proofs of the following and other interesting
facts about the trace- and Schmidt-classes.
Let 4 be an operator on a Hilbert space $ and let {¢;} be an orthonormal
‘basis of §. A is in the Schmidi-class (oc) if J)||Ap||? <eo; the sum is independent

-of the basis chosen. The Schmidt-class is a proper subset of the set of compact
operators. 1f § is L, of the unit interval, (o¢) consists of all operators of the form

AN ) = [ K, »)7G) dy

-where K(x,y) is in L2 of the unit square.
An operator A is in the trace-class (tc) if A is the product of two members

.of the Schmidt-class. The following are equivalent:
(1) Ae(e),
2) [Aj€(zo),
(3) [4)t€(o0),
@ 2 ({Alo;, ¢;) << for some, and thus every, orthonormal basis {¢;} of §.
If A is in the trace class' and {¢;} is an orthonormal basis of §, then
DWA@;, @) <oo. The trace t(4) = > (Ag;, ;) of A isindependent of the basis with

tespect to which it is computed. If 4, B€(tc), X is any bounded operator, and c¢ is
a complex number, then

(1) (4 =1(4),
@) 1(cA)=ct(4),
(3) (A+B)€(zc) and (A + B) =1(A) +1(B), ‘
(4) AX, XA€(c) and 1(AX)=1(XA) (the traces of commutators are zero).

Definition. Let f be any continuous strictly increasing real valued function
on the non-negative real numbers such that f(0)=0. The class (zc), is the set of
all operators A such that f([A]) € (zc).

It is easy to see that an operator A is compact if and only if f([A4]) is compact;
thus (zc), is a subset of the compacts. If 4 is compact, 4 = > W, as in § 111, then
: k

[A]= Z i, E,, where E, is the projection Wi W,. We -denote by f, the convex
k . . .
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support (see [3]) of the set of points (g, 1/(k? dim [R(E,)])). If {¢;}is an orthonormal
basis of § consisting of eigenvectors of [A], then

2(f4De, o) = %’ dim [R(E)]S () = kZ dim [R(E)/(k* dim [R(E)]) <o,

so A€(tc);,. If A and B are compact and unitarily equivalent, then so are [4] and
[B], so fy=fg. Thus, if I, is a complete set of unitary invariants for (zc),, f4 and
I, ,(A4) form a complete set of unitary invariants for all compact operators.

Although we shall not need to make use of this fact, we note that an easy appli-
cation of lemma 4. 1,shows that {t[(f(A)) ] -1 Is a complete set of isometric in-
variants for the positive members of (zc),.

Theorem 4. Let Q denote the free multiplicative semigroup of all words w(x, y)
in the free variables x and y. A complete set of isometric invariants for operators'.

A in (Tc)f is
{1/ ([(ADw (4, A¥)]): w(x, y)€Q}.

The addition of dim [R(A) N\N(A¥)] to the above set of isometric invariants yields
a-complete set of unitary invariants for (zc);.

Proof. Since traces are 1ndependent of the bases w1th respect to which they
are computed and since ¢[f([ADw(A, 4*)] is not affected by the dimension of R(A) N
NRAF), t[([ADw(A4, A%)] is preserved under isometric equivalence. .

Now suppose that 4 and B are in (ic), and that t[f([A])w(A A®)) = f([B])-

-w(B B¥)] for each w(v NEQ. Let A= Zyka,A —Zyka,B kaVk,' and
B,= kaVk as in §1II. By theorem 3, it suﬂices to show that t[w(A AN =

w(B,,, B¥)] for each w(x,y)€Q and each n.

We first show that y, = v, for each k. Choose an orthonormal set of vectors
{@;} such that ¢, ..., ¢, ,, -, is a basis of the initial space of W,. Since
J{ADP(A* Ay = ?f(yk)uk" WiW, is 1n (zc), we have, for each positive integer p,

“ .

t[f ([A])(A*A)"] Z (/4D (4*A)Y ¢, 0,) =
=3 Z (f([A])(A*A)"fp </>) = Zf(ﬂk)t(W*Wk)#

Similarl e
imilarly
' t[f([B])(B* BY’] = 7f(vk)t (V*Vk)vz”

Setting a, = f(y,,)t(Wk W #0 and b, = f(vk)t(V*Vk)¢0 we conclude from lemma
4.1 that y,=v, for each k.

For .each w(x, y)€Q we write w(x, »= ]] z;,- where z;=x or z;=y. Since
j=1

J
the .traces of commutators are zero and the trace of the adjoint of an operator is
the complex conjugate of the trace of the operator, it suffices to show that
tw(A,, AD]={[w(B,, BF)] for each w such that z, =y.
In an induction argument later in the proof we shall consider products in-
volving ‘not only 4 and 4* but also the partial isometries W,, W¥, W,, W%, ...,
and the corresponding products involving B, B*, V,, V¥, V,, V¥, .... For this’

2 A
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d )=

purpose we introduce the free semigroup @ of words & (x, y, x,, y,, Nas Vo,
}. Denote by A(®) the number of J’s,

—*HC where CE{‘C Vs X1 V15 X2, V25 e
..}. (Thus if no {; is equal to x or y, A(®)

lSj<m, such that {;€{x,, y1, X2, V2,
1s the length m of d‘)) For simplicity of notatlon we write

CD(A):@(A’ A*} Wl; Wl, WZ: WZ: }
and

A(B)=0(B, B¥, V|, VE, V,, V%, ...}
k, of positive integers

With each w(x,y)= [[z;€ Q and each r-tuple k,, ...
i=1
we associate the member @, i, (X, », x,, ¥y, ..)=]J](; of @ such that {i=x,
j=1
if z;=x and {;=y,, if z;=y. Then

D My ik, Dy iy, i (A)

o (Ay, A7) =
kiy o kp=1
and ' :
OB B =" 2 e Dok, 1 (B).

We now give an example to illustrate the notation introduced above. If
..) is then y, v, x,.. We have

w(x, y)=p%x, the word Dy i, kpks (X 75 X1, V1o

w(d,, AY) = [kZl i A:T.J [kZI Hi, A;fz] (kZl Hiy A.'<3] =
k= 2= 3=

n n
Z iy My iy Aif, A%, Ak, = 2 Hiey By Hay d’ny.k.,k;.k,(A)-
ki, k2, ka=1 ki,k2,ka=1

Since we already know that yp,=v, for all k, it suffices to show that
by, gy, ok, (D] =1D g 4, -k, (B)] forall w(x, y)Equch that z, =y and for all

., k,; that is, that ([d(A4)] =t[d(B)] for all & = ]]C such that( E{xy, ¥, Xa,

ky,
Y2, } and {; =y,,. We note that for such an é.‘) smce WEWWE =04 Wi, »
J(ADa(4) = Zf(uk) Wi Wi d(A4) = f(u,) D (A);
similarly,
JUBDO (B) =/ (v JO(B) =[ by, ) (B)-

Thus, for such an @, if r[f([A])d)(A)]_r[f([B])cb(B)] then 1[@d(A)} = t[O(B)].
conclude the proof by proving the following by induction on A(cb)

(%) 1If @€Q, then ([f([A)@(A)] = 1[f([BNH(B)].
Note that, since then traces of commutators are zero, if () holds for all &€ @
such that A(®)=gq, then [O(A)f([(AD]=1[O(B)f(B]] if A(@)=¢q, and t[®,(A4)-

SAAVOL A =116, B (BNO(B) T 2(,)+4() =4
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If A(#) =0, then there is an w(x, ) € 2 such that & (4) =w(4, A*) and &(B) =
= (B, B¥), so () is true by hypothesis.

We now suppose that (k) holds for 2=g, that A(®)=g+1, and prove that
tfIADO(A)] = tLf({B)®(B)]. By taking adjoints if necessary and using the fact
that the traces of commutators are zero, it suffices to show that ([CW,]=t[DV,]
in the three cases. :

M C=flADoo(4). ~ D=/(B)G(B), A(do) =4,
@iy C=0o(Af[A), D=0d(B)f(B), (&) =4.
(i) C=01(AfANDLD, D=bBS(B:B), A(@)+A(d)=q.
In each of the three cases, the induction hypothesis guarantees that
t{CA(A*A)) =t[DB(B*B)"]

for each poéitive integer p. As above', we choose an orthonormal set of vectors
{®:} such that ¢, ..., @, _, is.a basis of the initial space of W. Then

t

. . ies1—1 :

PP CW] = 1t CW ] = 3 (CA(4*Ay o, 0),
50 ' . B . '
H[CAA*A)] = 3 (CA(4* A0, ¢) =

= ; ikﬂZ—I (CA(A*A)Po, 0,) = % W2 [CW.

i=ik

Now, since CA(A*A4)? is in the trace class,

i=ik

ik+1-1 o ) -
%’ Pt [CW] = %’ 2 (CAA* Ao, 0) = 2 (CAUA Y9, 0)| <.

Similarly . :
: {[DB(B*BY} = 3 vfr* ' 1[DV,] = 3 P 1[DV}]
- k k .

and
L 2 uP DV < .
p :

Setting @, =t[CW,] and b= t[DV,], we can conclude from lemma- 4.1
that :[CW,)=t[DV,] for all k, which completes the proof of theorem.

Corollary 4.2. Let Q denote the free multiplicative semigroup in the free
variables x and y. Complete sets of isometric invariants for operators A in the trace-
and Schmidt-classes are {t[w(4, A¥)]:(x, y) € Q} and {t[(A*ADo(A4, AF)]:w(x, y) €.Q},
respectively. The addition of dim [NR(A) NNR(A*)) to the above sets of isometric
invariants yields complete sets of unitary invariants. '

Proof. The Schmidt-class is" the class (tc), where f(x)=x? so the result
for the Schmidt-class is a special case of theorem 4. The result for the trace-class.
follows from the fact that the trace-class is a subset of the Schmidt-class.
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