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1. Introduction 

Let § be an infinite dimensional, separable, complex Hilbert space, and denote 
by £(§>) the algebra of all bounded linear operators on §>. Topological properties 
of subsets of £ ( § ) under discussion always refer to the uniform operator topology. 
An operator A £ £ ( § ) is said to be rootless if for every positive integer A fails 
to have any n-th roots. Throughout this note, the set of invertible, rootless operators 
on § is denoted by 91. That 31 is non-empty was first proved by HALMOS, LUMER, 
and SCHÁFFER in [2], and that 91 has non-void interior was established in [3], and 
again proved in [5] and [6]. In fact, all previously known examples of operators 
in 91 are interior points of 9?, and this caused LUMER [5] to ask if 91 is open. In this 
note we generalize the methods of [1], which led to the construction of a 
certain class of operators without square roots, and thereby prove the following 

T h e o r e m 1. The set 91 is not open and is not closed relative to the invertible 
operators. 

Closely related to. the question of whether an invertible operator A has roots 
is the question of whether A has a logarithm; i.e., whether there is some B£2(§>) 
satisfying exp(5) = 4̂. We denote the set of all invertible operators on § that fail 
to have a logarithm by £. (A necessary and sufficient condition that an operator 
belong to fl is known [4, page 285], but it has not yielded specific examples of opera-
tors in £.) It is clear that 91 czfi, and the existence of invertible operators with square 
roots but no fourth roots [1, 6] implies that the above inclusion is proper. That 
2 has non-void interior follows from the fact that 9i does. However, the questions 
as to whether £ is open, or closed relative to the invertible operators, seem to have 
gone unanswered, and we furnish answers as follows: 

T h e o r e m 2. The set £ is not open and is not closed relative to the invertible 
operators. 

2. Preliminaries 

Before discussing the idea used in the proofs of Theorems 1 and 2, we introduce 
the following terminology.. . 

Let N denote the set of integers greater than 2, and let Nz, N3, ... be infinite 
disjoint subsets of TV whose union is N. The sets N and Np,p = 2, 3, ..., will remain 
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fixed throughout the paper, and will frequently be regarded as increasing sequences 
without further apology. Notation such as lim {a„} will be used for simplicity, 

n€Np 
and should be given the obvious interpretation. 

For each n £ N, let §„ be «-dimensional complex Hilbert space, and let £(§„) 
be the algebra. of all (linear) operators on §>„. Denote by §> the Hilbert space 
2 " © § „ , and let the algebra 3c£ (53 ) be the C*-sum 3 = 2" ©£(&,)• Then, 

n€JV ngJV 
of course, 3 consists of all operators A = ^ ®A„ where A„ ££(§„) and the sequence 

nZN 
{ M J W N is bounded. 

Note that to prove that neither 9i nor £ is open it clearly suffices to prove the 
following proposition. 

I) There exists an operator 3 Pi 9? and a sequence {G(t)} of operators in 
3 such that each G<k> has a logarithm and such that |jG"° —A\\ — 0. 

On the other hand, to show that neither 91 nor fl is closed relative to the class 
of invertible operators, it is enough to prove following proposition. 

II) There exists an operator C£ 3 having a logarithm and a sequence {B(k>} of 
operators in 3Pl9i such that \\Bm - C | | - 0 . 

Our task of proving Theorems 1 and 2 will be accomplished by proving I) and 
II). To do this, we show that it suffices to prove the following 

T h e o r e m 3. There exists a sequence {An}„gA., An £ £(§„), satisfying: 
a) 2 © 4 . G 9 i n ' 3 , 

ngW 
b) every operator B = ^,®Bn in 3 such that spectrum Bn — spectrum A„ 

for n£N and Bn=An for all sufficiently large n, satisfies 
Furthermore, there exists a sequence {C„}„eiV, C„£ £(§„), satisfying: 
c) spectrum C„ = spectrum A„ for n£N, 

. d) J C„ -/<„!— 0, 
e) ^ © Cn has a logarithm in 3 (and thus is itself an invertible operator in 3J . 

P r o o f of I) and II) using Theorem 3. With the notation as above, define: 

A — 2 © A„, C = © C„, 
niN niN 

and for each k£N, 
B^ — C3 © ... © Ck© Ak +1 © Ak + 2 © • • • , 

G(k) =A3® ...®Ak®Ck+i®Ck + 2®... . 

Since C has a logarithm in 3, and every invertible operator on a finite dimensional 
space has a logarithm, each G(k) has a logarithm. Since obviously \\Gm — A\\ — 0, 
I) is proved. Since each 'B(k? €9? fl 3 and obviously ||.fi(*> - C|| - 0 , II) is proved. 

Thus to prove Theorems 1 and 2, it suffices to prove Theorem 3, and the remainder 
of the paper is devoted to this task. . . . 
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3. A construction 

To begin the proof of Theorem 3, we wish to produce for each p > 1 an operator 
of the form 2 that has no p-th root. Thus we must suitably modify and 

• niNp 
generalize the lemmas of [1, § 2] to make them applicable to the problem of p-th 
roots. Throughout the paper we denote by cor

n the «-th root of unity 

wi = e2Kirl" (r = 0, ± 1 , ±2,...). 

L e m m a 3. 1. Let p = 2 and n^3 be integers, and let , be complex 
numbers such that (//„)" = o?„ for r= 1, 2, . . . ,« . Then 

Xr
n = oJr

pnwf\for r= 1,2, . . . ,« , 

where each k(r) is some integer satisfying 1 S &(/*)=/>, and either 
(a) for some r satisfying l ^r^n — 1, 

2n 
)r 1r+ 1 An — A„ 

(fi) k(l) = k(2) = ... = k(ri), in which case, 

or 

- X" 
2K 

«11 — G) 3pl 

P r o o f . Suppose there is an r satisfying \ — \ such that k(r) ^k(r +1), 
and note that 

K - w 1 . 

CO' CO T . + l 

cor
p„W>-co>„o4<r+<>] 

1-coi 
l-oj<„o/p

k<r+1>-k<r>i 

Now k=k(r + l)—k(r) is a non-zero integer satisfying — (p — — 1, and 
it is clear that the distance from 1 to co^co'1 along the unit circle is less than or 
equal to the distance from 1 to the point co£„cop along the unit circle. Thus 

Furthermore, 

and thus 

| l -©J„co£ | ^ l l - f t j ^ f t j / l . 

-co^cop1! attains its minimum as a function of n at n = 3, so 

^ II- ®3pMp 'I -©1,1 

1-co«1 I -©» 1 2 n 
1 - mj„ o/p 1 

On the other hand, if k{\) =k(2) =... =k{n), then 

as before. 

( A 1 , ) " - « ; ) " 
X!, — A!! 

l-co!, 
- (»pn (Op

 1 

. 2n 
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L e m m a 3.2. Suppose that has the distinct eigenvalues {¿¡};e/, and 
suppose that for i£l, the eigenspace corresponding to X-, is spanned by the vector xt. 
If J is any operator on § that commutes with K, and is any subspace of § spanned 
by some subset of the { g/3 then SI is an invariant subspace for J. 

P r o o f . It suffices to show that for Jxt = a i x i for some scalar a;. If Jxt=y,, 
then K y — K J x ^ J K X i — Xiyi, so that by hypothesis y ^ a ^ i . 

The following corollaries are immediate. 

C o r o l l a r y 3. 3. If p and n are positive integers, T is an nXn complex matrix in 
upper triangular form having n distinct eigenvalues, and Rp = T, then R is also in 
upper triangular form. 

C o r o l l a r y 3.4. Suppose and satisfies the hypotheses of Lemma 3 .2 
and the additional hypothesis that the vectors { . Y , } I G I span 9). Suppose also that 
/££(§) and satisfies Jv = K for some positive integer p. Then ./£ 3. 

The following easy computation is designated as a lemma for convenience in 
referring to it later. 

L e m m a 3. 5. Let T be the nXn complex matrix 

where B is an (n — i)X(n — 1) matrix, z is a (n — \)-vector, and X is a scalar not in 
the spectrum of B. If p is any positive integer, then Tp is the matrix 

where x is the {n-\)-vector x = {B-X)-\B''-Xp)z. 

(We call an nXn matrix upper triangular if the elements below its diagonal are 
all equal to 0.) 

The following lemma is obtained from Lemma 3. 5 by induction on the size 
of the matrix. 

L e m m a 3. 6. Let p and n be positive integers larger than 1. Let T be an upper 
triangular nXn matrix whose diagonal elements are ¡i, . ..., //„, where the are 
distinct complex numbers. For i— 1, 2, ..., n, let be such that (Xi)" = ni. Then there 
exists exactly one upper triangular nXn matrix R whose diagonal elements are 
A1: ...,/>.„, and for which Rp — T. 

With these preparatory lemmas out of the way, we proceed with some additional 
definitions needed to prove Theorem 3. The sequences of operators we shall consider 
can most easily be described matricially, so we assume given for each n £ N an 
orthonormal basis Xn for £j„, and the matrices exhibited hereafter are to be regarded 
as the corresponding operators. For each pair (p, n) of integers with p> 1 and 
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n£Np, we define Q„ to be the unique operator on whose matrix is upper tri-
angular and has the diagonal elements (1 + 1 ln)llp cok

pn (k — 1, ..., n), satisfying 

( a o p = ( i + i /» ) 

a>: n-
cat rr 

10" 

Next define (for each /? > 1) the sequence {c„}n€ N(j of complex numbers by 

c„ = v » - 1 I j f a l 

Finally, (for eachp>-1) define the sequence {fn}nr.^p as follows: 
y) if the sequence {c„}„eiYj, does not converge to zero, set fn = 0 for n£Np; 
<5) if the sequence {c„}„ejVp converges to zero, set/„ = 0 for all n£N p such that 

|c„| > 1, and set/„ = 1 — c„ for those n£Np such that |c„| ^ 1. 

L e m m a 3. 7. For each pair (p, n) with p > 1 and n£Np, let An be the operator 

ml 
fn 

An=( 1 +1/«) 

and let T„ be the unique operator of the form 

T„ = (\ + \lnyiP 

satisfying (T„y = A„. Then = (c„+/„) 

af^1 rr± 
co"n 

CO2 № UJ pn llJ 

0}„ 

CO, 1 

The proof of this lemma is an easy calculation using Lemmas 3. 5 and 3. 6 
and is omitted. 

4. The proof of Theorem 3 

Note that if for each integer p>- f a sequence {¿„}„eiv,, has .been defined, then 
these sequences give rise in an obvious way to a sequence The following 
lemma proves the first half of Theorem 3. 
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L e m m a 4 . 1. For each pair of integers (p, ri) with p > 1 and n£Np, let /)„££(§„) 
be as in Lemma 3. 7. Let m0 —3 be a fixed integer, and let B= 2 © Bn belong to 
3 and satisfy: "iN 

(Q) for 3^n^n0, the eigenvalues of Bn are identical with those of A„, and 
(T) for h>n0, Bn = An. 
Then B d 31; i.e., B is an invertible rootless operator. 

P r o o f . The inverse on §„ of each A„ can be computed directly, and an easy 
calculation shows that 

M-'ll S {\-\jin)~i + \fn\. 

Since the sequence {f„}niN is bounded by construction, B'1 = 
N£N 

Now suppose that for some p> 1 there is an operator S € £(§) satisfying Sp — B. 
Since B satisfies the hypotheses of Corollary 3.4, 3 , and we write S = 2 ® 

By Corollary 3. 3, for « > « 0 , S„ is in upper triangular form. Thus for each ndNp 
satisfying n>n0, let 

'A,! . 

s„ = (1 + 1/«) 1 IP 

A„2 ¿TJ 

K 

Direct computation shows that, for each n, 

« » • - ( ( j S ' P W / ' = 1 , 2 , . . . , n - \ , 

and we note that the {Xr
n}"=l satisfy the hypotheses of Lemma 3. 1. Thus by Lemmas 

3. 1 and 3.6, for each n£Np satisfying « > « 0 

I, i + ll — 
in |1-•CO 3pl 

2K 

for some /' satisfying l^z 'Src — 1 or Sn = cok
p
<n)Tn, where T„ is as defined in Lemma 

3. 7 and lc(n) is some integer. Since || S J ^ ¡4";+11 and S is assumed to be bounded, 
there must exist an integer n, ^n0 such that Sn = cak

p
(n)Tn for all n£Np satisfying 

/ ! > « , . But then by Lemma 3. 7, 

n(") In CO' 
(Cn +fn)(^l„-Oj'p) 

№ - 1 ) 

and applying Lemma 3. 1 [case (/?)], 

for n£N„, n>n 

^ 
\c„+fn\-\\-a>lp\n 

2K 
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/ 
By construction, the sequence {c„ +/„}„€iVp does not converge to zero, so the sequence 
{j^JngjVp is unbounded, contradicting S£Q(§i). Thus the lemma is proved. 

The following lemma completes the proof of Theorem 3. 

L e m m a 4. 2. For each n£N let C„££(§„) be the operator 

fn" 

CM = (1 + 1 In) 

m„ 

CO" 

where /„ is as previously defined, and let Dn £ £(§„) be the operator 

Dn = log (1 + !/#»)/+ 

Inijn 
Anijn 

2(n— l)ni/n 
0 

where d„ 2 f „ m -. Then for neN, exp(£>„) = C„ and ||Z>„||.^11, so that 
" n(co'n-iy 

D.= 2 and e x p ( D ) = C. 

P r o o f . Compute, using the fact that | / „ | s 2 . 

Q u e s t i o n . Is it possible for an invertible operator to have roots of all orders 
and yet fail to have a logarithm? 
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