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1. Introduction and summary

Homomorphisms of an arbitrary semigroup § onto semigroups belonging
to a_ special class € of semigroups furnish some information about the structure
of S. Of particular interest is the case when € is a class of bands, for in such a case
all the classes of the decomposition: of S induced by such homomorphisms are
subsemigroups of S. The problem of finding a sufficiently explicit characterization
of homomorphisms onto arbitrary bands appears difficult: In [3] and [4], we have
found such a characterization for the case when % is the class of all semilattices
and the class of all rectangular bands, respectively. In the present work we solve
the problem when € is the class of all [left] normal bands (for definitions see sec-
tion 2). Normal bands have been studied by Yamapa and KimmuraA [9], and right
normal bands by VAGNER [8], and SHAIN [5], [6] (the latter two call right normal
bands “restrictive semigroups’). ‘

In section 2 we give the definitions and notatlon used in the paper In it we
introduce a number of concepts which are used in succeedmg sections; section 3
discusses some of their properties. Section 4 contains main results of the paper,
viz., characterization of congruences induced by homomorphisms onto [left} normal
bands In section 5 we discuss some general properties of normal bands and, in
section 6, subdirect products of such -bands. Section 7 contains a representatlon of
normal bands as subsets of a set under certain multiplication.

Some of the results in this paper parallel those in [3] and [4] (similar methods
are used); we will not expressly mention similarity with these papers.

2. Definitions and notation

Throughout S will denote an arbitrary semigroup unless stated otherwise.
A one element set X = {x} will be simply denoted by x. For properties of most of
the concepts that are introduced below see [3] and [4]. Let H be a non-empty subset
of S and let x,y,z€S.

H is said to be left (right) dense if xy € H implies x € H (y € H), quasi dense if
(i) x* € H implies x ¢ H and (i) xz € H if and only if xyz € H. A left dense and right
dense subsemigroup of S is called a face of S. The smallest face of S containing
H is denoted by N(H). H is said to be a left (right) normal complex (abbreviated 1. n.



186 M. Petrich

complex [r. n. complex]) if H is a left dense right ideal (l.d.r.i.) [right dense left
ideal (r.d.Li.)] of N(H). H ist said to be a normal complex (n complex) if H is a quasi
-dense subsemigroup of N(H). By A(x) [B(x)] denote the smallest I.n. [r.n.] complex
of § contammg x. (Itis easy to see that the non-empty intersection of l n. {r.n.] com-
plexes is again a 1. n. [r. n.] complex.)

By a4 we denote the equivalence relation on § whose classes are the non-empty
sets in the family of sets: H, N(H)\. SN, \N(H) If # is a non-empty family of non-

empty subsets of S, we set 05 = ﬂ oy; if & is empty, 6z denotes the universal
He

relation on S. Welet A, =04, 0, = a,,(x), To=2A, ﬂgx Forac S, we write H.a=
={x€S|xa€H}, H. a_{AESIaxEH}

Following [9], we say-that a band S is left ( rtght ) normal if it satisfies the identity
Xyz =Xxzy [xyz =yxz], normal if it satisfies the identity xyzx = xzyx. If £ is a.congruence
on an arbitrary semigroup S such that S/ is a left normal, right normal, or normal
- band, respectively, & is called a left normal, right normal normal congruence (1.n., r.n.,
1. congruence, respectively).

By S° we denote the semigroup S with zero adjoined (1rrespect1ve of .whether
S has a zero or not). U, L, R will, respectively, stand for a one element semigroup,
two element left zero semigroup,‘ two element right zero semigroup. If 4 is any
set, |A] denotes its cardinality.

If S,, a €4, is a non-empty family of semigroups, ]] S, denotes their Cartesian

(or direct) product, that is, the semigroup defined on the Cartesian product of
‘sets S with coordinatewise multiplication; if 4={1,2} we write S, X S, instead

of ﬂ A;. S is a subdirect product of semigroups S, if S isomorphic to a subsemi-
group S’ of ]] S, such that for all acA, w (S’) S, (m, is the o-th projection).

If {B;}i-, is a partltlon of A and for every i, 1 =i=n, all semigroups S, with a € B;
are isomorphic to a semlgroup T;, we say that S is a subdirect product of |B,[
copies of T, |B,| copies of T,, ..., |B,| copies of T,. Subdirect irreducibility is
taken in the usual sense (a one element semigroup is excluded).

For all concepts and notation not mentioned above the reader is referred to [2].
‘We will omit all statements.that can be obtained from our resuits by the left-right
-duality.

3. Basic properties of concepts used

We will repeatedly use the next pfoposition without express mention.
Proposition 1 (¢f. [9], Theorem 10). Any normal band S satisfies the identity
(D) ‘ axx,..x,b=ax;x;...x; b,
where {i.1 s i35 ooy 1y} @S @ permutation of the set {1,2, ..., n}.

Proof. We prove the case n=2; the general case is treated by induction.
It is clear that normality implies (1) for a=5. Thus

axyb =(axyb)(axyb) = (axyba)(xyb) = (ayxba)(xyb) =
. =(a y,_v) (baxyb) = (ayx)(bayxb) = (ayxb)(ayxb) = ayxb.
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Theorem 1. The intersection of a ln. congruence and a 1.n. congruence
is a n. congruence. Conversely, every n. congruence ~ is the intersection of the finest
1.n. congruence on S containing ~ and the finest r.n. congruence on S containing ~ .

Proof. The first statement of the theorem is 1mmed1ate Hence let ~ be
a n. congruence and for any x, y€ S, define

xAy ifand only if x~yx and Y~Xy,
_ x~y ifand only if x~xy and y~yx.
‘We show that A is the finest l.n. congruence on S containing ~ ; the case of ~ 1s
treated analogously. If xLy and y~ z, then
X~ Yx ~ZYX ~(zy) (zx) y(zx) ~(yz)x ~zx
and analogously z~xz. Thus x~z, and is an equlvalence relation (symmetry
and transitivity are obvious). If x4 y, then for any z€ S,
xz ~yxz ~(yz)(xz),

similarly yz ~(xz)(yz) so that xz-{ yz; analogously zx ~ zy and hence ~ is a congru-
ence and is clearly a L.n. congruence. Let A be any l.n. congruence containing ~ .
Then for x4y, we have x ~yx, y ~xy and thus X2 yX, y=a xyp. Consequently

1 1 1 1
xxyxxyxy)=yyRy,;

that is, A is contained in A . It follows easily that ~ = L N &
The next theorem establlshes a connection between ln complexes and l.n.
congruences.

Theorem 2. The following condmons on a comple\f H of S are equivalent:
" a) His aln complex of S;

b) o is a ln. congruence on S;

¢) for all acN(H), H.a=H.

Proof. a) implies b). If N(H)=S, then His a l.d.r.i. of S and Sjo;=L, and
if N(H)= H, then H is a face of S and ¢, is a semilattice congruence. Hence suppose
that HN(H)#S, and let A=N(H)\H, B=S \N(H). Then by the definition
of a l.n. complex the following inclusions hold:

H A B
H‘HH_B
AjA A B
B'BBB

where, e.g., HACS H, etc. Defining multiplication according to this table, we see
‘that {H, A, B}=L° and thus 7, is a l.n. congruence.

' b) implies ¢). Since o, is a l.n. congruence and it has at most 3 classes, S/oy,
is isomorphic to one of the semigroups U, U° L, L°. If S/oy==U, H=S,; if
Sloy=U° His a face of S; if Sjo, =L, His a l.d.ri. of S; in any of these cases,
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c) is established. without difficuity. Finally, if S/o,; 22 L° and a € N(H), then c) follows
easily from the above table since this case then reduces to considering the semi-
group {H, A} which is isomorphic to L.
- ¢) implies a). This follows easily from the definition of a l.n. complex.
Proposition 2. A complex H is a 1.n. complex of S if and only if H is left

dense. in S and has the property: if x€ S is such that every prime ideal of S which
contains x also intersects H, then Hx C H.

Proof. Necessity. Since H is left dense in N(H), it is also left dense in S. If
X € S has the property stated above, then x € N(H) since otherwise S\ N(H) would
be a prime ideal of S containing x and not intersecting H. The inclusion HxSH
now follows by the definition of a L.n. complex.

Suﬁiaency As before, we conclude that x € S with the above property must be
contained in N(H). Thus H is a 1.d.r.i..of N(H) as desired.

Recall that A(x) is the smallest 1.n. complex of S containing x.

Theorem 3. Let x be an element of S, let
' | A,(0)=xUxN(),
A()={y €S| Az- () NR(p) =D},
) Apps1(x) = A, () U 4,,(x)N (Azu(x)),
Jor n=1, 2 .. Then A(x)= U A,,(x)

Proof. We write 4, and A instead of A4,(x) and A(x), respectlvely, and let
= UA Since a€Ad, we have N()SN(4) and thus xN(x)SANA)CA

whence A, S A. Suppose that 4,£ 4, n=1. If n is even, then 4,,, =4,U A,N(4,)
and A,,gA 1mplies AN(A,)E AN(A)E A, that is, A,,, S A. If n is odd, then for -
y€A,,, we have A,NR(y)> 0. Thus yz€ 4, for some z¢ S'; hence yz€ 4 so that
y€A. Consequently 4,,., S A and by induction we conclude that TS 4.

For the opposite inclusion, it suffices to show that T is a Ln. complex. Let
yz€T; then yz€ A, for some n. We may suppose that » is even since 4, S4,& ... .
Then A,_ N R(yz)> O whence A4,_; NR(y)>= O and thus y€A4,S7T. Next let
y€T and z€ N(T). Since 4, S 4,<..., we have N(4,)EN(4,)< ... and hence

ZEN(T) = N[ 61 A,,] - f_]l N(4,).

We thus have y€ 4,, and z€ N(4,) and we may suppose that m=n and » is even.
Hence yz€ A,N(4,)=A4,,., S T. Consequently T is a Ln. complex of S and thus
A=T.

Proposition 3. LetHbea n. complex of S and let a be an element of S. Then
a) A(H)=H'.a; ‘
b) H=(H.a)N(H. a),

¢) N(H)=N(H'.a).
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Proof. Items a) and b) follow easily from the. definitions and Theorem 2,
[4]. Clearly H'.aS N(H), which implies N(H'.a)S N(H). Conversely, HSH: . a
implies N(H)& N(H'.a) and c) is established.

Theorem 4. The non-empty intersection H of a l.n. complex C and a r. n.
complex D is a n. complex and N(H) = N(C) (N N(D). Conversely, if His an. complex,
then H=A(H)N\B(H) and N(H)=N(A(H))=N(B(H)).

Proof. Let C and D be as above and H=CND=0. Let E=N(C)N\N(D);
H CNDCE so that N(H)CE smce E is then a face. Let C'=CNE and
=DMNE; then

H=CND=(CNNC)N(DNND)=(CNE)YN(DNE)=C"ND,

where C'C E, D’S E. Further, C’ES CESCN(C)S C and C’EC E which implies
C’ESC’. Also xy € C’S C implies x € C which together with x€ E (since xy€C’'S E
and E is a face) implies x€C’. Consequently C’ is a lL.d.r.i. of E; similarly D’ is °
a r.d.li. of E, and thus H=C’ND’ is a quasi dense subsemigroup of E. If x€E,
then for any c€C", d€D’, cxde C’'N D" = HS N(H)whence x ¢ N(H). Thus ES N(H)
the opposite inclusion being obvious, we have E N(H). Therefore N(H) = N(C)ﬂ
N N(D).

For the converse it suffices to apply Proposition 3.

Remark. It follows from the definitions that a complex H of Sis an. c'dmplex
if and only if for all x,y,z€S:

a) x,y€H implies xy€ H;

b) x?¢H implies x€H;

¢) xyz€H implies xz€H;

d) xz¢H, y€N(H) implies xyz € H.

4. Homomorphisms onto normal bands

Let S be a fixed semigroup, o/ the family of all proper I.n. complexes of §
together with the empty set, and U the set of all L.n. congruences on S. On the set
PB() of all non-empty subsets of o define the function a by: o) =0, (for
‘notation see section 2). Then we have the following result Wthh is, fundamental

~for most of this paper.

Theorem 5. The function o maps P(Z) onto U and is inclusion inverting.

Proof. If &/’=0, 64 is the universal relation and hence o €U. Other-
wise &7’ = [] which 1mp11es that for every A €.97’, o, is a L.n. congruence by Theorem
2; consequently o = ﬂ o€ U This shows that a maps B() into A.

We show next that oz maps PB(f) onto A.- Hence let ~ be any proper 1 n. con-
gruence on S. For every x€ S, let

A —{yESIX~yx}

and let &’ be the family of all distinct sets A, such that A, S, as X ranges over
all elements of S. We will show that o7’ ¢ P(o#) and that 64 = ~.
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&’ is not empty for in such a case we would have 4, =S for all x¢§ which
would imply for all x, y€ S, x ~yx, y ~xy. But then

X~ PX o XYX XY~ Y

contradicting the hypothe31s that ~ is proper. Thus to show that &’ € B(&), i
suﬂﬁces to prove that for all x€S; A, €/ if A, S. We fix x€.§ and let

T.={y€S|x~xy).

Ify,zeT,, then x ~xy ~xz and thus x ~(xy)(xz) ~ xyz, that is, pz€T,. Converse]y,
if yz E T‘, then x~xyz and hence .

X ~ XYZ ~ XXpZ ~(xy)(,\yz) ~ XPX ~ XXY ~ XY,

that is, y € T,; similarly z€ T,. Consequently T,is a face of S. If y€ A4,, then x ~px
whence x~xyx~xy and thus y€T,. Hence A, T, and thus N(4,)E T, since
T, is a face. Further, if y €T, then x ~xy whence x ~(xy)x so that xy EAng(Ax).‘
But xy € N(4,) implies y € N(4,) which proves T, S N(4,). Consequently T, =N(A,).

If yz€A,, then x~yzx and we have yx~y(yzx) ~YIX~X SO that yEA,.
If yed,, z€T,, then x~yx~xz and thus x~yx~yxz~(yz)x, that is, yz€4,.
Consequently A, is a l.d.r.i. of T,=N(A4,) and hence A €/ if A,=S.

We show next that o, = ~. Suppose that xoy. Then xEAx implies that
y€A,, that is, x ~px; dually y ~xy and thus x ~yx ~xpx~xy~y.

Conversely, suppose that x~y and let z¢S. If x€Ad,, then z~xz and
thus z ~yz, that is, y€A4,. If x€N(4,)\A4,, then z ~ zx since x€ N(A4,)=T,, which
implies z~zy and y€N(A4,). If y were an element of A,, then z~ yx which
would imply z~ yz~ xz, that is, x € A, contradicting the hypothesis. Consequently
y €-N(A )Y\ T,. The implications established also prove that x¢ N(A,)implies y ¢ N(A4,).
By-symmetry- we conclude that xo,_y and since z is arbltrary, also xg 4y. Therefore:
Oy = ~.

The last statement of the theorem is now clear.

Corollary. o is the finest L.n. congruence on S.

Let @ be the family of all proper L.n. complexes and proper r.n. complexes of
S together with the empty set, and € be the set of all Ln. congruences and r.n.
congruences on S. On the set ‘B(‘K) of all non- empty subsets of € define the function

by 7(%)) = 0"6’ ] ;
Theorem 6. The function y maps SB(€) onto € and is inclusion inverting.
Proof. This follows easily from Theorem 5 and its dual, and Theorem 1.

Corollary 1. og¢is the finest n. congruence on S, v

Lettmg 7} be the famlly of all n. complexes of S, we have the following result
by the preceding corollary and Theorem 1.

Corollary 2. 64 is the finest n. congruence on S.
Note that € can not be replaced by 2 in Theorem 6. -
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Recall that for any x€ S, A, =04y, 0. =0p), T. =4, 0,. Hence by Theorem 2.
(its dual) A,[g,] is a L.n. [r.n.] congruence and hence by Theorem 1, 1, isa n. con-

gruence. It is not hard to show that 64, = [] 4, and ¢, =0¢= (] 7,. The next prop~
X€S X€ES
osition follows easily from the definitions.

Proposition 4. For any x€ S, we have
a) SfA=U  ifandonly if A(x)=S;

b) S/i=L ifandonlyif A(x)#=N(x)=S;

c) S/a,=U° ifandonly if A(x)=N(x)S;

d) S/A,=L° ifandonly if A(x)= N(x)#S.

The next theorem characterizes the n. congruences T,.

Theorem 7. For any x€ S, we have:

a) Sjt,=U ifandonlyif A(x)=S=B(x);

b) S/t,=L if and only if A(x)# S=B(x);

¢) S/t,=R ifandonly if A(x)=S#B(x);

d) Sjt.=LXR if and only if A(x)5N(x)= S B(x);

e) S/t,=U% ifandonlyif A(x)=B(x)=S;

f) S/t,=L% ifandonlyif A(x)= N(x)=B(x)#S;

g) Sjt,=R° ifand only if B(x)sN(x)=A(x)=S

h) S/t,=(LXR)" ifandonlyif A(x)=N(x)> B(x), N(x)#S,

and these are all homomorphzc images S/r

, Proof. As a sample we outline the proof of h); the other cases are treated
analogously. (most of them are simpler to prove than h)). We note first that by
Theorem 4, N(x)= N(A(x))=N(B(x)).

Necessnty of h). Since S/z, has a zero, we must have N(x) > S. Then N(x)/€, =
= L X R, where £, is the restriction of 7, to N(x), which by d) (d) in turn follows.
easily from Proposmon 4, part b) and 1ts dual) implies that A(x) s N(x)= B(x).
Sufficiency of h) is proved by essentially reversing the steps in the proof of necessity.

~ The last statement of the theorem follows by enumerating all possible cases
-,-of - relationships among A(x), B(x), N(x), and S.

5. Some properties of normal bands

We.now investigate the properties -of Ln. [r.n.] complexes of normal bands.
. The next theorem will be useful, it is also of independent interest.

P

i Theotem 8. Ler S be any sengroup such thatfor alla, x, y, b€ S, axyb=ayxb..
Then for any x€ S, we have: , .

a) N(x)={ye¢ S[ SySN{x)= 0} (the smallest face contammg x);
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b) P)={yeS| ySNxS»= 0} (the smallest 1.d.r.i. conraiﬁing x);
o) Ax)={yeS| ySN{(x)= DO} (the smallest l.n. complex containing x).’

Proof. a) Let T(x)={y€S| SySﬂ(x)# O}, If a, beT(x), then uav=x",
zbw=x" for some u,v,z, wc S and some m, n. Hence (uz)ab(vw)=(uav)(zbw)=
=x"*" and thus ab€ T(x). Conversely, if ab ¢ T(x) then uabv=x™ for some u, v€ S
and some m, which implies a, b€ T(x). Thus T(x) is a face of S containing x and
hence N(x)& T(x). The opposite inclusion being evidént, we have N(x)=T(x).
b) Let T(x)={y€S| ySNxS=T}. If ac T(x), b€S, then au=xv for some
#,v€S. Thus aub®=xvb* whence ab(ub)= x(vb?) so that abe T(x). Conversely,
lf ab € T(x), then obviously a € T(x). Hence T(x) is a l.d.r.i. of S containing x and
~thus P(x) < T(x). Again the opposite inclusion is obvious, and we have P(x)=T(x).
¢) Let T(x)={y€ S| ySN(x)=T}. By the definition of A(x) and parts a), b)
of the present theorem, A(x)={y€N(x)] yN(x)NxN(x)=O}. If a€T(x), then
au=x"for some u€ S and some n Hence a(ux)=xx", where clearly ux, x"¢€ N(x)
and a € A(x). Conversely, suppose that a € A(x). Then a € N(x) and au=xv for some
u,v€N(x). By part a), zow=x" for some z, w€.S and some m. Consequently
.a(uzw) xvzw = x(zvw) =x"m+1, and a € T(x). Therefore A(x)=T(x).

_ Corollary 1. In a normal band S, for any x € S, we have:
a) Nx)={yeS| x=xpx};
b) P(x)={y€S|ya=xa for some acS};
O AE)={yes| x=yx}.
Proof. a) This is valid in any band § (6.2, [3).
b) If yu=xv, then y(vu) = (yu)(vu) = (xv)(vu) = x(vu).
¢ If yu=x, then yx=jyu=x. '

. Corollary 2. In a normal band S, the followmg Statements are equwalent Sfor

any x¢€S:

a) N, isaleft zero semigréup;

b) x is a left zero of N(x);

¢) B(x)=NX).

Proof. We prove only that c) implies a). If a€ N, then x =xax by part a)
of Corollary 1 which together with the hypothesis and the dual of part c) of Corollary
1 implies x =xa.

Note that a) and b) in Corollary 2 are equivalent in any band. Let S be a normal
band, and let

D, ={x€eS||NJ=1}, .
D,={x€S||N,>1 and N, is a left zero semigroup},

. Dy={x€S||N,|=1 and N, is a right zero semlgroup}
4*S\\(D UD,U Dy). '
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_Fufther, let K be the intersection of all ideals of S and let

F;=D;NK,
G,=D;N(S\K),

for i= 1,2,3,4. Finally let o,,a,, 0, a, denote, respectively, the semigroups
U, L, R, LXR. We are now ready to prove the main theorem of this section. -

Theorem 9. Let x be any element of a normal band S. Then fori=1,2,3,4,
a) Sfy=a; ifandonlyif x€F,
b) S/t =af zfand only if xEG

Proof. We note that K={y€S|N(y)=S}, that by Theorem 4, N(x)=
= N(A(x)) =N(B(x)), and that A(x)=B(x) implies A(x)=N(x). The theorem now
follows from Theorem 7 and Corollary 2 to Theorem 8 and its dual.

We say that a family & of equivalence relations on a set 77 dlstmgulshes elements

of Tif [) ¢ =t;, where t4-is the identity relation on T.
0T

Theorem 10. S is a normal band if and only if the famzly {te}ees dzstmguzshes
elements of S. .

Proof. Necessity. Let x, y € S and suppose that for all z¢ S, xt,y. In particular
xt,y which implies y € A(x) (" B(x). By minimality of A(x) and B(x), we have 4(») S
S A(x) and B(y)SB(x). Similarly xt.y implies A(x)S A(y), B(x)<S B(y). Conse-
quently A(x) = A(y), B(x) = B(y). By Corollary 1 to Theorem 8 (part c) and its dual)
we have for all z, w, € .S:

x=zx ifand onlyif y=zy,

x=xw if and only if ~ y=ypw.
Since x and y are idempotent, x=xy=y.
Sufficiency. Since 7, is a n. congruence, so is ﬂ 7, which by the hypothesis

is equal to t5, the identity relation on S. But then S 1tself is a normal band.
‘One similarly establishes

Prop081t10n 5.8isa left normal band lfand only Ifthe famtly {Adces dlS-;

tinguishes elements of S.

6. Normal bands and subdirect products

We next use some results of the previous section to obtaln representations
of normal bands as subdirect products of subdirectly irreducible normal bands.

Let .S be a normal band. Then by Theorem 10, (1} =t which by BIRKHOFF’s

x€S
theorem (Theorem 9, p, 92, [1]) implies that S is a subdirect product of sémigroups
S/t., X ES. Theorem-9 ylelds all the semigroups S/t in-terms of the sets F; and
G;,i=1,2, 3, 4. In the notation of that theorem, S/t =a, =Uif and only if x€ F,.

5A
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Since F; =D, NK it is clear that if F, O, F, consists of a single element which
is the zero of S. Further, if S/t,=~al = (LXR)? then by the definition of t,
(t.=21,MNg,),wemust have S/A, = L?, §/g, == R°.Itis easy to verify that U°, L, R, L°, R®
are subdirectly irreducible. Using Theorem 9 for counting the number of copies
of these semigroups among the semigroups S/, and taking into account the above
discussion, we obtain the next theorem which is the main result of this section.

Theorem 11. Any normal band S having more than one element is the sub-
direct product of-

[Fal + | Fy) 'copiesof L, |F3| + |Fy| copies of R,
IG,| copiesof U° [G,|+|G4| copiesof L° |G+ |G, copies of RC.

The total number of copies is |S| if S has no zero and |S|~1 if S has a zero.
* The semigroups L, R, U°, L° RO are subdirectly irreducible.

Remark. We have already noted that if F, ¢ 0, then it consists of a single
element which is the zero of §. Similarly Corollary 2 to Theorem 8 implies that
if F, = [, then F, is the set of all left zeros of S and is the kernel of S; an analogous -
statement is valid for F;. Hence at most.one of the sets F,, F,, F; is non-empty.

Corollary 1. All the semigroups considered contain more than one element.
a) A left normal band is the subdirect product of
|F,| copies of L, |G,| copiesof U°, |G,| copies of L°.
b) A left zero}vemigroup is a subdirect product of
» |S|. copies of L.
c) A semilattice is the subdirect éroduct of
4 {S|—1 copiesof U°® if S is finite,
‘ N ‘copies of U° if S is infinite.
Proof. Part a) follows from the theorem; it can also be derived difectly,
by the same method of proof as above, from Propositions 4 and 5. Part b) follows

directly from the theorem. If S is a finite semilattice, then S has a zero. If §'is an
infinite semilattice with zero, then |S|=|S\0|=|G,|. Hence c) holds.

Corollary 2 (¢f. Theorem 1, [5} and Corollalre I Théoréme V, [7]) These
are the only subdtrectly xrreduc:ble a

“a) normal bands: L, R, U?, L°, R°
b) left normal bands. L, U° L°,
c) left zero semigroups: L;

-d) --semilattices: U°. .

Corollary 3. (¢f. Theorem 4, [9] whibc.:h is a stronger statement). Every normal
. band:is a subdirect product of a left and a right normal band.
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Proof. This follows from the theorem since the product of e.g., cop\es of
‘L, U°, LOis a left normal band; similarly for R, U°, L°. This corollary also follows
from Theorem 1.

One might ask what kind of bands are subdirect products of, say, left zero
semigroups and semilattices, or some other combination of classes of semigroups
we have considered. The desired results can be obtained from Theorem 1! or certain
of its corollaries.

7. A representation of normal bands

The following construction is an easy modification of the one given by SHAIN [5]
for right normal bands. It gives a representatxon of a normal band by subsets of
a set under certain multiplication.

Let B, C, and D be sets, let £={1, 2} and suppose that B, CXE, DXE are
pairwise disjoint. Let

’ A=BU(CXEYU(DXE),

and let & be thé set of all subsets of 4 under the following multiplication: for
A BeF;
) _ A-BNB=UNBNBAB,

A-BN(CXE)=ANCXE),
A-BN(DXE)=BN(DXE).

It is easy to see that & is a normal band; in anélogy to [5] we.call subsemi-
groups of & special normal bands.

Theorem 12. Every normal band is isomorphic to a special normal band.

Proof. Let S be a normal band; then using Theorem 11, we may suppose
that SC ]] S,, where S; is one of the semxgroups L,R,U° L°, R° and projection

;(S)= S for all i€l Let
B={icl|S;= U},
C={i€llS;=L or S§,=L°},
D= {zEI]S R or S§;,=R°}.

Let U={l}, L= {11,12} R={r,,r;}. Let 4, E, and & be as above and - define
the function ¢: S—% by lettmg P(x)S A be deﬁned by:

p(NB={icBlmx =1, °
) A | (p(x)“m(ch):'L:J1 {,)ECKEIm(x) =1}, *

e(x)N(DXE) = -L:J; {(i, )€ D X E|m(x) =r’j}"

A straightforward calculation shows that ¢ is an isomorphism; here ¢(S) is a
special normal band.
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Theorem 13 (¢f. Theorem 2, [5] and Cordllaire'II, Théoréme V, [7]). With
the notation as_in the introduction to this section, we have.‘v

a) & s a left normal band if and only if D=7,
b) = F is a left zero semigroup if and only if B=D=1[1;
c) % s a semilattice if and only if C=D=0;

|

d) & s a rectangular band if and only if B= (.

Defining a “special left normal band”, a ‘““special left zero semigroup”, etc., analo-
gously as a special normal band above, the statements corresponding to Theorem 12
are valid for bands in a)—d).

Proof. The proof is an adaptatlon of the proof of Theorem 12 and is omitted.
Remark. If we replace (1) by

A-BNB=(AUB)N B,

F is still a-normal 'band and Theorem 12 remains valid where in the proof, (2)
is replaced by

' e(x)NB={i€B| n(x)=0}
(0 is the zero of UY). '
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