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The purpose of this paper is to give an algebraic approach to the theory of 
non self-adjoint operators on (complex) Hilbert space by means of the theory of 
von Neumann algebras. In the spectral theory, the principal problem is to reduce 
a given operator to simpler operators. We shall consider this problem, from the 
algebraic view point, for a certain class of non self-adjoint operators. 

Let A be an operator on Hilbert space. We shall denote by R(A) the von Neu-
mann algebra generated by A (i.e., the smallest von Neumann algebra containing A) 
and we say that A is primary if R(A) is a factor. Then the spectral decomposition 
of a normal operator A essentially means the decomposition of A into primary 
normal operators (which, are scalar operators). Moreover, we know that an iso-
metry is decomposed into the direct sum of a unitary operator and a unilateral 
shift. As we have shown in [9; Lemma 2] (cf. [3; Theorem 1]), a unilateral shift 
is a primary operator. From this fact, we can easily see that a non-scalar isometry 
is a unilateral shift if and only if it is primary. Therefore, the decomposition of 
an isometry V mentioned above is essentially that of V into primary isometric 
operators whith the aid of the spectral theorem for a unitary operator. From this 
point of view, the decomposition of an operator A into primary operators may 
be regarded as a kind of spectral decomposition of A. 

We shall concern ourselves with the class of operators whose imaginary parts 
are completely continuous: M. S. BRODSKII and M. S. LIVSIC, cf. [1], [5], have develo-
ped a theory of the triangular form for operators whose imaginary parts belong to 
the trace class. Our purpose is to establish the decomposition of an operator with 
completely continuous imaginary part into primary operators belonging to the 
same class and to show, that a primary operator of this class is the direct sum of 
copies of an irreducible operator of the same class by making use of the theory 
of von Neumann algebras. Consequently, we shall be able to see some algebraic 
aspects of operators with completely continuous imaginary part. This paper contains 
the details of the research announcement appeared in [8]. 

For the sake of simplicity, we shall assume that our Hilbert space is separable. 
By an operator we always understand a bounded linear transformation on a Hilbert 
space. By a von Neumann algebra we understand a self-adjoint operator algebra 
with the identity operator / which is closed in the weak topology. The set of operators 
each of which commutes with every operator in a von Neumann algebra M will 
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be called the commutant of M and be denoted by M'. The commutant M' is again 
a von Neumann algebra and M = M " . A factor means a von Neumann algebra 
whose center consists of scalar multiples of the identity operator. For terminology,, 
notation and basic results, we shall refer to the book of J . DIXMIER [2]. 

1. The structure of operators with completely 
continuous imaginary part 

In this section,- we shall restrict our consideration to an operator i o n a Hilbert 

space H whose imaginary part I m ( A ) — — ( A —A*) is completely continuous. 

Our object is to prove the following 

T h e o r e m 1. An operator A with completely continuous imaginary part on a 
Hilbert space H is decomposed by a unique countable family of mutually orthogonal 
central projections P0,Pi 0€/) in R(A) into the form 

A — APo@ 2® Api> 
iil 

where the restriction APo of A to P0H is a self-adjoint operator, the restriction APt 
of A to PJi (idI) is a primary operator with completely continuous imaginary part 
and P = 2 Pi ' s the projection on the subspace generated by vectors of the form 

te i 
A"(p ((p£lm(A)H; n = 0 , 1 , 2 , . . . ) . 

Certainly the essence of our result is in the reduction theory of VON NEUMANN' 
[6], that is, in the direct integral decomposition of R(A) into factors, but it should 
be noticed that the character of the . operator A has induced a more simple and 
concrete decomposition of R(A). Before beginning the proof, we shall provide 
some lemmas. We shall denote by AT the range of Im (A), i. e., 

K = ±(A-A*)H 

and the projection on the subspace K will be denoted by E. In what follows, M 
always means the von Neumann algebra R(A) generated by A. Since Im (A) is 
a self-adjoint completely continuous operator, it is well known that there exists 
an orthonormal basis in H whose elements are proper vectors of Im (A). Therefore, 
if we denote by {¡ik} (k £ N) the countable family of all distinct non-zero proper 
values of Im (A) and by Ek the projection on the proper subspace corresponding: 
to nk, each EkH is finite dimensional and E= 2 Ek. As the first step, we observe 

k£N 
that each projection Ek belongs to M and hence the projection E is in M. This no-
table fact is the direct consequence of the following 

P r o p o s i t i o n 1. Let B be an operator in the von Neumann algebra M. Then 
a projection on a proper subspace of B belongs to M. 

P r o o f . Let p, be a proper value of B and let ^V(n) the proper subspace corres-
ponding to fi. We denote by F the projection on J/~(p). In order to prove that F 
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belongs to M, it is sufficient to show that F commutes with all operators belong-
ing to the commutant M' of M. Let A' be an arbitrary operator in M'. Then, f o r 
every vector (p in the proper subspace the equality B(A'<p) = A'Bq> = 
=A'nq> = fiA'cp yields A'(p£jf(p). Similarly we have A'*(p £ Ji(ji) for every vector' 
<p£JF(p). Thus the, subspace JV(/j) reduces A'. This means that F commutes 
with A'. 

We consider the subspace Hl generated by vectors of the form A"<p (<p Ç K; 
n = 0, 1,2, ...) and denote by P the projection on H1 . As is well known, the projection 
P plays a very important role in the study of our operator A, and so we need to find 
the exact relation between A and P. 

L e m m a 1. The subspace Ht coincides with the subspace [MK] generated by 
vectors of the form B(p (B Ç.M, <p£ K). That is, the projection P belongs to the center 
of M. 

P r o o f . It is clear that H] is invariant by A, and so its orthogonal complement 

H2 = HQ Hx is invariant by A*. For each vector (p£H2,we have — (A — A*)<p, i = 

= (^p, y (A — A*)\p^ = 0 for every vector i¡/£H. Thus Acp — A*cp for every vector 

(pÇ_H2. This means that the subspace H2 is invariant by A. Therefore, the sub-
space H2 reduces A, that is to say, thé projection Q on H2 belongs to M'. Thus 
the projection P = I— Q belongs to M'. For each operator B£M and for each 
vector (p£K, the equality Bcp = BPcp = PBcp implies [MK] c / / , . On the other hand,, 
obviously Hv is contained in [MK]. Consequently, we obtain that the subspace 
Hl coincides with the subspace [MK]. 

Next we observe that the subspace [MK] reduces every operator B'£M'. In. 
fact, since the projection E is in M. by Proposition 1, B'MK=MB'K=MB'EK= 
= MEB'Kcz MKîor each operator B' 6 M'. In the same way, we can get B'*MKc. MK.. 
It follows from this fact that P commutes with every operator belonging to M'. 
Thus the projection P belongs to M. Consequently, the projection P belongs to 
the center MP\M' of M. 

R e m a r k . In the theory of von Neumann algebras, the projection on [MK]: 

is called the central support of E. Indeed, it is the minimal central projection 
containing E. We have shown that the projection P is the central support of the-
projection E. 

The following lemma on von Neumann algebras is essentially known, but,, 
for the sake of completeness, we shall give the proof. 

L e m m a 2. Let F be a minimal projection in M J) with the central support R-
Then there exists a countable family of orthogonal, equivalent projections { f } } ( j £ J) 
such that R = 21 Pj and Fjo = F for a fixed in € J. 

iiJ 

0 A minimal projection in M means a non-zero projection F belonging to M such that G^F 
and O ^ G e M implies <7=F. 
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P r o o f . Let Fj ( j d J ) be a miximal family of orthogonal, equivalent projections 
such that Fh = F. Then FjR f o r all jd/. Put G = R — 2Fj• By using the theorem 

iiJ 
•of comparison (cf. [1: Ch. Ill, Theorem 1]), we can find a central projection Q 
such that 

GQ<FQ and F(I-Q)<G(I~Q). • 

If F(I — 07*0, F(I—g) = i" since F i s minimal in M. It follows that F^I-Q 
and F< G(I ~Q) ^ G. This contradicts to the maximality of {Fj} (jdJ). Thus 
F(I — Q) must be zero, and so FsQ. Then we have GQ< F. Since F is minimal 
in M, GQ — O or GQ ~ F. Therefore, GQ = 0 since GQ~F obviously yields the 
•contradiction. It follows that 

0 = GQ = RQ-2FJQ = R Q - 2 F J . 
jiJ j£J 

Keeping in mind that R is the central support of F, we get 

R = RQ 2' r'i-
j-J 

P r o o f of T h e o r e m I . From Lemma 1 it follows that the operator A is 
decomposed by the central projection P into the form 

A = AP 

where A,_P is a self-adjoint operator on ( I — P ) H and P is the central support 
of E. As we have already seen, the projection E is expressed as the direct sum of 
finite dimensional projections Ek (k 6 AQ in M. Since each projection Ek is finite 
dimensional and P is the central support of E, we can choose a family of minimal 
projections Ff (idI) in M contained in some of Ek such that the central supports 
Pi of F{ are mutually orthogonal and P= By making use of Lemma 2, we 

can get a family of orthogonal, equivalent projections F i ; ( / 6 J) such that Fi = Fijo 
and P ; = 2 F t j - Then the restriction MP. of M to PiH is spatially isomorphic to 

iiJ 
MFt igi ^(LiiJ))2) where MFi is the restriction of M to F , / / and 3?(L2(J)) means 
the algebra of all operators on L2(J). Since Ff i s minimal in M, MFt is the scalar 
multiples of the identity operator on FtH and hence MPl is a factor. Note that 
P j is a central projection. Then we obtain that the factor MP. is generated by 
APl, that is to say, each operator MP. is a primary operator. In addition, it is 
obvious that Im (AP) is completely continuous. Putting P0 = I—P, we obtain the 
desired result since the uniqueness of a family {F0, P,} (id /) directly follows from 
the fact that each operator APi (idI) is primary. 

What our theorem means is quite well illustrated by taking a normal operator 
of this class. Indeed, Theorem 1 yields the spectral decomposition of the non self-
adjoint part of this operator. 

2) The notation <g> always means the tensor product of Hilbert spaces, operators, or von 
Neumann algebras. 
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C o r o l l a r y 1. Let A be a normal operator with completely continuous ima-
ginary part. Then A is uniquely expressed by a countable family of mutually orthogonal 
projections P0, Pi (i d 1) in R(A) as follows: 

A = AP0 + Z^Pi, 
it l 

where each Pi (i £ / ) is finite dimensional and I=P0+ 2Pi> moreover {2,} (i £ I) 
idl 

is a family of non-real proper values of A and AP0 is a self-adjoint operator. 

In fact, since A is normal, each operator AP. in Theorem 1 must be a scalar 
operator XJi (where is the identity operator on PtH). Furthermore, since AP) is 
a non self-adjoint operator (in this case Pi = Fi = Ek — E) and has a completely 
•continuous imaginary part, each 4,- Is a non-real number and P Ji must be finite 
dimensional. Then, by Theorem i, A=AP0 + 2^iPi and clearly Xt is a proper 

iil 
value of A. Thus our result is the decomposition of the non-real spectrum of this 
operator. 

Next we shall mention a very important special class of our operators. That is, 
we shall consider the class of operators, whose imaginary parts are finite dimensional 
operators. Let A be an operator with finite dimensional imaginary part. Then the 
dimension r of the range of Im (A) is called the non-hermitian rank of A. In this 
case, Theorem 1 may be stated as follows. 

C o r o l l a r y 2. An operator A with non-hermitian .rank r is decomposed by a 
unique family of mutually orthogonal central projections P0, P,, ..., P„(n^r) in 
R(A) into the form 

A — Ap0 © APi © ... © Apn, 

where APo is a self-adjoint operator and {APl,..., APn} is a family of primary operators 
with non-hermitian rank kt such that 

¿ k , = r. ' 

In fact, from the proof of Theorem 1 we can easily see that a family P{ (/£/) 
is finite and the non-hermitian rank A:,- of AP. (i— 1,2, . . . ,«) is equal to dim (EPJ. 
Accordingly we have 

2 ki = 2 d im(EPi) = dim \E 2 Pi = dim(EP) = dim(E) = r. < 
¡=i ;= i ( ;= i ; 

2. The algebraic type of operators with completely continuous imaginary part 

The structure of an operator A is closely related to the type of the von Neumann 
algebra R(A) generated by A. An operator A is said to be of type I if R(A) is of 
type I and moreover a primary operator A is said to be of type I„ (resp. type I„) 
if the factor R(A) is of type I„ (resp. type I J . Then the question coming to our 
mind is this: which non-normal operators are of type I? Partial answers to this 
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question are known. We know that an isometry is of type I ([8]). Moreover, we-
have shown that a completely continuous operator is of type I ([8]). This result 
will be generalized in what follows. Indeed, from the proof of Theorem 1 it is easy 
to determine the type of operators with completely continuous imaginary part. 

T h e o r e m 2. An operator A with completely continuous imaginary part is of 
type I. 

P r o o f . As we have seen in the proof of Theorem 1, each operator AP{ gener-
ates a von Neumann algebra MP( of type \ (a = n or (recall that MPi is 
spatially isomorphic to (¿/¡)® jSf^C/))). Moreover, since {P0> - P j ( ' € / ) is a family 
of mutually orthogonal central projections, the von Neumann algebra M = R(A) 
is decomposed as the direct sum 

M = MPo®2®MPi. iil 

Thus we can conclude the theorem since the abelian von Neumann algebra M P a 
is of type I (cf. [1 ; Ch. I, § 8, Prop. 1]). 

Here is a very remarkable fact which illustrates the algebraic aspect of primary 
operators of our class. In our decomposition, it is possible that APi has the type 
I„ (actually we may restrict our attention to this case), but the commutant R(APl)' 
of the von Neumann algebra R(AP) has necessarily the type I„ (« = 1,2, ...). To 
show this it is sufficient to consider only a non-scalar primary operator A. Let 
A be a non-scalar primary operator with completely continuous imaginary part. 
Then R{A) contains obviously a finite dimensional minimal projection (recall that 
each projection on a proper subspace of Im (A) corresponding to a non-zero proper 
value is finite dimensional). Since all minimal projections in the factor R(A) are 
equivalent to each other, the dimension d of a minimal projection in R(A) is uni-
quely determined by the operator A. In what follows, the dimension d will be called 
the multiplicity of the operator A. , 

P r o p o s i t i o n 2. Let A be a non-scalar primary operator with completely 
continuous imaginary part. Then the commutant R{A)' of R(A) is of type I„ where 
n is the multiplicity of A. 

P r o o f . Let F be a minimal projection in M = R(A). Then dim ( F ) = n . By 
Lemma 2, we can choose a family of mutually orthogonal, equivalent projections 
{Fy} ( j € J) in M such that FJo = F and = Then M i s spatially isomorphic 

to MF<g> y(l2(J)). The minimality of F implies that MF is the scalar multiples 
of the identity operator on FH. Thus M' is spatially isomorphic to (MF)' tg> £P(/.2(J)y= 
= £?.(FH)<g>(g where is thé von Neumann algebra of scalar multiples of the 
identity operator on l2(J). Since ¿?(FH) is of type I„, £e(FH)®% is of type I„. 
Therefore, M' is of type I„. • ' . - . , . 

C o r o l l a r y . A primary operator A with non-hermitian rank 1 is irreducible 
(i.e., A has no non-triviàl reducing subspace). , • 
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3. The decomposition of a primary operator into irreducible operators 

In this section, we shall show that a primary operator A with completely 
continuous imaginary part is expressed as the direct sum of copies of an irreducible 
operator of the same class. Indeed, Proposition 2 makes it possible to decompose 
A into irreducible operators in a simple way. Consequently, the study of our operators 
may be reduced to the case of irreducible operators of our class. We shall mention 
here some examples of irreducible operators with completely continuous imaginary 
part. 

E x a m p l e 1. The simplest irreducible operator with non-hermitian rank 1 
on an infinite dimensional Hilbert space is the integral operator on L2(0, 1) defined by 

X 

(Af)(x) = i j f ( t ) d t . 
0 

Indeed, L2(0, 1) is generated by the vectors of the form A"(p (n = 0, 1, 2, ...) where 
<p(x) = l, and the range of Im (A) consists of scalar multiples of the vector (p. 
Thus it follows from Theorem 1 that A is primary. By what was already seen in 
the preceding section the operator A is irreducible. Moreover, we know that this 
operator is quasi-nilpotent. Here we should mention that the integral operator 
A is characterized by these algebraic properties. That is, the notable result obtained 
in [2] and [4] may be stated as follows: a quasi-nilpotent primary operator with 
non-hermitian rank 1 is unitarily equivalent (up to. a non-zero real scalar multiple) 
to the integral operator A on L2(0, 1). 

E x a m p l e 2. Let V be a unilateral shift on a Hilbert space H. That is, for an 
orthonormal basis {<p„} (n = 1, 2, ...) in H, Vq>n — (pn+x for all n. Now we consider 
an operator A of the form VB, where B is a positive completely continuous operator 
whose range spans H. We shall show that the operator A is irreducible. Put M—R(A). 
Then the equality B2 = BV*VB = (VB)*(VB) = A*A implies B2 £ M. Thus B = (B2)1'2 

belongs to M. Here, B is expressed in the form: B = 2 K E n > where {A„} is the count-
n t 

able family of all distinct proper values of B, En is the projection on the proper 
subspace corresponding to A„ and Since the range of B spans H, X„ > 0 

n 
for all n. By Proposition 1, each projection E„ belongs to M. Hence, for each k 
we have 

h VEk -- V(2KEn)Ek = VBEk £ M, n 
and so VEk£M for each A;. Consequently, V= V(£En) = 2VEn£M. Since V is 

n n 
irreducible, R(V) = ^(H) is contained in M. Thus M = ^C(H), that is to say, A is 
irreducible. 

T h e o r e m 3. Let A be a non-scalar primary operator with completely continuous 
imaginary part and let m be the multiplicity of A. Then A is unitarily equivalent to an 
operator V®Im, where Vis an irreducible operator with completely continuous imaginary 
part and lm is the identity operator on an m-dimensional Hilbert space. In particular, 
if A has the non-hermitian rank r, A is unitarily equivalent to V<g> Im, where V is an 
irreducible operator with non-hermitian rank n and r = mn: 
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P r o o f . We shall take here the projection E, P in M = R(A) as in the section 1. 
From Proposition 2 it follows that there exists a family of mutually orthogonal, 

equivalent (minimal) projections PX, P2, ..., P,„ in M' such that 1= 2 PI- Then 
i=l 

each operator AP. (i— 1, 2, ..., m) is an irreducible operator with completely conti-
nuous imaginary part. In fact, since P; belongs to M', APi — APl = (A — A*)Pl. To 
see that AP. is irreducible we consider the von Neumann algebra MP. which is 
clearly generated by APt. As is well known, (MP.)' = MPr Here the right-hand 
side consists of scalar multiples of the identity operator on P ; / f since P ; is a minimal 
projection in M'. This meins that APl is irreducible. 

Let Wt be a partially isometric operator in M' such that Wf lVi = Pi and 
WiWf—P^ Then, for every vector (pZPiH, 

W.Ap. Wfq> = (ViAPiW?<p = WtA Wfcp = A Wt Wfq> = APl(p= APi<p. > 

Thus each operator AP. is unitarily equivalent to APt by Wi. Now the assertion 
will be completed by the standard argument. Put §}=PlH and V=APt, then, as 
is well known, H=§>®l2(N) where N= {1, 2, ..., m}, and each vector (p£.9)®L2{N) 
is expressed in the form: 

m 
. <P = 2 

i = 1 

where {e,} ( / = 1, 2, ..., m) is an orthonormal basis of f.2(N) and {<pj ( /=1 , 2, ..., rn) 
is a family of vectors in Define a linear transformation W of H onto $$®L2{N) 
as follows: 

m 
W(p — 2 Pi (pi<2>£; for each vector (pdH. 

i=i 
Then it is verified by straightforward computation that W is an isometry of 

(m | m 

2 <Pi®ei\ = 2 wi (Pi• Therefore, we have . 

¡=1 
WAW~1 2 <Pi®Ei = W\2 ¿WfcpA 

= 2 WiPi 
m I m 

2 AWfqtA^s, = 2 IV, APi Wfy^Si = 
\j= 1 ) -=i 
m m "j 

.= 2 = ( K ® / J 2 <Pi®e, -
1=1 \i= 1 J 

That is, we have shown that A is unitarily equivalent to V-®Im. 

If A has the non-hermitian rank r,r = dim (E) = 2 dim (PiE). Since P f is 

are equivalent to each other in J S ? ( / / ) , dim (PXE) =... = dim(Pm£'). Thus dim (PiE) = 
= rjm—n. Note that (V— V*)PtH = (APi-A*Pl)PtH=P,(A ~A*)H=P,EH. Then 
we obtain that V has the non-hermitian rank n. 
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R e m a r k . We cannot express an arbitrary primary operator (not necessarily 
of type I) as the direct sum of copies of an irreducible operator. That is, from the 
fact that an operator with completely continuous imaginary part is of type I, our 
theorem has been effected. 

C o r o l l a r y . Let A be a primary operator with non-hermitian rank r. Then 
the multiplicity of A is equal to the rank r if and only if A is unitarily equivalent to 
V<g)Ir, where V is an irreducible operator with non-hermitian rank 1 and Ir is the 
identity operator on an r-dimensional Hilbert space. 

Here we shall concentrate our attention on the case when the non-hermitian 
rank r of a primary operator A is a prime number. Then the multiplicity m of A 
must be either 1 or r. In the case of m = 1, A is irreducible. The case of m = r is 
that of the above corollary. Thus we have the following 

T h e o r e m 4. Let A be a primary operator with non-hermitian rank r. If r is 
a prime number, then A is either irreducible or unitarily equivalent to V®Ir, where 
V is an irreducible operator with non-hermitian rank 1 and Ir is the identity operator 
on an r-dimensional Hilbert space. 

In closing this section, to see how our results illustrate the algebraic structure 
of an operator with finite non-hermitian rank, we shall mention here the special 
cases df our operators. Actually the structure of an operator A with non-hermitian 
rank r depends on the dimensions of minimal projections with respect to R(A) 
contained in the projection E (E: the projection on the range of Im (A)). We shall 
state the possible forms of operators in the cases of non-hermitian rank r = 1 , 2 , 3. 

An operator A with non-hermitian rank 1 has the following structure: 

A =As®At 

where As is a self-adjoint operator and /l ; is an irreducible operator with non-
hermitian rank 1. 

An operator A with non-hermitian rank 2 has one of the following structures: 

(1) A=As@Ah (2) A=As@Ah®Ah, (3) A=AS@AJ-, 

where As is a self-adjoint operator; At is an irreducible operator with non-hermitian 
rank 2; Ah and Ah are irreducible operators with non-hermitian rank 1; Aj is 
unitarily equivalent to V<g>I2 (V, I2: operators in Theorem 4). (1) and (2) arise 
in the case when the projection E contains a minimal projection of dimension 1, 
and (3) arises in the case when the projection E is a minimal projection. 

An operator A with non-hermitian rank 3 has one of the following structures: 
(1) A=As®At, • (2) A=As®Ah®Ah, 
(3) A —As(BAji © Ajx ®Aj2, (4) A=As®Ak, 

where As is a self-adjoint operator; At is an irreducible operator with non-hermitian 
rank3; Ah, AJi, Ajz, and Aj3 are irreduciblesoperators with non-hermitian rank 1; 
Ah is a primary operator with non-hermitian rank 2 (cf. Theorem 4); Ak is unitarily 
equivalent to in Theorem 4. (1), (2) and (3) arise in the case when the pro-
jection E contains a minimal projection of dimension 1. (4) arises in the case when 
the projection £ is a minimal projection. 
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4. Spectral properties 

The basic properties of the spectrum of an operator A with completely conti-
nuous imaginary part are known. From M. S. BRODSKII—M. S. LIVSIC [2], we 
know that every non-real point of the spectrum of the operator A is a proper value 
and its proper subspace is finite dimensional. Moreover, we know that the set of 
non-real points of the spectrum of the operator A is at most countable and a limit 
point of this set is on the real line. If we denote by G(A) (resp. OP(A)) the spectrum 
(resp. the point spectrum) of A, Theorem 1 yields that A(A) and TRP(A) are divided as 
follows: 

A (A) = A(A0)U(U<R(4)Y c a s e J ' s finite a n d FFP(A0) = AP(A)U( U o>(Y4,)). 
iil iil 

Hence, in studying the spectrum of our operator, we may concentrate our attention 
on that of our primary operator. In this case we should point out from Theorem 3 
that the (resp. point) spectrum of a primary operator of this class coincides with 
the (resp. point) spectrum of an irreducible operator of the same class. Here is 
a significant and interesting problem: how does the algebraic simplicity of a primary 
operator effect its spectrum? Although many questions about it are left to be settled 
in the future, we shall have some comments on this subject. The following lemma 
may be viewed as a step toward our desire. 

L e m m a 3. Let A be a non-scalar primary operator. Then every proper value 
of A lies in the open disc D = {).: \).\ < ||/f ||}. 

P r o o f . Suppose that A has a proper value A with |A | = | | y 4 | | . Then there exists a 

non-zero vector <p such that A<p = A<p. Put B=-^A. Then |[2?|| = 1 and B(p = (p. 

From this fact it follows that B*cp = <p (cf. [7: Chap. X, No 143]). Consequently, 
A*(p = X(p. Thus the proper subspace Jt corresponding to A reduces A. That is, 
the projection P on J( commutes with A. This means that P belongs to the com-
mutant R(A)' of /?(/!). As we have already seen in Proposition 1, P is the projection 
in R(A). Hence P belongs to the center R(A) f l R(A)'. Since the non-zero projection 
P is not the identity operator by the assumption, this contradicts the fact that A 
is a primary operator. 

Combining the known result mentioned above and Lemma 3, we can conclude 
the following 

P r o p o s i t i o n 3. Every non-real point of the spectrum of a non-scalar primary 
operator A with completely continuous imaginary part lies in the open disc 
D = {X: |A|<M||}. 

Now let us consider an operator A with non-hermitian rank 1 whose spectrum 
is real. We shall show that our decomposition (Theorem 1) induces the spectral 
decomposition of A in the sense that A is decomposed by a central projection in 
./?(J4) into the form A = 5 © C where B (resp. C) has a pure point (resp. continuous) 
spectrum.3) 

3) If <r(A) coincides with the point (resp. continuous) spectrum of A, we say that A has a 
pure point (resp. continuous) spectrum. 
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L e m m a 4. Let A be a primary operator with non-hermitian rank 1 and let X be 
•a real scalar. Then the range of A—XI is dense in H. 

P r o o f . Let Ji be the range of A —XI and let Jf be the orthogonal complement 
•of Ji. Then, for each pair of vectors <p, ip in J f , we have 

((A - A*)(p, \j/) = ([(A -XI) - (A* - XI)]<p, {¡/) = 

= ((A-XI)cp,il,)-(<p,(A-XI)il,) = 0. 

:Since K=\m(A)H is one dimensional, the subspace [(A — A*) J f ] must be K or 
{0,}. Therefore, Jf is contained in HQK. Keeping in mind that A\j/ =A*\]/ for every 
vector i j / ^ H Q K , we have A<p=A*cp for every vector cp£Jf. This implies that Jf 
reduces A since Jf is invariant by A* — XI, i.e., A*. In other words, the projection 
P on Jf belongs to R(A)'. As we have seen in the section 2, A is irreducible. Thus 
P must be I or O. But obviously P^I, and so P = 0, that is, Jf = {0}. This states 
that Ji is dense in H. 

L e m m a 5. A primary operator A with non-hermitian rank 1 does not have 
•a real proper value. 

P r o o f . Suppose that A has a real proper value X. Let Ji be a proper subspace 
of A corresponding to X. Then it is immediately seen that Ji is orthogonal to the 
range of A* — XI. Since A* has also the non-hermitian rank 1, the range of A* — XI 
is dense in H by Lemma 4. Thus Ji contains only the zero vector, which is contra-
diction. 

P r o p o s i t i o n 4. Let A be an operator with non-hermitian rank 1 whose spectrum 
is real. Then A is decomposed by a central projection R in R(A) into the form: 

A — Ar(BAi_r, 

where AR has a pure point spectrum and Ar_R has a pure continuous spectrum. 

P r o o f . By Theorem 1, Corollary 2, A is decomposed by a central projection 
P in R(A) into the form: 

A == Ap ® A j _ p, 

where AP is a self-adjoint operator and Aj_P is a primary operator with non-
hermitian rank 1. Furthermore, as is well known, the self-adjoint operator AP is 
decomposed by a projection R in R(AP) (which is a central projection in 7?(/<)) 
as follows: 

AP = AR® AP_ R, 

where AP has a pure point spectrum and AP_R has a pure continuous spectrum. 
Since the spectrum of AI_P is real, the preceding lemmas mean that A,_P has a 
pure continuous spectrum. Consequently, we can easily see that R = A P _ R ® A r _ P 
has a pure continuous spectrum. 
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