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The very first and perhaps most famous theorem about path problems of
oriented graphs is that of L. REDEI, which reads as follows: ”Every complete oriented
finite graph has a hamiltonian path”. (See [1], [2], [3], [4].)

However, this fails in the case of infinite oriented graphs, as it is pointed out
in the Russian edition of the book of BERGE ([5] p. 123).

This paper gives a sufficient condition for an infinite complete graph to have
a (one-sided infinite) hamiltonian path. The notations and definitions are those
of C. BERGE. In this paper the term graph means always an oriented graph. Parallel
edges (with coinciding or converse orientation) and selfloops are not permitted.
Following BERGE’s notation, we identify a graph with the ordered pair (X, I') where -
X is the vertex set of the graph and I' is that multi-valued mapping of X into X
which maps a vertex a into those vertices b for which an edge ab exists. If AS X
then let I'A consist of those vertices & for which a vertex a exists satisfying a€ 4
and berla. _

A sequence of vertices (aq, @y, ..., a,) such that (a;, @;4,), (i=0,1,...,v—1)
is an edge, is a path of length v.

If such a path exists, we say that a, is a consequent of order v of a, and we use
the notation @, €Iay. (The number v is not unambigously determined by a, and
a, but it depends on the path (a,, @, ..., a,). To the given vertices a, b there may
be found several numbers v such that b€Ia.) ' '

The set ['a is defined by
Fa={a}Uraurzay....

The path (ag, @y, ..., a,) is elementary if its vertices are pairwise different.
An elementary path (ao, @, ..., @) is called hamiltonian if it contains all vertices of X.

A path (ay, a,, ..., a,) where ay=gq, and a,, a,, ..., @, are pairwise different
is a circuit. The definition of hamiltonian circuits is obvious.

A graph is strongly connected if for every pair of vertices a, b (a=b), b is a
consequent of a. A graph is complete if for every pair of vertices a, b, (a #b) we
have either a€I'b or b Ta. .

If A is a subset of X the graph (4, I )) is a subgraph of (X, I') where I' jx =T'x N A.
The definition. of I'y and I, is obvious. For brevity, we shall often use the notation
(A4, T) instead of (4, I',).
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A hamiltonian path of the infinite graph (X, I') is a sequence of pairwise distinct
vertices of (X, IN), (x4, X, X3, --.), X;€X for which

a) x;€lx;_,
b) {xO’Yl"} X.

Let (X, I') be arbitrary (finite or infinite) graph and let M be a subset of X.

We denote by D(M) the set of all-points x of M for which we have [yx=M.

It is easy to see, that if D(M)#@ then (D(M), I'pyy) is strongly connected.
Indeed, let (a, b) be an ordered pair of vertices of D(M). Then there exists a path
in (M, FM) fromatobsayp=(a, x;, X5, ..., X4, b). Wehave b Fyx, (i=1, 2, ..., k).
Pyb=M, so [yx;=M ie. xiED(M)-(t_l 2,...k), and the path p passes in
(D (M), r D(M))'

Be (X, I') an infinite complete graph. We denote by M the family of all subsets
M of X for which {X\ M| < oo.

Theorem The following conditions are together sufftc:ent for (X, T) to have
a hamiltonian path:
Cl. X is countable;

C2. For an arbitrary subset Q ¢ MM there exist a set NS Q, Ne¢IW and a vertex
 de D(N) such that one can find a hamiltonian path in the finite g graph (X\N)U {d}, T")
which terminates in d;

C3. There exists a subset PCX,0<|P|<o with the following properties:

a) The set of the points x of X for which PN Ix=@ is finite;

b) For any subset M€M we have |D(M\P)| <o,

Before proving the theorem we make some remarks’ about the conditions.

I. The conditions Cl and C2 are also necessary.

This is trivial for CI.

Now, assume that there exists a hamiltonian path in (X, I'), say (vo, Xy, ...).
Let QcMiie. ]X\Q|<oo let X\ Q consist of the vertices x;,, x;,, ..., X;,. Denote
by k the maximum of i, i,, ..., i,; the section (x4, x, ..., X;) of the mﬁmte hamilton-

ian path (xo , X1, ...)contains all the points x;, , x;,, ..., x;, . Choose N=X\{xo, x;,.
o Xeh; d=x40, €D(N) It is easy to see that condmon "C2 is fulflled.

A counterexample will show that condition C3 is not necessary. Let us define
a graph (X, I') as follows:

X={1,2,3,4,..}

and for any twoA vertices ‘i, J,JjeEX; i < ),
Jery, i j-i=1,
i€r;, if j—i>1

(X, ') has a hamlltoman path (1,2, ...) but, as it is easy to see, condition C3 does
not hold. : :

II. QeM, Q' :Q zmply Q' eM. (Obvious.)
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‘Lemma. Consider an infinite complete graph (X, I') which satisfies the con-
ditions Cl-and C2. Then FacM for an arbitrary vertex a€ X.

Proof: Let X\ {a}=0. Evidently Q ¢Mt. Thus, making use of C2, there exist

a subset N, N¢M, d€ D(N) and a hamiltonian path of ((X\N)U{d}, I') which

]}asses through a and terminates in d. So Fa2d2 N and by Remark II we have
acM. :

Proof of the theorem

1) Let (X, I') be an infinite complete graph for which the conditions CI,
C2, C3 hold. Denote by P* the set of all points x of X for which PN x#=@. Then
PE P*, and, by C3 a), we have |P*|<co. '

2) Since X\P*¢M, we can use condition C2. There exist N, d such that
NS X\ P*, NeM, de D(N) and one can - find a hamiltonian path = in. ((X MU
U {d}, I') which terminates in d. ‘ '

3) pePr, xc X\ P* implies xcIp.

Proof. (X, I') is complete, hence for the pair of vertices p, x we have either
p€lx or x€Ip. But p€I'x implies x ¢ P*, which is a contradiction.

4) Take Q=X(NUP*). We have |Q|<o because NcIM. According to
what has been said above, the hamiltonian path 'n of ((X\N)U {d}, I') consists
of two sections, the first of which goes through P* and the second through Q U {d}i.e.:

ﬂ:-(Pl,PZ, s Pns 15425 oo Qs d)’ piEP*’ qiEQ’ deD(N)

5) Let r be an arbitrary point of N\.(N). Then r € I'n for any point 7€ D(N)
because, on account of the definition of D(N), r€ N, n€ D(N), n€ I'r imply [yr=N,
i.e. r€ D(N). , , : '

'Denote by R the set of all points r of N for which ['rNQ=@.
6). |Rl<<o. ‘

Proof. Q=@ implies R=0 i.. |R|=0<< and the statement is true. So it
may be supposed that 0<|Q|=m. We have X\ P*¢M and (X\P*)NP=@ thus
making use of C3 b) we obtain |D(X\ P*)| < oo, On the other hand, D(X\ P*)= &
because g, € D(X\ P*) (g, is the first point of the hamiltonian path = in Q; see 4).
Indeed, g€ I'q, for any point ¢,€ Q and for an arbitrary point n€ N, n€ ['q, because
of defq,, de D(N). o :

Denote D(X\ P*) by D’. From the definition of D’ it follows that ¢;€ D" and
i<j imply q;€D’, so D’ contains a whole section (¢,, g3, ..., ¢,) of ©. Suppose
ky<m ie. QN\D'#@. Let D” =D(X\(P* UD")). Then |D”|< = because of C3 b),
and D" =@ because q,,+, €D”. Assuming that ON\(D'UD") =@ we can continue
this procedure and so we get the subsets D/, D”, ..., D®, ... where

DI+D = p(X\(P*UD'UD"U...UDW)).
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Since |Q| < e, this procedure comes to an end, at the kth step, say:
. k

QS UDD; IDP| <o, DYNQ=B (i=1,2,..., k).
1

k
In order to prove our statement it is sufficient to show, that RS |JD?. Let r€R

1
be an arbitrary point of R. By the definition of the subset R, we have ['rNQ = @.
There exists an index i such that D® N [r<@; this implies r¢ DD,

7) Denote Q UD(N)URby D,. We have 0<|D, | < oo. (D, @ because d€ D,.)
d'eD,,peP* xe X\(P*UD,) imply d'€lp, x€lp; xe€eId.

Proof. In 3), we proved d" € I'p, x € I'p. Thus, we have only to show that xe I'd’.

We have D, =QUR\UDN). If d’€Q or d’"€ R then d’¢I'x would imply x¢ R
which is impossible. The case d’ € D(N) was examined in 5). '

8) In the foregoing we have used only the following three properties of P*:

a) |PF|<e

b) PCP*

c) pePr* xc X\ P* imply .xelp.
According to 6) and 7) the subset P* U D, also possesses the properties a), b) and c).
Taking P**=P*D,, the above construction (from 2) to 7)) can be applied to
P** instead of P* and we get the subset D,. The iteration of the procedure leads

to the sequence of subsets Dy=P*, D, D,,..., D,,..., where D; is derived
from the construction applied to '

PE-D=p+xD, UDZU.-.UD.'—I-

Obviously the subsets Dg, D,, ... are pairwise disjoint. From the construction it
follows that a€D,,beD,, k<[ imply beéTa (k=0,1,2,...).

9) All the graphs (Do, IN), (D, I, (D,, I, ... are non-empty finite complete
ones, and so, by the theorem of REDEI, they have hamiltonian paths

p0=(X0,X|, cery xn0)9
pl:(xmﬂ-l’ ...,X,” b
p2=(xn1+l’ ...,X,,Z),

By linking the paths pg, p,, p,, ..., we get a hamiltonian path (xo, X, ..., X0, Xyo415-++)
in the graph {U D,, F). '
0

10) To prove our theorem we have only to show that |J D,=X. From the

. 0 .
construction of the subsets Dy, D,, ... it follows that z€ X, I'zN D, =@ imply
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3 - .
z€ |J D;. Now suppose z¢ X\ | D;. According to the last remark, this means that
0 0 . : :
k .
fz\ﬂ(U D,-) =@ (k=0,1,2,..) which contradicts our Lemma.
0 - . -
» * ok Kk

The author is indebted to DRr. A. ApAM for his valuable remarks and sugges-
tions concerning this paper. '
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