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The very first and perhaps most famous theorem about path problems of 
oriented graphs is that of L. REDEI, which reads as follows: "Every complete oriented 
finite graph has a hamiltonian path". (See [1], [2], [3], [4].) 

However, this fails in the case of infinite oriented graphs, as it is pointed out 
in the Russian edition of the book of BERGE ([5] p. 123). 

This paper gives a sufficient condition for an infinite complete graph to have 
a (one-sided infinite) hamiltonian path. The notations and definitions are those 
of C. BERGE. In this paper the term graph means always an oriented graph. Parallel 
edges (with coinciding or converse orientation) and selfloops are not permitted. 
Following BERGE'S notation, we identify a graph with the ordered pair (X, F) where 
X is the vertex set of the graph and F is that multi-valued mapping of X into X 
which maps a vertex a into those vertices b for which an edge ab exists. If A^X 
then let TA consist of those vertices b for which a vertex a exists satisfying a£A 
and b ^ r a . 

A sequence of vertices (a0, at, ...., av) such that ( a ; , a i + 1 ) , («' = 0, 1, ..., v— 1) 
is an edge, is a path of length v. 

If such a path exists, we say that av is a consequent of order v of a0 and we use 
the notation av£rva0. (The number v is not unambigously determined by a0 and 
av but it depends on the path (a0, alf ..., av). To the given vertices a, b there may 
be found several numbers v such that b 6 rva.) 

The set ta is defined by 

ta = {a}UraUr2aU... . 

The path (a0, at, ..., aj is elementary if its vertices are pairwise different. 
An elementary path ( a 0 , a , , ..., ak) is called hamiltonian if it contains all vertices of X. 

A path (a0 , a , , ..., ak) where a0 = ak and a0, a{, ..., a k_, are pairwise different 
is a circuit. The definition of hamiltonian circuits is obvious. 

A graph is strongly connected if for every pair of vertices a, b (a ^ b), b is a 
consequent of a. A graph is complete if for every pair of vertices a, b, (a ^ b) we 
have either a 6 Tb or b £ Ta. 

If A is a subset of A" the graph (A, fA) is a subgraph of (X, F) where rAx = Tx OA. 
The definition, of rA and t A is obvious. For brevity, we shall often use the notation 
(A, r) instead of (A, FA). 
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A hamiltonian path of the infinite graph (X, f ) is a sequence of pairwise distinct 
vertices of (X, F), (x0 , x , , x2, •••), x ; 6 X for which 

a) x i t r x i - i 

b) •{*„, * , , . . . } = AT: 

Let (X, F) be arbitrary (finite or infinite) graph, and let M be a subset of X. 
We denote by D(M) the set of all points x of M for which we have tMx = M. 
It is easy to see, that if D ( M ) 7 i 0 then (D(M), r D ( M ) ) is strongly connected. 

Indeed, let (a, b) be an ordered pair of vertices of D(M). Then there exists a path 
in (M, rM) from a to b sayp = (a, Xj, x 2 , ..., xk, b). We have b^tMX; ( / = 1, 2, ..., k). 
tMb = M, so rMxt = M i.e. x ; ( E D ( M ) (i = l , 2 , . . . k), a n d the p a t h p passes in 
(D(M), rD(M)). 

Be (X, r) an infinite complete graph. We denote by 931 the family of all subsets 
M of X for which \X\M\ < <». 

T h e o r e m . The following conditions are together sufficient for (X, F) to have 
a hamiltonian path: 

C I . X is countable; 
C2. For an arbitrary subset Q £9Jt there exist a set NQQ, N£SM and a vertex 

dZD(N) such that one can find a hamiltonian path in the finite graph ((X\N) U {d}, r ) 
which terminates in d; 

C3. There exists a subset Fc:X,0c\P\<^ with the following properties: 
a) The set of the points x of Xfor which PC\Px9i0 is finite; 
b) For any subset M £ 9 J i we have \D(M\P)\ < °o. 

Before proving the theorem we make some remarks about the conditions. 
I . The conditions C I and C2 are also necessary. 
This is trivial for CI. 
Now, assume that there exists a hamiltonian path in (X, T), say (x0 , x , , ...). 

Let g£9Jt i.e. let X\Q consist of the vertices xit, xh, ..., xin. Denote 
by k the maximum of iY, i2, ..., i„; the section (x0 , xt, ..., xk) of the infinite hamilton-
ian path(x 0 , x t , . . . ) contains all the points xh, xh, ..., x i n . Choose A' '=A r \{x0 , x x , . . . 
..., xk}; d=xk+ [ £D(N). It is easy to see that condition C2 is fulfilled. 

A counterexample will show that condition C3 is not necessary. Let us define 
a graph (X, F) as foliowi: 

X= {1, 2, 3, 4, ...} 

and for any two vertices i,j (i, j £ X; i <j), 

j t r „ if j - i = \ , 

i t r j , if j - i > l . 

(X, r) has a hamiltonian path (1,2, ...) but, as it is easy to see, condition C3 does 
not hold. 

I I . Qtm, Q'ziQ imply Q'tWl. (Obvious . ) 
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L e m m a . Consider an infinite complete graph (X, F) which satisfies the con-
ditions C I and C2. Then Pa £ 9Ji for an arbitrary vertex a£ X. 

P r o o f : Let A ' \{a} = g . Evidently Thus, making use of C2, there exist 
a subset N, N£9)1, cl£D(N) and a hamiltonian path of ((X\N)U {d}, f ) which 
passes through a and terminates in d. So ta^td^N and by Remark II we have 
f a t m . 

Proof of the theorem 

1) Let (X, r) be an infinite complete graph for which the conditions CI , 
C2, C3 hold. Denote by P* the set of all points .v of X for which P fl tx ^0. Then 
P ^ P * , and, by C3 a), we have |P* |<o° . 

2) Since X \P* we can use condition C2. There exist N, d such that 
NQX P*, N<=m, d£D(N) and one can find a hamiltonian path n in ( ( X \ A 0 U 
U {d}, r) which terminates in d. 

3) p£P*,x£X\P* implies x^Tp. ' 

P r o o f . (X, F) is complete, hence for the pair of vertices p, x we have either 
p £ Fx or .y £ Tp. But p 6 r.x implies x£P*, which is a contradiction. 

4) Take Q = X\(NUP*). We have because N£№1. According to 
what has been said above, the hamiltonian path n of ((X\N) U {d}, F) consists 
of two sections, the first of which goes through P* and the second through Q U {*/} i.e.: 

n^ip^pz, ...,pn,ql,q2, ...,qm,d)-, pi£P*,qi£Q,d£D(N). 

5) Let r be an arbitrary point of N\D(N). Then r£Tn for any point n £ D(N) 
because, on account of the definition of D(N), r£N, n £ D(N), n € Fr imply PNr = N, 
i.e. r£D(N). 

Denote by R the set of all points r of AT for which /V 0 0 7^0. 
'6), | i?|<co. 

P r o o f . g = 0 implies R = 0 i.e. j7?| = 0 < = ° and the statement is true. So it 
may be supposed that 0<\Q\=m. We have JTvP*€S)t and ( X \ P * ) n P = 0 thus 
making use of C3 b) we obtain \D(X\P'*)\<<=<,. On the other hand, D(X\P*) ^ 0 
because qi £ D(X\P*) (q1 is the first point of the hamiltonian path n in Q ; see 4). 
Indeed, qi£tq1 for any point q^Q and for an arbitrary point n£N, n£fqi because 
of d t f q t , d£D(N). 

Denote D(X\P*) by D'. From the definition of £>' it follows that qj £ D' and 
J<=/ imply qt£D', so D' contains a whole section {qA, q2, ..., qkl) of n. Suppose 
k^m i.e. Q\D'^0. Let D" = D(X\(P* U £>')). Then because of C3 b), 
and D" ¿¿0 because qkl + 1£D". Assuming that Q\(D' U D") ^ 0 we can continue 
this procedure and so we get the subsets D', D", ..., D(i\ ... where 

Z>(i+1> = D(X\(P* UD' UD" U . . . U£ ( i ))) . 
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Since \ Q \ t h i s procedure comes to an end, at the &th step, say: 

QQ U£>(0; |D(i>|<oo, DC) (/=1,2,... , k). 
i 

k 
In order to prove our statement it is sufficient to show, that R Q U ^ " ' • 

i 
be an arbitrary point of R. By the definition of the subset R, we have f r fl Q 0 . 
There exists an index /' such that D(i) f~)Pr?£0-, this implies r£D(i). 

7) Denote Q U D(N) U R by Dx. We have 0 < \DX | < oo. (£), ^ 0 because d6 Z),.) 

d'£Di,p£P*, x£X\(P* UDX) imply d'^Tp\ x£Tp; x^Td'. 

P r o o f . In 3), we proved d' £ip, x£ Tp. Thus, we have only to show that x £ rd'. 
We have Dx= Q U R U D(N). If d' £ Q or d' £ R then d' £ f x would imply x € R 

which is impossible. The case d' £ D{N) was examined in 5). 

8) In the foregoing we have used only the following three properties of P*: 

a) ' |P* | < °o 

b) P<^P* 

c) p£P*, x£X\P* imply x £ / > 

According to 6) and 7) the subset P* UZ>, also possesses the properties a), b) and c). 
Taking P**=P*(JDX, the above construction (from 2) to 7)) can be applied to 
P** instead of P* and we get the subset D2 • The iteration of the procedure leads 
to the sequence of subsets D0 = P*, D , , D2, ..., D{, ..., where Z), is derived 
from the construction applied to 

P ( i - i ) = P * { j D i (J Z)2 U ... U D ; _ , . 

Obviously the subsets D0,Dl, ... are pairwise disjoint. From the construction it 
follows that a£Dk,b£D„ k<l imply b^Ta (k = 0, 1, 2, ...). 

9) All the graphs (D 0 , T), (Dx, /"), (D2, T), ... are non-empty finite complete 
ones, and so, by the theorem of REDEI, they, have hamiltonian paths 

Po = ( - v0i A'l > •••> A"n0)> 

Pi = (Xn0 + i > • • •> 

Pi = (Xn,+ I ) •••> *n2)> 

By linking the paths p0,px,p2, ..., we get a hamiltonian path (x0 , x , , . . . . x„0, x„ 0 + , , . . . ) 

in the graph ( j j A . f j . 

10) To prove our theorem we have only to show that U Dj — X. From the 
0 ^ 

construction of the subsets D 0 , £>,, . . . it follows that z £ ^ , Г г С \ О к ^ 0 imply 
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k 
z£ U A-- Now suppose Z ( E X \ U A - According to the last remark, this means that 

o o 

Fz, H ^ 1J = 0 (A: = 0, 1,2, . . , ) which contradicts our Lemma. 

# # * • 

The author is indebted to D R . A . ÁDÁM for his valuable remarks and sugges-
tions concerning this paper. 
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