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1. Introduction 

Let 

m = Zcnzx« 
i 

be an entire function of finite order Q, and let the sequence {?,„} satisfy the density 
condition: 

(1 .1) A „ + 1 - A„ ^ P . = 

P Ó L Y A ( 1 ) has proved (under a somewhat less restrictive density-condition) x) the 
following result: 

T h e o r e m A. [1, Satz VII, p. 625] If f ( z ) is of mean-type, and \f(z)\ is bounded 
on the positive real axis, then 

(1.2) ' ' A-e^i. 

Actually the assumption that / ( z ) is of mean-type can be omitted [3, Theorem 1]. 
It seems very likely that if | / (z) | is bounded on any curve joining 0 and 

conclusion (1.2) still holds. However, we can only prove the following weaker 
result: 

T h e o r e m 1. If T is a continuous curve without self-intersections joining 0 and 
oo, and | / (z) | is bounded on r, then 

/ 

(.1.3) 
71 

C o r o l l a r y . If A-q< - 4 , / ( z ) has no finite asymptotic value. 7T 

' ) In a recent paper [2], A. EDREI has replaced the Pôlya density condition by a more precise 
one. 

16 A 
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2. Statement and proof of Lemmas 

We use the notat ions: 

Mir) = max \f(reif')\ ; M(r, a, ¡i) = max \f(rei0)\ ; fi(r) = max \c„\r". 
OSOSln as is / ) n 

L e m m a 1. If the condition (1. 1) is satisfied, and if 

( 2 . 1 ) / ? - a > 2ti/1, 

then we have for entire functions of finite order, that 

(2. 2) log M(r, a, p) ~ log M(r). 

P r o o f . According to the Wiener—Ingham inequality [4], 

2K P 

f |f(rew)\2d-d<K(*,p,A)-J\f(rei0)\2d$. 
0 a 

Thus 
2n /9 

n2(r)^ f \f(rei0)\2d$<Kf \f(reiB)\2dd S K(P~a)M2(r, a, P), 
0 a 

(2. 3) n(r) =1 KM2(r, a, P), log n(r) ^ C + log M (r , a, p). 

On the other hand it is well known [5, p. 34] that for entire functions of finite order : 

(2 .4) \ognir)~\ogM(r). 

(2. 3), (2. 4), and the trivial inequality 

M(r, o c , P ) ^ M ( r ) 
immediately give (2. 2). 

L e m m a 2. Let D0 be the unit disc, slit along the positive real axis, and let o)0(z) 
be the harmonic measure of O^x^l in D0. Then 

r . v 
- s i n -
r 2 

(2 .5) c o t | | a , 0 ( r e » ) } = ^ 

L e m m a 3. Suppose that m(Ji) — max | / (x ) | and co0(z) is defined as in the 
OSiSR 

previous lemma. Then we have: 

(2. 6) log \f(re">)\ ^ co0 log m(R) + | l - eo0 e '8)} log M(R). 
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L e m m a 4. I f f ( z ) is of lower order q and o ' > q, then there is a sequence: R„ -
such that 2) -

(2. 7) Rn log ^ S Q' log M{Rn). 

P r o o f . Suppose that for r ^ r ' 

'' j ^ r log M ( r ) | > q' log M(r). 

| l o g M i t ) r d t 

r 

Then 

u t log M(t) 
log log M{r) — log log M(r') = I - Y — dt>e' I - e ' ( l o g r - l o g O . 

which is impossible. 

ljm p 5 - ^ 5 > 5 i 
^ log r 

3. Proof of Theorem 1 

Suppose that {/?„} is the sequence defined in Lemma 4 and that Rneix is the 
first intersection of f and the circle \zn\=R„. Without loss of generality we can 
assume that a = 0. 

We have assumed that / ( z ) is bounded on f , without loss of generality we can 
assume that | / ( z ) | S l on T. _ 

If f ( z ) = / ( 7 ) we find that | / (z)/(z)l M(R) on f and also on T which is the 
reflection of T into the real axis. The earlier intersections of T with the real axis 
part i t ion 0 = .Y = Rn into a finite number of segments. (If there is no intersection, 
there is only one segment.) Each segment is the bisector of a domain bounded by 
an arc of T and an arc of I \ Hence, by the maximum principle we have: 

l/WI2 - !/«/(*) I ^ M(R), 

(3. 1) m{R) = max \f(x)\ S )>M(R). 
O S J S R 

Since r ~ log Mir) = ~rc~— log M(r) is an increasing funct ion of r, the appli-
dr d log r 

cation of Lemma 4 gives for 0 < h S1: 

l o g M W - b g M f e ^ o s ^ | | l o g s l o g M ( i ? n ) . 

2) The left-hand side of (2. 7) may have isolated discontinuities but this does not affect the 
argument. 
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Hence, writing r„ = R„e~h, we have. 

n l o g ^ C O _ , 

From (2. 6), (3. 1), and (3. 2) we obtain 

- log \f(r„ei!')\ S co0 e ' j + ( l - a>0 log M(Rn) = 

= J l - - i co0(e-"eíö)j log M(Rn) p | l - ^ £y0(e-V»)J (1 - g'h)~1 log M(rn). 

In view of (2. 5), co0(e~''e'0) is a decreasing function of í) for and hence 
f o r O < ¿ T < l : 

(3 .3) log M(rn,-ná, + nA') ^ j l - jü)0(e-"e '^ ')J( l -ö ' / , ) -MogM(O. 

On the other hand, if q" q' and A'^-A, we obtain f rom Lemma 1, that for n ^ n 0 

(3. 4) log M(r„) ^ log M(rn ,-nA',+ nA'). 

From (3. 3) arid (3. 4) we conclude that 

(3. 5) log M(/„) ^ \ - Q " h ' 0 g 

cDoie-'^'"*') ^ 2g"h. 

Substituting the value of co0 f rom (2. 5) we obtain: 

cot (ne"h ) - ¡ — ^ sin -- A', 
2 - e - ' " 2 . n 

T Sin — 

(3. 6) 

sin J A's ^ (e''/2 — e~''/2) cot (ng"h) 3s y cot ng"h. 

Since: 
h . 1 

lim — cot ng h = -—— 
i,->o 2 ¿ng 

we have that for q'" and h<e0(g", (/"): 
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This is valid for every g"' q, A'^-A, hence: 

which proves (1. 3). 
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