Asymptotic values o
of entire functions of finite order with density conditions

By T. KOVARI in London (England)

1. Introduction

Let
f(2) = Z ¢,z

be an entire function of finite order o, and let the sequence {4, } satlsfy the density
condition: .

1
(1.1) Ant 1= —P—A

P6LYA (1) has proved (under a somewhat less restrictive densxty-condltnon) 1) the
following result:

Theorem A. [I, Satz VII, p. 625] Iff(z) is of mean-type, and if(z)[ is bounded
on the positive real axis, then

(1.2) ’ _ ' 40

)]
N

Actually .the assumption that f(z) is of mean-type can be omitted [3, Theorem 1].

It seems very likely that if |f(z)| is bounded on any curve joining 0 and oo,
conclusion (1.2) still holds. However, we can only.prove the following Weaker
result

- Theorem 1. If I' is a continuous curve without self intersections joining 0 and
o, and | f(z)| is bounded on I', then

. 1 -
1.3 ) 4.0 = —.
(1.3) . e=3
1
Corollary If 4-9< =, f(2) has no finite asymptotic value.
1) In a recent paper [2], A. EDREI has replaced the Polya density condition by a more precise

one.
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2, Statement and proof of Lemmas

We use the notations:

M(r)=orénasxhlf(re‘”)l; M(r, o, B) =£g>s_<ﬂlf(re”)l; ﬂ(r)=m§1XIc..lr"-

Lemma 1. If the condition (1. 1) is satisfied, and if
2.1 f—oa > 2n4,
then we have for entire functions of finite order, that
(2.2) log M(r, a, B) ~log M(r).

Proof. According to the Wiener—Ingham inequality [4],

2n f
[ e ad<K(a, B, 4)-[ | fre?)12 @,

Thus , ,
1w20) = [ 1fre®)2 do <K [ | f(re?)|? db = K(B—a)M?(r, a, ),
0 . x
(2.l3) wy = KM (r,a, ), logu@)=C+logM(r,a, p).

On the other hand it is well known [5, p. 34] that for entire functions of finite order:
2. 4) log u(r) «llog M(r).
(2.3), (2.4), and the trivial inequality

M(r, o, B)=M(r)
immediately give (2. 2).

Lemma 2. Let Dy be the unit disc slit along the positive real axis, and let wy(z)
be the harmonic measure of 0=x=1 in Dy. Then

‘ . N iyl _ 2Vr b
2.5) cot{2 wolre )}— T, Sin5 -

Lemma 3. Suppose that m(R)= max |f(x)| and wo(2) is defined as in the
0=x=R

previous lemma. Then we have:

(2.6)  log|f(rei®)| = w, [% ew] log m(R)+ {1 —w, [i% e”’]} log M (R).
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Lemma 4. If f(z) is of lower order ¢ and ¢’ = @, then there is a sequence: R, ~
such that ?) A ,

@2.7) R, {_i log M(r)} = o' log M(R,).
dr r=R

=Hn

Proof. Suppose that for rei

r {% log M(r)} > ¢’ log M(r).
Then

—d— log M(t) dt
loglog M (r)—loglog M(r') = / W t > g'/ - = ¢’ (logr—logr’),

lim loglog M(r)

> 4
e logr ¢=0

- which is impossible.

3. Proof of Theorem 1

Suppose that {R,} is the sequence defined in Lemma 4 and that R,e* is the
first intersection of I' and the circle |z,| = R,. Without loss of generality we can
assume that a=0.

We have assumed that f(z) is bounded on I', without loss of generality we can
assume that If(z)|<1 on I.

If f(z) =f(Z) we find that | f(z)f(z)l<M (R) on I' and also on I which is the
reflection of I' into the real axis. The earlier intersections of I with the real axis
partition 0=x=R, into a finite number of segments. (If there is no intersection,
there is only one segment.) Each segment is the bisector of a domain bounded by

an arc of I' and an arc of I'. Hence, by the maximum principle we have:

@I = @] = ME),
3.1 m(R) = max ff(x)f VM(R).
Since r(%]og M(r) = a"—lodg—r
cation of Lemma 4 gives for 0 <h=1:

log M(r) is an increasing function of r, the appli-

— o= h
log M(R,) L"gM(R"e )ékn{diilogM(r)} =o' log M(R)).
x=R

=8n

2) The left-hand side of (2. 7) may have isolated discontinuities but this does not affect the
argument.
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Hence, writing r,=R,e~", we have.

logM(r,) -
fog MRy =1 "

From (2. 6), (3. 1), and (3.2) we obtain

(3.2)

- log |f(r,e?)| = {1 W4 (f e’”] [1 — Wy [% e”)]}log M(R,) =

= {1 - % coo(e"’ei")} log M(R,) = {1 - % a)o(e"’ei”)} (1= h)~"log M(r,).

In view of (2. 5), woe="e?) is a decreasing function of # for 0=4%=n, and hence
for 0<4'<

(3.3) log M(r,,—d,+74') s{ —%coo<e—"efw')}<1—e'h>-1 log M(r,).
On the other hand, if ¢” = ¢’ and 4’> 4, we obtain from Lemma 1, that for n§n§

3.4 log M(r, ) = Z log M(r,, —nd’, +nd). -
From (3. 3) and (3. 4) we conclude that

[ — l wg(e"eind
(3. 5) log 'M(rll) é 1 — Q”h log M(r"),

wo(e~"e") = 207 h.
Substituting the value of w, from (2.5) we obtain:

—hi2
cot(ng”h) = z—f—— n A’
.(3.6) :
: T ’ 1 2 {2 ” h ” ,
sin 5 4 = 3 (e"? —e-M%)cot (" h) = > cotmo” h.
Since: '

lim h‘cotn “h = - !
ho0 ¢ = one”

we have that for ¢” =" and h<egy(o”, 0¢”):

’ 4 1 o 1
EA 2sm2A 07 gA%nz..
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This is valid for every 9” =9, 4’= A4, hence:

1
g-4.= '7?2‘

~which proves (1. 3).
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