. An embedding theorem for some countable groups

By L. G. KOVACS and B. H. NEUMANN in Cinberra (Australia)

.Every countable soluble group can be embedded in a soluble 2-generator group,.
the solubility length increasing by no more than 2 in the process: this was shown
in [5]. We here extend this result to some of the transfinite generalizations of soluble
groups. The method of [5] has to be modified to do thrs, ﬁrstly as in [4] and secondly
as in HALL’s paper [1]. ,

We use the followmg notation and termlnology An ascendmg series of sub-.
groups of a group G is a family {L,}o=,=, of subgroups of G indexed by the set of
ordinals less than or equal to the ordinal ¢, and such that L, ={1} and, for 0 <Z=¢

. . . <A
[Thls condmon ensures that L,=L, whenever u=4, and srmultaneously that L is
the union of its predecessors when 4 is a limit ordrnal] If each L, is normal in its .
successor L; ., or even in G, the series is called “normal” or “invariant”, respect-
1ve1y If for 0=/4<a : i

[L)+1:L}.+1] L,, oreven [G,L;.4] 'L;‘,

where [A, B] stands for the mutual commutator group of 4 and B then the series
is called “soluble” or *central”, respectively. A soluble series is necessarlly normal,
and a central series invariant,

If G has a soluble seriés with L,=G, then G is defined to be an SN* -group;.
if the soluble series can be chosen invariant, then G is an S/* ~group; if G has a

‘central series with L,= G, then G is a-ZA-group. The ordinal ¢ is called a “length” . .

of G — we do not assume it chosen minimal, and if G has SN*-length or Sr+-
length or ZA-length o, then it has also every greater length
We shall prove the following theorem.

Theorem. Every countable SI*-group G of lengrh o can be embedded ina 2-
© generator SI*-group of length o+2.

The method of proof yields rather more tha_n the. _theorem. To every countable
group G, we contruct a 2-generator-group -A which embeds it. The new feature of
H is. that its second derived group is contained in a certain interdirect power N,
of G. Let § be a class of groups which is closed under the operations of taking sub-
groups and taking interdirect powers like N,. (The reader has to refer to the first
paragraph of the proof: an interdirect power F is selected there, and N, is a restricted
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direct power of F.) It follows from our construction that every countable group in
& can be embedded in a 2-generator group whose second derived group is-in €. Some
examples of classes which satisfy the conditions on € are those of SN*-groups,
ZA-groups, locally nilpotent groups, locally finite groups, periodic groups, etc.
In particular, it follows that every countable SN* -group of length o lS embeddable
in a 2-generator SN*-group of length ¢ +2.

We mention an easy consequence of the thPorem 1tself

Corollary. There exist S *-groups that are not locally solub/e

This fact was pointed out by HALL in [2]; in the present context it follows by
applying the theorem to a countable insoluble S/*-group G, for instance to one-
of the characteristically simple groups of McLaIN [3]. :

Proof of the Theorem. In addition to the notation introduced above, we also
use the definitions and notation of [5]. In the complete wreath product P=G Wr C
of the given S/*-group G and an infinite cyclic group C generated by an element c,
. we single out a subgroup that contains. the restricted wreath product G wr C, but
‘is not much larger. In the base group of P, that is the cartesian power G€ consist-
ing of all functions on C to G, we single out those functions f that are constant for
all sufficiently large positive powers of ¢, and also for all sufficiently large negative
. powers of ¢, the constant in this latter case being 1; thus we consider those f to
~which there is an integer p =0, depending on f, such that

f(c") =1 when n<—p; 'f(c_“)=f(c”+‘) when n=p.

These functions form a subgroup Fof G¢, and Fis normalized by C. We put FC=Ppo.

The cartesian powers L§ are normal subgroups of G€, but they will not in general
form an ascending series in GC as the analogue of (1) may fail for limit ordinals 2.
However, if we put for 0=1=g,

M= FNILS,

so that M, consists of those functions € F that take values in L;, then each ‘M,
is a normal subgroup of M,=F and indeed of P°, and in fact {M,}y<,=, is an -
ascending soluble invariant series of P°. We omit the easy verification. If we put
M, . = PO, then the thus-augmented series shows that P is an S/*-group of length
o+ 1.

Next we take an infinite cyclic group B generated by an element b and form
the complete wredth product

; Q=P°WrB.

This contains in its base group P8 the direct powers N; of the M, that is the functions
on B to M, with finite support. These are easily seen to form an ascending soluble
invariant series {N,}osi=0+1 in Q.

"We now use the assumption that G is countable, and generate it by a family
{g:}ic; of elements indexed by the set of positive integers. To these we deﬁne
elements ;€ F by

ki(c") =1 when n<o0, k;(;") = gfl when 1 = 0.
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“Put g,y =[k;, cl; then
' gn() =g, g.(f") =1 when n 0.

Thus the family {g;,}:c, generates the coordinate subgroup G, of GC clearly G, = G.
Next we deﬁne an element a¢ P8 by .

ap)y=c, . a(bz‘) - ki Whe]’llE[

a(b") =1 when # is not a power of 2.

Let H be the subgroup of @ generated by a and b, and let 4 be the: normal closure‘

of a in H. Thﬂn A ls. generated by the conjugates

bn

a _any,

say, of a, -wheré n ranges over all mtegers ‘

" We now show that the derivéd group A" of A4 is contained’in N First we remark
that A’ is generated by all commutators [a,,, ao] and their conjugates under powers
of b; and as b normalizes N, ; it suffices to show that every [a,,, ao] lies in N,. Now
[a,, ao] is a function on B to P, and we compute its value at b": .

[ ao](b") = [a, (6", ao (V)] = [a(b""’") a(b")] ;

thls is 1 unless n—m and n are distinct powers of 2, say n—m = = 2/, n=29, with
i,j non-negative integers. In this case m = 2/ —2/, and to any one m there is at
most one such pair i, j. Thus the support of [a,,, a,] consists of at most one element
of B; it only remains to show that the one non-trivial .value of [a,, ao] if 1t has
one at all, lies in M =F. Now if m = 2/ 2! # 0, then . :

a ](b2’)— [a(b?), a(bﬂ)]—g—1 if i=0,
=gu if j=0 .
= [k; k] if i#0,j#0.

[a

m?

“These values all lie in" F, and it follows that A’<N as claimed.
Incidentally the above argument also shows how G can be embedded in H
for if we put, for i€l,
hi=lay -, ”o]
then
(b) =g, /1(b")—1 when n#l

hence the subgroup of H generated by {/1 },E, is 1somorph1c to G; and thus to G.
. Finally we put K; = HNN, for 0=2=o0. Then, as {N,}¢=,=, s an ascending
soluble invariant series of Q, also {K,}o=;=, is an ascending soluble invariant series

of H. Addmg sr1=A and K, ,,=H to this series, we obtain an ascending soluble -
invariant series that terminates with H itself; for as we have just seen, A’=N, and ~
thus also K., =K,; and obviously also H’= A. It follows that H is an SI*-group

of length. ¢ +2, and the Theorem is proved
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