On an interpolation theorem of Foias, and Lions

By J. PEETRE in Lund (Sweden)

Introduction

Let X be a locally compact space provided with a positive measure μ. We denote by $L_{\zeta}^{\mu}(E)$, where $1 \leqq p \leqq \infty$ and ζ is a positive μ-measurable function and E a Banach space (or, more generally, a field of Banach spaces over X; we do not consider this generalization here in order not to complicate the notation), the space of μ-measurable functions a with values in E such that $\|\zeta G\|_{E}$ is of μ-integrable p th power (if $p<\infty$) or μ-bounded (if $p=\infty$). We provide $L_{\zeta}^{p}(E)$ with the norm.

$$
\|a\|_{L^{p}(E)}= \begin{cases}\left(\int_{X}\|\zeta a\|_{E}^{p} d \mu\right)^{1 / p} & (\text { if } p<\infty) \tag{1}\\ \mu-\sup _{X}\|\zeta a\|_{E} & (\text { if } p=\infty)\end{cases}
$$

A function $H\left(z_{0}, z_{1}\right)$ defined, measurable and positive for $z_{0} \geqq 0, z_{1} \geqq 0$ is said to be an interpolation function of power p if and only if whenever π is a linear mapping from some space, containing $L_{\zeta_{0}}^{p}(E)$ and $L_{5_{1}}^{p}(E)$ as linear subspaces, into itself such that the restriction of π to $L_{\xi_{1}}(E)$ maps $L_{\tilde{V}_{1}}^{p}(E)$ continuously into itself $(i=0,1)$ then the restriction of π to $L_{H\left(\zeta_{0}, \zeta_{1}\right)}^{p}(E)$ maps $L_{H\left(\zeta_{0}, \zeta_{1}\right)}^{p}(E)$ continuously into itself. E. g. $z_{0}^{1-\theta} \cdot z_{1}^{\theta}$ with $0<\theta<1$ is an interpolation function of power p for any p (see example 2). In [1] Foiaş and Lions found a sufficient condition for a function to be an interpolation function of power p (in the above terminology). In the present note we give two constructions of interpolation functions of power p. in a sense dual to each other The first of these constructions leads to a condition essentially the one of Foiaş and Lions (see remark 2) while the second leads to a condition in a sense dual to the first one. It is also shown that under some auxiliary restrictions both constructions are equivalent. In particular this leads to a simple condition which is independent of p (see theorem 4).

The general ideas underlying these results were briefly discussed in [2] (cf. also [3]).

§ 1

Let us set

$$
\begin{equation*}
J(t, a)=\left(\|a\|_{L_{5}(E)}^{p}+t^{p}\|a\|_{L \xi_{1}(E)}^{p}\right)^{1 / p}, \quad a \in L_{5_{0}}^{p}(E) \cap L_{\xi_{1}}^{p}(E), \quad 0<t<\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
K(t, a)=\inf _{a=a_{0}+a_{1}}\left(\left\|a_{0}\right\|_{L_{5_{0}}^{p}(E)}^{p}+t^{p}\left\|a_{1}\right\|_{L_{1} p_{1}}^{p}\right)^{1 / p}, \quad a \in L_{\xi=0}^{p}(E)+L_{\xi_{1}}^{p}(E), \quad 0<t<\infty \tag{3}
\end{equation*}
$$

Let $\alpha=\alpha(t)$ and $\beta=\beta(t)(0<t<\infty)$ be two positive functions measurable with respect to $d t / t$.

We denote by S_{α} the space of elements $a \in L_{\xi_{0}}^{p}(E)+L_{\xi_{1}}^{p}(E)$ such that there exists a function $u=u(t)(0<t<\infty)$ measurable with respect to $d t / t$ with values in $L_{\xi_{0}}^{p}(E) \cap$ $\cap L_{\xi_{1}}^{p}(E)$ such that

$$
\begin{equation*}
a=\int_{0}^{\infty} u(t) \frac{d t}{t}\left(\text { in } L_{\zeta_{0}}^{p}(E)+L_{\zeta_{1}}^{p}(E)\right), \quad \alpha(t) J(t, u(t)) \in L_{*}^{p}, \tag{4}
\end{equation*}
$$

and by T_{β} the space of elements $a \in L_{t_{0}}^{p}(E)+L_{t_{1}}^{p}(E)$ such that

$$
\begin{equation*}
\beta(t) K(t, a) \in L_{*}^{p} . \tag{5}
\end{equation*}
$$

(L_{*}^{p} denotes L^{p} with respect to the measure $d t / t$.) We provide S_{α} with the norm

$$
\begin{equation*}
\|a\|_{S_{x}}=\inf \|\alpha(t) J(t, u(t))\|_{L^{p},}, \quad a=\int_{0}^{\infty} u(t) \frac{d t}{t} \tag{6}
\end{equation*}
$$

and T_{β} with the norm

$$
\begin{equation*}
\|a\|_{T_{\beta}}=\|\beta(t) K(t, a)\|_{L^{*}} . \tag{7}
\end{equation*}
$$

Theorem 1. Each of the spaces S_{α} and T_{β} is an interpolation space with respect to $L_{\xi_{0}}^{p}(E)$ and $L_{\xi_{1}}^{p}(E)$; i. e. whenever π is a linear mapping from some space, containing $L_{\xi_{0}}^{p}(E)$ and $L_{\xi_{1}}^{p}(E)$ as linear subspaces, into itself such that the restriction of π to $L_{\xi_{i}}^{p}(E)$ maps $L_{\xi_{i}}^{p}(E)$ continuously into itself $(i=0,1)$ then the restriction of π to S_{α} or T_{β} maps S_{α} or T_{β} contimuously into itself. Moreover, if

$$
\begin{equation*}
\|\pi a\|_{L \xi_{i}(E)} \leqq M_{i}\|a\|_{L \xi_{i}(E)}, \quad a \in L_{\xi_{i}}^{p}(E) \quad(i=0,1) \tag{8}
\end{equation*}
$$

where M_{0} and M_{1} are positive constants, then

$$
\begin{equation*}
\|\pi a\| \leqq M\|a\|, \quad a \in S_{\alpha} \text { or } T_{\beta} \tag{9}
\end{equation*}
$$

with $\|\|=\|\|_{s_{\alpha}}$ or $\left\|\|_{r_{\beta}}\right.$, where M is a constant that depends only upon M_{0} and M_{1}. Proof. i) We have

$$
J(t, \pi a) \leqq\left(M_{0}^{p}\|a\|_{L L_{0}(E)}^{p_{0}}+t^{p} M_{i}^{p}\|a\|_{L L_{1},(E)}^{p}\right)^{1 / p} \leqq \max \left(M_{0}, M_{1}\right) \cdot J(t, a) .
$$

Since

$$
\pi a=\int_{0}^{\infty} \pi u(t) \frac{d t}{t}
$$

we therefore get

$$
\|\pi a\|_{S_{x}} \leqq \max \left(M_{0}, M_{1}\right)\|\alpha(t) J(t, u(t))\|_{L^{p}}
$$

and, by making vary u, (9) follows in this case, with $M=\max \left(M_{0}, M_{1}\right)$.
ii) We have

$$
K(t, \pi a) \leqq\left(M_{0}^{p}\left\|a_{0}\right\|_{L_{t_{0}}^{p}(E)}^{p_{2}}+t^{p} M_{1}^{p}\left\|a_{1}\right\|_{L p_{1}(E)}^{p}\right)^{1 / p} .
$$

Making vary a_{0} and a_{1} we get

$$
K(t, \pi a) \leqq \max \left(M_{0}, M_{1}\right) K(t, a) .
$$

Therefore (9) follows in this case, again with $M=\max \left(M_{0}, M_{1}\right)$.
Remark 1. If α and β satisfy inequalities of the form

$$
\begin{equation*}
\alpha(s t) \leqq \varrho(s) \alpha(t), \quad \beta(s t) \leqq \sigma(s) \beta(t) \tag{10}
\end{equation*}
$$

we may replace $M=\max \left(M_{0}, M_{1}\right)$ by $M=M_{0} \varrho\left(\frac{M_{0}}{M_{1}}\right) M=M_{0} \sigma\left(\frac{M_{0}}{M_{1}}\right)$ (cf. [3]).
In particular if $\varrho(s)=\sigma(s)=s^{-\theta}$ we get $M=M_{0}^{1-\theta} M_{1}^{\theta}$.
Theorem 2. We have $S_{\alpha}=L_{F\left(\left[_{0}, 5_{1}\right)\right.}^{p}(E)$ and $T_{\beta}=L_{G\left(\left(_{0}, \xi_{1}\right)\right.}^{p}(E)$ with equality of norms, where $\left(\frac{1}{q}=1-\frac{1}{p}\right)$

$$
\begin{equation*}
F\left(z_{0}, z_{1}\right)=\left(\int_{0}^{\infty}\left(z_{0}^{p}+t^{p} z_{1}^{p}\right)^{-(q / p)}(\alpha(t))^{-q} \frac{d t}{t}\right)^{-(1 / q)} \tag{11}
\end{equation*}
$$

and -

$$
\begin{equation*}
G\left(z_{0}, z_{1}\right)=\left(\int_{0}^{\infty}\left(z_{0}^{-q}+t^{-q} z_{1}^{-q}\right)^{-(p i q)}(\beta(t))^{p} \frac{d t}{t}\right)^{1 / p} \tag{12}
\end{equation*}
$$

Example 1. If $\alpha(t)=\beta(t)=t^{-\theta} \quad(0<0<1)$ we get $F\left(z_{0}, z_{1}\right)=c z_{0}^{1-\theta_{z}^{\theta}}$, $G\left(z_{0}, z_{1}\right)=d z_{0}^{1-\theta_{z_{1}}}$ where c and d are constants.

Proof. i) We have to minimalize the expression

$$
\begin{aligned}
\mathscr{J}_{u}= & \int_{0}^{\infty}\left(\|u(t)\|_{L \xi_{0}(E)}^{p}+t^{p}\|u(t)\|_{L \xi_{1}}^{p}(E)\right)(\alpha(t))^{p} \frac{d t}{t}= \\
& =\int_{0}^{\infty} \int_{X}\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)\|u(t)\|_{E}^{p} d \mu^{\prime}(\alpha(t))^{p} \frac{d t}{t}
\end{aligned}
$$

where $a=\int_{0}^{\infty} u(t) d t / t$. We claim that it is sufficient to consider $u(t)$ of the form . $\psi(t) a$ with $\int_{0}^{\infty} \varphi(t) d t / t=1, \psi(t) \geqq 0$. Indeed given any $u(t)$ let us set

$$
p(t)=\frac{\|u(t)\|_{E}}{\int_{0}^{\infty}\|u(t)\|_{E} d t / t} .
$$

Then $\int_{0}^{\infty} \varphi(t) d t / t=1, \varphi(t) \geqq 0$ and moreover $\|\varphi(t) a\|_{E} \leqq\|u(t)\|_{E}$ so that $\mathscr{G}_{\rho a} \leqq \mathcal{g}_{\mu}$, which proves the assertion. Thus restricting ourselves to the case $u(t)=\psi(t) a$ we obtain after a change of the order of integration

$$
\mathscr{g}_{u}=\int_{X} \int_{0}^{\infty}(p(t))^{p}\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)(\alpha(t))^{p} \frac{d t}{t}\|a\|_{E}^{p} d \mu
$$

The problem is now reduced to minimizing (for each $x \in X$) the expression

$$
\mathscr{E}_{\varphi}=\int_{0}^{\infty}(\varphi(t))^{p}\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)(\alpha(t))^{p} \frac{d t}{t}
$$

where $\int_{0}^{\infty} p(t) d t / t=1, \varphi(t) \geqq 0$. Choose

$$
p(t)=\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{q}\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)^{-(q / p)}(\alpha(t))^{-q}
$$

then

$$
\mathscr{E}_{q}=\int_{0}^{\infty}\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{q p}\left(\zeta_{0}^{p}+k^{p} \zeta_{1}^{p}\right)^{1-q}(\alpha(t))^{-q p+p} \frac{d t}{t}=\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{q p-q}=\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{p}
$$

so that

$$
\min \mathscr{E}_{\varphi} \leqq\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{p}
$$

On the other hand, using Hölder's inequality

$$
\begin{aligned}
\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{p} & =\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{p}\left(\int_{0}^{\infty} p(t)\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)^{1 / p} \alpha(t)\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)^{-(1 / p)}(\alpha(t))^{-1} \frac{d t}{t}\right)^{p} \leqq \\
& \leqq\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{p} \int_{0}^{\infty}(p(t))^{p}\left(\zeta_{0}^{p}+t^{p} \zeta_{1}^{p}\right)(\alpha(t))^{p} \frac{d t}{t}\left(F\left(\zeta_{0}, \zeta_{1}\right)\right)^{-p}=\mathscr{E}_{\varphi}
\end{aligned}
$$

which finishes the proof.
ii) We have to minimize the expression

$$
\begin{gathered}
\mathscr{K _ { v o , v 1 }}=\int_{0}^{\infty}\left(\left\|v_{0}(t)\right\|_{L \tilde{\varepsilon}_{0}(E)}^{p}+t^{p}\left\|v_{1}(t)\right\|_{\left.L \xi_{1}\right) E}^{p}\right)(\beta(t))^{p} \frac{d t}{t}= \\
\quad=\int_{0}^{\infty} \int_{X}\left(\zeta_{0}^{p}\left\|v_{0}(t)\right\|_{E}^{p}+t^{p} \zeta_{1}^{p}\left\|v_{1}(t)\right\|_{E}^{p}\right) d \mu(\beta(t))^{p} \frac{d t}{t}
\end{gathered}
$$

where $a=v_{0}(t)+v_{1}(t)$. We claim that it is sufficient to consider $v_{0}(t)$ and $v_{1}(t)$ of the form $\psi_{0}(t) a$ and $\psi_{1}(t) a$ with $\psi_{0}(t)+\psi_{1}(t)=1, \psi_{0}(t) \geqq 0, \psi_{1}(t) \geqq 0$. Indeed given $v_{0}(t)$ and $v_{1}(t)$ let us set

$$
\psi_{0}(t)=\frac{\left\|v_{0}(t)\right\|_{E}}{\left\|v_{0}(t)\right\|_{E}+\left\|v_{1}(t)\right\|_{E}}, \quad \psi_{1}(t)=\frac{\left\|v_{1}(t)\right\|_{E}}{\left\|v_{0}(t)\right\|_{E}+\left\|v_{1}(t)\right\|_{E}}
$$

Then $\psi_{0}(t)+\psi_{1}(t)=1, \psi_{0}(t) \geqq 0, \psi_{1}(t) \geqq 0 \quad$ and moreover $\left\|\psi_{0}(t) a\right\|_{E} \leqq\left\|v_{0}(t)\right\|_{E}$, $\left\|\psi_{1}(t) a\right\|_{E} \leqq\left\|v_{1}(t)\right\|_{E}$ so that $\mathscr{J} K_{\psi_{0}, \psi_{1}, a} \leqq \mathscr{J K}_{v_{0}, v,}$ which proves the assertion. Thus restricting ourselves to the case $v_{0}(t)=\psi_{0}(t) a$ and $v_{1}(t)=\psi_{1}(t) a$ we obtain after a change of the order of integration

$$
\mathscr{S}_{v_{0, v}, v_{1}}=\int_{X} \int_{0}^{\infty}\left(\left(\psi_{0}(t)\right)^{p} \zeta_{0}^{p}+\left(\psi_{1}(t)\right)^{p} t^{p} \zeta_{1}^{p}\right)(\beta(t))^{p} \frac{d t}{t}\|a\|_{E}^{p} d \mu .
$$

The problem is now reduced to minimizing (for each $x \in X$) the expression

$$
\int_{0}^{\infty}\left(\left(\psi_{0}(t)\right)^{p} \zeta_{0}^{p}+\left(\psi_{1}(t)\right)^{p} t^{p} \zeta_{1}^{p}\right)(\beta(t))^{p} \frac{d t}{t}
$$

where $\psi_{0}(t)+\psi_{1}(t)=1, \psi_{0}(t) \geqq 0, \psi_{1}(t) \geqq 0$ from which the result in this case (see (12)) easily follows as in the preceding case. Combining theorem 1 and theorem 2 we get

Theorem 3. Each of the functions $F\left(z_{0}, z_{1}\right)$ and $G\left(z_{0}, z_{1}\right)$ as defined by (11) and (12) is an interpolation function of power p.

Example 2. By example $1, z_{0}^{1-\theta} z_{1}^{\theta}$ with $0<\theta<1$ is thus an interpolation function of power p for any p. This leads to the interpolation theorem of STEIN and Weiss [4].

Remark 2. It is easily seen that the condition provided by (11) is essentially the one found by Foias and Lions [1]. The only significant difference is that these authors allow ($\alpha(t)^{-q} d t / t$ to be replaced by an arbitrary positive measure $d \xi$ (not necessarily absolutely continuous with respect to $d t / t)$. It should be possible to extend our approach to cover this generalization too.

§ 2.

We conclude by pointing out some relations between the functions $F\left(z_{0}, z_{1}\right)$ and $G\left(z_{0}, z_{1}\right)$. Since they are both homogeneous of degree 1 it suffices to consider the functions $f(z)=F(z, 1)$ and $g(z)=G(z, 1)$. We have then after a change of variable

$$
\begin{equation*}
f(z)=z\left(\int_{0}^{\infty}\left(1+t^{p}\right)^{-(q / p)}(\alpha(t z))^{-q} \frac{d t}{t}\right)^{-(1 / q)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=z\left(\int_{0}^{\infty}\left(1+t^{-q}\right)^{-(p / q}(\beta(t z))^{p} \frac{d t}{t}\right)^{1 / p} \tag{14}
\end{equation*}
$$

Let us consider the special case $\alpha(t)=\beta(t)$. By HöLDER's inequality we obtain

$$
\int_{0}^{\infty}\left(1+t^{p}\right)^{-(1 / p)}\left(1+t^{-q}\right)^{-(1 / q)} \frac{d t}{t} \leqq \frac{g(z)}{f(z)}
$$

or

$$
\begin{equation*}
f(z) \leqq C g(z) \tag{15}
\end{equation*}
$$

where C is a constant, $0<C<\infty$. Assume next that α satisfies (10) where

$$
\begin{equation*}
\int_{0}^{\infty}\left(1+t^{p}\right)^{-(q / p)}\left(\varrho\left(\frac{1}{t}\right)\right)^{t} \frac{d t}{t}<\infty \tag{16}
\end{equation*}
$$

Then we get

$$
\int_{0}^{\infty}\left(1+t^{p}\right)^{-(q / p)}(\alpha(t z))^{-q} \frac{d t}{t} \leqq \int_{0}^{\infty}\left(1+t^{p}\right)^{-(u / p}\left(\varrho\left(\frac{1}{t}\right)\right)^{4} \frac{d t}{t}(\alpha(z))^{-4}
$$

so that

$$
\begin{equation*}
A z \alpha(z) \leqq f(z) \tag{17}
\end{equation*}
$$

where A is a constant, $0<A<\infty$. Assume again that β satisfies (10) where

$$
\begin{equation*}
\int_{0}^{\infty}\left(1+t^{-a}\right)^{-(p / t)}(\sigma(t))^{p} \frac{d t}{t}<\infty . \tag{18}
\end{equation*}
$$

Then we get

$$
\int_{0}^{\infty}\left(1+t^{-q}\right)^{-(p / q)}(\beta(t z))^{p} \frac{d t}{t} \leqq \int_{0}^{\infty}\left(1+t^{-q}\right)^{-(p / q)}(\sigma(t))^{p} \frac{d t}{t}(\beta(z))^{p}
$$

so that

$$
\begin{equation*}
g(z) \leqq B z \beta(z) \tag{19}
\end{equation*}
$$

where B is a constant, $0<B<\infty$. Therefore in the special case $\alpha(t)=\beta(t), \varrho(t)=$ $=\sigma(t)$ assuming also (16) and (18) we get by (15)

$$
\begin{equation*}
A z \alpha(z) \leqq f(z) \leqq C g(z) \leqq C B z \beta(z) \tag{20}
\end{equation*}
$$

(Note that $A \leqq C B!$) In other words the functions $f(z), g(z)$ and $z \alpha(z)$ are here equivalent.

Finally we make a few observations concerning the conditions (16) and (18). We note that, since all functions of the form $\left(1+t^{p}\right)^{1 / p}$ are equivalent, they may be replaced by the conditions

$$
\begin{equation*}
\int_{0}^{\infty}\left(\min \left\{1, \frac{1}{t}\right\} \varrho\left(\frac{1}{t}\right)\right)^{t} \frac{d t}{t}<\infty \tag{21}
\end{equation*}
$$

and, after a change of variable,

$$
\begin{equation*}
\int_{0}^{\infty}\left(\min \left\{1, \frac{1}{t}\right\} \sigma\left(\frac{1}{t}\right)\right)^{p} \frac{d t}{t}<\infty \tag{22}
\end{equation*}
$$

We note also that in view of Hölder's inequality if one of these conditions holds for two different values of the parameter, p or q, than it holds for all intermediate values.

We may sum up these results as follows.
Theorem 4. Assume that $\alpha(t)$ satisfies (10) where

$$
\begin{equation*}
\int_{0}^{\infty} \min \left\{1, \frac{1}{t}\right\} \varrho\left(-\frac{1}{t}\right) \frac{d t}{t}<\infty, \quad \sup _{t} \min \left\{1,-\frac{1}{t}\right\} \varrho\left(\frac{1}{t}\right)<\infty . \tag{23}
\end{equation*}
$$

Then $z_{0} \alpha\left(z_{0} / z_{1}\right)$ is equivalent to an interpolation function of power p for any p.
Remark 3. Conditions of the type (23) arose in a similar context in [3].

References

[1] C. Foias and J. L. Lions, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-282.
[2] J. Peetre, Nouvelles propriétés d'espaces d'interpolation, C. R. Acad. Sci. Paris, 256 (1963), 1424-1426.
[3] J. Peetre, A theory of interpolation of normed spaces. Notes, Universidade de Brasilia, 1963.
[4] E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.

