On an interpolation theorem of Foias and Lions

By J. PEETRE in Lund (Sweden)

Introduction

Let X be a locally compact space provided with a positive measure μ . We denote by $L_{\xi}^{p}(E)$, where $1 \leq p \leq \infty$ and ζ is a positive μ -measurable function and E a Banach space (or, more generally, a field of Banach spaces over X; we do not consider this generalization here in order not to complicate the notation), the space of μ -measurable functions a with values in E such that $\|\zeta_{c}\|_{E}$ is of μ -integrable p th power (if $p < \infty$) or μ -bounded (if $p = \infty$). We provide $L_{\xi}^{p}(E)$ with the norm

(1)
$$\|a\|_{L^p_{\zeta}(E)} = \begin{cases} \left(\int\limits_X \|\zeta a\|_E^p d\mu\right)^{1/p} & \text{ (if } p < \infty) \\ \mu - \sup_X \|\zeta a\|_E & \text{ (if } p = \infty). \end{cases}$$

A function $H(z_0, z_1)$ defined, measurable and positive for $z_0 \ge 0$, $z_1 \ge 0$ is said to be an *interpolation function of power p* if and only if whenever π is a linear mapping from some space, containing $L_{\zeta_0}^p(E)$ and $L_{\zeta_1}^p(E)$ as linear subspaces, into itself such that the restriction of π to $L_{\zeta_1}(E)$ maps $L_{\zeta_1}^p(E)$ continuously into itself (i=0, 1) then the restriction of π to $L_{H(\zeta_0,\zeta_1)}^p(E)$ maps $L_{H(\zeta_0,\zeta_1)}^p(E)$ continuously into itself. E. g. $z_0^{1-\theta} z_1^{\theta}$ with $0 < \theta < 1$ is an interpolation function of power p for any p (see example 2). In [1] FOIAS and LIONS found a sufficient condition for a function to be an interpolation function of power p (in the above terminology). In the present note we give two constructions of interpolation functions of power p. in a sense dual to each other The first of these constructions leads to a condition essentially the one of FOIAS and LIONS (see remark 2) while the second leads to a condition in a sense dual to the first one. It is also shown that under some auxiliary restrictions both constructions are equivalent. In particular this leads to a simple condition which is independent of p (see theorem 4).

The general ideas underlying these results were briefly discussed in [2] (cf. also [3]).

255

J. Peetre

§ 1

Let us set

(2)
$$J(t, a) = (\|a\|_{L^{p}_{\zeta_{0}}(E)}^{p} + t^{p} \|a\|_{L^{p}_{\zeta_{1}}(E)}^{p})^{1/p}, \quad a \in L^{p}_{\zeta_{0}}(E) \cap L^{p}_{\zeta_{1}}(E), \quad 0 < t < \infty,$$

and

(3)
$$K(t, a) = \inf_{a=a_0+a_1} (\|a_0\|_{L^{p}_{\zeta_0}(E)}^p + t^p \|a_1\|_{L^{p}_{\zeta_1}(E)}^p)^{1/p}, \quad a \in L^p_{\zeta_0}(E) + L^p_{\zeta_1}(E), \quad 0 < t < \infty.$$

Let $\alpha = \alpha(t)$ and $\beta = \beta(t)$ ($0 < t < \infty$) be two positive functions measurable with respect to dt/t.

We denote by S_{α} the space of elements $a \in L^{p}_{\zeta_{0}}(E) + L^{p}_{\zeta_{1}}(E)$ such that there exists a function u = u(t) ($0 < t < \infty$) measurable with respect to dt/t with values in $L^{p}_{\zeta_{0}}(E) \cap \cap L^{p}_{\zeta_{1}}(E)$ such that

(4)
$$a = \int_{0}^{\infty} u(t) \frac{dt}{t} (\text{in } L_{\zeta_{0}}^{p}(E) + L_{\zeta_{1}}^{p}(E)), \quad \alpha(t) J(t, u(t)) \in L_{*}^{p},$$

and by T_{β} the space of elements $a \in L_{\zeta_0}^p(E) + L_{\zeta_1}^p(E)$ such that

(5)
$$\beta(t) K(t, a) \in L_*^p.$$

 $(L_*^p \text{ denotes } L^p \text{ with respect to the measure } dt/t.)$ We provide S_x with the norm

(6)
$$||a||_{S_{\alpha}} = \inf ||\alpha(t)J(t,u(t))||_{L^{k}}, \quad a = \int_{0}^{\infty} u(t) \frac{dt}{t}$$

and T_{β} with the norm

(7)
$$||a||_{T_{\beta}} = ||\beta(t)K(t,a)||_{L^{p}_{*}}.$$

Theorem 1. Each of the spaces S_{α} and T_{β} is an interpolation space with respect to $L_{\zeta_0}^p(E)$ and $L_{\zeta_1}^p(E)$; i. e. whenever π is a linear mapping from some space, containing $L_{\zeta_0}^p(E)$ and $L_{\zeta_1}^p(E)$ as linear subspaces, into itself such that the restriction of π to $L_{\zeta_1}^p(E)$ maps $L_{\zeta_1}^p(E)$ continuously into itself (i = 0, 1) then the restriction of π to S_{α} or T_{β} maps S_{α} or T_{β} continuously into itself. Moreover, if

(8)
$$\|\pi a\|_{L^p_{\zeta_i}(E)} \leq M_i \|a\|_{L^p_{\zeta_i}(E)}, \quad a \in L^p_{\zeta_i}(E) \qquad (i=0,1),$$

where M_0 and M_1 are positive constants, then

(9)
$$\|\pi a\| \leq M \|a\|, \quad a \in S_{\alpha} \quad or \quad T_{\beta}$$

with $\|\| = \|\|_{S_{\alpha}}$ or $\|\|_{T_{\beta}}$, where M is a constant that depends only upon M_0 and M_1 .

Proof. i) We have

$$J(t, \pi a) \leq (M_0^p \|a\|_{L^{p}_{\zeta_0}(E)}^p + t^p M_1^p \|a\|_{L^{p}_{\zeta_1}(E)}^p)^{1/p} \leq \max(M_0, M_1) J(t, a).$$

Since

$$\pi a = \int_{0}^{\infty} \pi u(t) \frac{dt}{t}$$

we therefore get

$$\|\pi a\|_{S_{*}} \leq \max(M_{0}, M_{1}) \|\alpha(t)J(t, u(t))\|_{L^{p}_{*}}$$

and, by making vary u, (9) follows in this case, with $M = \max(M_0, M_1)$. ii) We have

$$K(t, \pi a) \leq (M_0^p \|a_0\|_{L^p_{t_0}(E)}^p + t^p M_1^p \|a_1\|_{L^p_{t_1}(E)}^p)^{1/p}.$$

Making vary a_0 and a_1 we get

$$K(t, \pi a) \leq \max(M_0, M_1) K(t, a).$$

Therefore (9) follows in this case, again with $M = \max(M_0, M_1)$.

Remark 1. If α and β satisfy inequalities of the form

(10)
$$\alpha(st) \leq \varrho(s)\alpha(t), \quad \beta(st) \leq \sigma(s)\beta(t)$$

we may replace $M = \max(M_0, M_1)$ by $M = M_0 \rho\left(\frac{M_0}{M_1}\right) M = M_0 \sigma\left(\frac{M_0}{M_1}\right)$ (cf. [3]). In particular if $\rho(s) = \sigma(s) = s^{-\theta}$ we get $M = M_0^{1-\theta} M_1^{\theta}$.

Theorem 2. We have $S_{\alpha} = L^{p}_{F(\zeta_{0},\zeta_{1})}(E)$ and $T_{\beta} = L^{p}_{G(\zeta_{0},\zeta_{1})}(E)$ with equality of norms, where $\left(\frac{1}{a} = 1 - \frac{1}{p}\right)$

(11)
$$F(z_0, z_1) = \left(\int_0^\infty (z_0^p + t^p z_1^p)^{-(q/p)} (\alpha(t))^{-q} \frac{dt}{t}\right)^{-(1/q)}$$

∙ and∽

(12)
$$G(z_0, z_1) = \left(\int_0^\infty (z_0^{-q} + t^{-q} z_1^{-q})^{-(p/q)} (\beta(t))^p \frac{dt}{t}\right)^{1/p}.$$

Example 1. If $\alpha(t) = \beta(t) = t^{-\theta}$ (0 < θ < 1) we get $F(z_0, z_1) = cz_0^{1-\theta}z_1^{\theta}$, $G(z_0, z_1) = dz_0^{1-\theta}z_1$ where c and d are constants.

Proof. i) We have to minimalize the expression

$$\tilde{J}_{u} = \int_{0}^{\infty} (\|u(t)\|_{L^{p}_{0}(E)}^{p} + t^{p} \|u(t)\|_{L^{p}_{1}(E)}^{p}) (\alpha(t))^{p} \frac{dt}{t} =$$

$$= \int_{0}^{\infty} \int_{X} (\zeta_{0}^{p} + t^{p} \zeta_{1}^{p}) \|u(t)\|_{E}^{p} d\mu' (\alpha(t))^{p} \frac{dt}{t}$$

where $a = \int_{0}^{\infty} u(t) dt/t$. We claim that it is sufficient to consider u(t) of the form $\varphi(t)a$ with $\int_{0}^{\infty} \varphi(t) dt/t = 1$, $\varphi(t) \ge 0$. Indeed given any u(t) let us set

$$\varphi(t) = \frac{\|u(t)\|_E}{\int\limits_0^\infty \|u(t)\|_E dt/t}.$$

A 17

J. Peetre

Then $\int_{0}^{\infty} \varphi(t) dt/t = 1$, $\varphi(t) \ge 0$ and moreover $\|\varphi(t)a\|_{E} \le \|u(t)\|_{E}$ so that $\int_{a}^{\infty} \varphi(t) dt/t = 1$, $\varphi(t) \ge 0$ and moreover $\|\varphi(t)a\|_{E} \le \|u(t)\|_{E}$ so that $\int_{a}^{\infty} \varphi(t) dt/t = 0$ which proves the assertion. Thus restricting ourselves to the case $u(t) = \varphi(t)a$ we obtain after a change of the order of integration

$$\mathcal{J}_u = \int_X \int_0^\infty \left(\varphi(t)\right)^p (\zeta_0^p + t^p \zeta_1^p) (\alpha(t))^p \frac{dt}{t} \|a\|_E^p d\mu.$$

The problem is now reduced to minimizing (for each $x \in X$) the expression

$$\mathscr{E}_{\varphi} = \int_{0}^{\infty} \left(\varphi(t)\right)^{p} \left(\zeta_{0}^{p} + t^{p} \zeta_{1}^{p}\right) \left(\alpha(t)\right)^{p} \frac{dt}{t}$$

where $\int_{0}^{\infty} \varphi(t) dt/t = 1, \ \varphi(t) \ge 0.$ Choose

$$\varphi(t) = \left(F(\zeta_0, \zeta_1)\right)^q \left(\zeta_0^p + t^p \zeta_1^p\right)^{-(q/p)} (\alpha(t))^{-q};$$

then

$$\mathscr{E}_{\varphi} = \int_{0}^{\infty} \left(F(\zeta_{0}, \zeta_{1}) \right)^{qp} \left(\zeta_{0}^{p} + k^{p} \zeta_{1}^{p} \right)^{1-q} \left(\alpha(t) \right)^{-qp+p} \frac{dt}{t} = \left(F(\zeta_{0}, \zeta_{1}) \right)^{qp-q} = \left(F(\zeta_{0}, \zeta_{1}) \right)^{p}$$

so that

$$\min \mathscr{E}_{\varphi} \leq (F(\zeta_0, \zeta_1))^p.$$

On the other hand, using HÖLDER's inequality

$$(F(\zeta_0, \zeta_1))^p = (F(\zeta_0, \zeta_1))^p \left(\int_0^{\infty} \varphi(t) (\zeta_0^p + t^p \zeta_1^p)^{1/p} \alpha(t) (\zeta_0^p + t^p \zeta_1^p)^{-(1/p)} (\alpha(t))^{-1} \frac{dt}{t} \right)^p \leq \\ \leq (F(\zeta_0, \zeta_1))^p \int_0^{\infty} (\varphi(t))^p (\zeta_0^p + t^p \zeta_1^p) (\alpha(t))^p \frac{dt}{t} (F(\zeta_0, \zeta_1))^{-p} = \mathscr{E}_{\varphi},$$

which finishes the proof.

ii) We have to minimize the expression

$$\begin{aligned} \mathfrak{M}_{v_0,v_1} &= \int_0^\infty \left(\|v_0(t)\|_{L^p_{\xi_0}(E)}^p + t^p \|v_1(t)\|_{L^p_{\xi_1}(E)}^p \right) (\beta(t))^p \frac{dt}{t} = \\ &= \int_0^\infty \int_X^\infty \left(\zeta_0^p \|v_0(t)\|_E^p + t^p \zeta_1^p \|v_1(t)\|_E^p \right) d\mu(\beta(t))^p \frac{dt}{t} \end{aligned}$$

where $a = v_0(t) + v_1(t)$. We claim that it is sufficient to consider $v_0(t)$ and $v_1(t)$ of the form $\psi_0(t)a$ and $\psi_1(t)a$ with $\psi_0(t) + \psi_1(t) = 1$, $\psi_0(t) \ge 0$, $\psi_1(t) \ge 0$. Indeed given $v_0(t)$ and $v_1(t)$ let us set

$$\psi_0(t) = \frac{\|v_0(t)\|_E}{\|v_0(t)\|_E + \|v_1(t)\|_E}, \quad \psi_1(t) = \frac{\|v_1(t)\|_E}{\|v_0(t)\|_E + \|v_1(t)\|_E}.$$

On an interpolation theorem

Then $\psi_0(t) + \psi_1(t) = 1$, $\psi_0(t) \ge 0$, $\psi_1(t) \ge 0$ and moreover $\|\psi_0(t)a\|_E \le \|v_0(t)\|_E$, $\|\psi_1(t)a\|_E \le \|v_1(t)\|_E$ so that $\mathcal{H}_{\psi_0 a, \psi_1 a} \le \mathcal{H}_{v_0, v_1}$ which proves the assertion. Thus restricting ourselves to the case $v_0(t) = \psi_0(t)a$ and $v_1(t) = \psi_1(t)a$ we obtain after a change of the order of integration

$$\Re_{v_0,v_1} = \int_X \int_0^\infty \left(\left(\psi_0(t) \right)^p \zeta_0^p + \left(\psi_1(t) \right)^p t^p \zeta_1^p \right) (\beta(t))^p \frac{dt}{t} \|a\|_E^p d\mu.$$

The problem is now reduced to minimizing (for each $x \in X$) the expression

$$\int_{0}^{\infty} \left(\left(\psi_{0}(t) \right)^{p} \zeta_{0}^{p} + \left(\psi_{1}(t) \right)^{p} t^{p} \zeta_{1}^{p} \right) \left(\beta(t) \right)^{p} \frac{dt}{t}$$

where $\psi_0(t) + \psi_1(t) = 1$, $\psi_0(t) \ge 0$, $\psi_1(t) \ge 0$ from which the result in this case (see (12)) easily follows as in the preceding case. Combining theorem 1 and theorem 2 we get

Theorem 3. Each of the functions $F(z_0, z_1)$ and $G(z_0, z_1)$ as defined by (11) and (12) is an interpolation function of power p.

Example 2. By example 1, $z_0^{1-\theta} z_1^{\theta}$ with $0 < \theta < 1$ is thus an interpolation function of power p for any p. This leads to the interpolation theorem of STEIN and WEISS [4].

Remark 2. It is easily seen that the condition provided by (11) is essentially the one found by FOIAS and LIONS [1]. The only significant difference is that these authors allow $(\alpha(t)^{-q}dt/t)$ to be replaced by an arbitrary positive measure $d\xi$ (not necessarily absolutely continuous with respect to dt/t). It should be possible to extend our approach to cover this generalization too.

§ 2.

We conclude by pointing out some relations between the functions $F(z_0, z_1)$ and $G(z_0, z_1)$. Since they are both homogeneous of degree 1 it suffices to consider the functions f(z) = F(z, 1) and g(z) = G(z, 1). We have then after a change of variable

(13)
$$f(z) = z \left(\int_{0}^{\infty} (1+t^{p})^{-(q/p)} (\alpha(tz))^{-q} \frac{dt}{t} \right)^{-(1/q)}$$

and

(14)
$$g(z) = z \left(\int_{0}^{\infty} (1 + t^{-q})^{-(p/q)} (\beta(tz))^{p} \frac{dt}{t} \right)^{1/p}.$$

Let us consider the special case $\alpha(t) = \beta(t)$. By Hölder's inequality we obtain

$$\int_{0}^{\infty} (1+t^{p})^{-(1/p)} (1+t^{-q})^{-(1/q)} \frac{dt}{t} \leq \frac{g(z)}{f(z)}$$

or

$$(15) f(z) \le Cg(z)$$

where C is a constant, $0 < C < \infty$. Assume next that α satisfies (10) where

(16)
$$\int_{0}^{\infty} (1+t^{p})^{-(q/p)} \left(\varrho\left(\frac{1}{t}\right) \right)^{q} \frac{dt}{t} < \infty.$$

Then we get

$$\int_{0}^{\infty} (1+t^{p})^{-(q/p)} (\alpha(tz))^{-q} \frac{dt}{t} \leq \int_{0}^{\infty} (1+t^{p})^{-(q/p)} \left(\varrho\left(\frac{1}{t}\right) \right)^{q} \frac{dt}{t} (\alpha(z))^{-q}$$

so that

where A is a constant, $0 < A < \infty$. Assume again that β satisfies (10) where

(18)
$$\int_{0}^{\infty} (1+t^{-q})^{-(p/q)} (\sigma(t))^{p} \frac{dt}{t} < \infty.$$

Then we get

$$\int_{0}^{\infty} (1+t^{-q})^{-(p/q)} (\beta(tz))^{p} \frac{dt}{t} \leq \int_{0}^{\infty} (1+t^{-q})^{-(p/q)} (\sigma(t))^{p} \frac{dt}{t} (\beta(z))^{p}$$

so that

(19)
$$g(z) \leq B z \beta(z)$$

where B is a constant, $0 < B < \infty$. Therefore in the special case $\alpha(t) = \beta(t)$, $\varrho(t) = \sigma(t)$ assuming also (16) and (18) we get by (15)

(20)
$$A z \alpha(z) \leq f(z) \leq C g(z) \leq C B z \beta(z).$$

(Note that $A \leq CB$!) In other words the functions f(z), g(z) and $z\alpha(z)$ are here equivalent.

Finally we make a few observations concerning the conditions (16) and (18). We note that, since all functions of the form $(1 + t^p)^{1/p}$ are equivalent, they may be replaced by the conditions

(21)
$$\int_{0}^{\infty} \left(\min\left\{1, \frac{1}{t}\right\} \varrho\left(\frac{1}{t}\right) \right)^{q} \frac{dt}{t} < \infty$$

and, after a change of variable,

(22)
$$\int_{0}^{\infty} \left(\min\left\{1, \frac{1}{t}\right\} \sigma\left(\frac{1}{t}\right) \right)^{p} \frac{dt}{t} < \infty.$$

We note also that in view of HÖLDER's inequality if one of these conditions holds for two different values of the parameter, p or q, than it holds for all intermediate values.

We may sum up these results as follows.

Theorem 4. Assume that $\alpha(t)$ satisfies (10) where

(23)
$$\int_{0}^{\infty} \min\left\{1, \frac{1}{t}\right\} \varrho\left(\frac{1}{t}\right) \frac{dt}{t} < \infty, \quad \sup_{t} \min\left\{1, \frac{1}{t}\right\} \varrho\left(\frac{1}{t}\right) < \infty.$$

Then $z_0\alpha(z_0/z_1)$ is equivalent to an interpolation function of power p for any p.

Remark 3. Conditions of the type (23) arose in a similar context in [3].

References

- [1] C. FOIAŞ and J. L. LIONS, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-282.
- [2] J. PEETRE, Nouvelles propriétés d'espaces d'interpolation, C. R. Acad. Sci. Paris, 256 (1963), 1424-1426.
- [3] J. PEETRE, A theory of interpolation of normed spaces. Notes, Universidade de Brasilia, 1963.
- [4] E. STEIN and G. WEISS, Interpolation of operators with change of measures, *Trans. Amer. Math.* Soc., 87 (1958), 159-172.

(Received August 20, 1963)