255

On an interpolation theorem of Foias and Lions

By J. PEETRE in Lund (Sweden)

Introduction

Let X be a locally compact space provided with a positive measure u. We
denote by L{(E), where | =p=-o and { is a positive y-measurable function and -
E a Banach space (or, more generally, a field of Banach spaces over X; we do not
consider this generalization here in order not to complicate the notation), the space
of p-measurable functions ¢ with values in E such that ||{cll; is of u-integrable
p th power (if p<=e) or p-bounded (if p ==). We provide L{(E) with the norm.

([hcalzan)'” Gt p<<o)
(H lalze =1 X - ,.
H-sup IZallx (if p=-co).

A function H(z,, z,) defined, measurable and positive for z, =0, z; =0 is said
to be an interpolation function of power p if and only if whenever = is a linear mapping
from some space, containing L7 (E) and Lf, (E) as linear subspaces, into itself such
that the restriction of © to L;,(E) maps Lf(E) continuously intoitself (i=0, 1) then
the restriction of m to Lijg,z,(E) maps Liic, :)(E) continuously into itself. E. g.

1-0_6 . . . . . .
zo z1 with 0 <0 <1 is an interpolation function of power p for any p (see example
2). In [1} Foias and Lions found a sufficient condition for a function to be an inter-
polation function of power p (in the above terminology). In the present note we
give two constructions of interpolation functions of power p. in a sense dual to
each other The first of these constructions leads to a condition essentially the one
of Foias and LioNs (see remark 2) while the second leads to a condition in a sense
dual to the first one. It is also shown that under some auxiliary restrictions both
constructions are equivalent. In particular this leads to a simple condition which
is independent of p (see theorem 4).

Th;: general ideas underlying these results were briefly discussed in [2] (cf.
also {3]).
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§1
Let us set
2 J(1, a) = (“0”{;”0(5) '*"p“a“fé’lmy')l/p: a€ LL(EYNLE(E), O<i=ss,
and
@) Kaa)=_inf (laolfen+ i lailfe )’ a€LE(E)+LEE), 0<i<-=.

Let a=a(t) and S —ﬂ(r) (0 <7 <o) be two positive functions measurable
with respect to dt/t.

We denote by S, the space of elements a € Lf (E) + L{,(E) such that there exists '
a function u=u(t) (0 <1 < =o) measurable with 1e9pect to dr/r with values in LE(E)(
M LE(E) such that

(4) a= ] u(O?(in LE(E)+ LE(E)). o) J(r, u(n)€ Ly,

0
and by Tj the.space of elements a € LZ(E) + LE(E) such that
&) BOK(, a)€LE.

(Lf denotes L with respect to the measure dr/t.) We provide S, with the norm

oo

(6) lalls, = inflla()J(r, u(@®))||z, a= [ u(r)—c‘j’—
0 .

and ,T,, with the norm
M ' " Mally, = 1B K, a2

Theorem |. Each of the spaces S, and Ty is an interpolation space with respect
1o LE(E) and LE(E); i. e. whenever n is a linear mapping from some space, containing
LE(E) and LE(E) as linear subspaces, into itself such that the restriction of n to LE(E)
maps L{(E) contmuously into itself (i=0, 1) then the restriction of n fo S, or T,
maps S or T, continuously into itself. Moreover, if

(8) Inall geey = Millall gy, a€Li(E) (i=0,1),

where My and M| are positive constants, then

) \nall = M lall, a€S, or T,

with | | = lls, or I| Ny, where M is a constant that depends only upon My and M.

Proof. i) We have
J(t, na) = (MENall iz i+ 1" M lalife, @) '" =max (Mo, M1)J (1, a).

Since

na = / nu(r)%

(]
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" we therefore get :
' Imalls, = max (Mo, M,)|o(r)J(r, u(D))||2

and by making vary u, (9) follows in this case, with M =max (My, M),).
i1) We have

K(t, ma) = (M8 ok, + 1M Ll I @)
Making vary a, and a, we get
K(t, na)y=max(My, M) K(t, a).
Therefore (9) follows in this case, again with M =max(M,, M,).
Remark 1. If o and § satisfy inequalities of the form
(10) a(st) =g (s)a(r), /f(sf)éa(S)/f(f)
we may replace M= max(Mo,M) by M = Moo (1]‘5’ )M Moo( ) (cf. [3])

In particutar if o(s)=0a(s)=s" ’ we get M=My"M]. »
Theorem 2. We have S,=Li, (E) and Ty= Lot (E) with equality of

norms, where (—l- =1- iR
q )4
s AR
(‘]) F(ZO,z] = [[( + ,ng)_(‘llp)(a(’))—q—ta)
©and -
‘ - dt t/p
(12) G(z9,2y) = (/ (Zaq_*_’—qzi—q)—(mll)(ﬂ(t))p_f_] .
0

Example 1. If a(t)=p) =1 O<0=<1) we get F(zy, z))=cz} 2,
G(zq,z,)=dz}~% where ¢ and d are constants.

Proof. 1) We have to minimalize the expression

= [ QN e+ 1 (I (E))(a(r))”$ =
0

= [ [ @+ "I de @) L

where a = / u(t)dr/t. We claim that it is sufficient to consider u(z) of the form
)

- ¢{(t)a with f(p(f)df/l:], ¢(1)=0. Indeed given any u(r) let us set
.0

@l

pt) = -
j ()l dift
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oo

Then jq)(t)dt/r=l,(p(t)§0 and moreover |g(t)alg=llu(t)l; so that ‘”j,',,éj.,,,
0 .

which proves the assertion. Thus restricting ourselves to the case u(r)= ¢ (1)a we

obtain’ after a change of the order of integration

= [ Gy @+ ey Lia
X0

The problem is now reduced to minimizing (for each x € X) the expression
n di
to= [ GOY G+ "D @Oy
0
where [ p(1)dijt=1, p(t)=0. Choose
! 0

(1) = (F(CO: Cl))q(clo’ + tpCf)_(q/")(a(t))'-q;

then .
6y = f(F(Co{CO)qP(Cg + kpff)l_q(“(f))-q”p‘atz = (F(o, ()™ = (F(o, £0))°

so that
min &, =(F (o, ().
On the other hand, using HOLDER’s inequality

(F(o, 1) = (F(o, L)Y [f ()5 + 1718 Pa () (L5 + °L5) P () ? =
=(Fto. 0O [ @OP@ + "0 L (FCo, 1) = &,

which finishes the proof.
i) We have to minimize the expression

g{:vo,vx = f(”UO(I)”Z?O(E)+tp”lil(t)]li?l)E))(B(t))P% —

= [[@ oo (DIE + "R o (ONE) du(B ()" %

where a = vy(t) +v,(2). We claim that it is sufficient to consider vy(t) and v,(¢) of
the form Yo(t)a and ¢ (t)a with Yo(0)+¢ () = 1, Y1) =0, (1) =0. Indeed
given vy(¢) and v,(t) let us set

loo®le oy o IOl

Yo(t) = 0o Oz + o, Olle loo (O g+ lloy Ol
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Then Yo(t) +¥,(¢) = 1, Yo(®) =0, ¥1(1)=0 and moreover ho(t)all g=lvg(H,
W @®alg=lv (g so ‘that Hyoa, yra=Hyq, o, Which proves the assertion. Thus
restricting ourselves to the case vy(f) =y¥o(t)a and v,(r) =y ,(t)a we obtain after
a change of the order of integration

v = | f (o) T+ (1 O 1T BOY L lal .

The problem is now reduced to minimizing (for each x ¢ X) the expression

[ @oy 5+ @iy )y &
0

where Yo(t) +y () = 1, Yo(t) =0, (1) =0 from which the result in this case
(see (12)) easily follows as in the preceding case. Combining theorem 1 and theorem 2
we get

Theorem 3. Each of the functions F(z,, z,) and G(zy, z,) as defined by (11)
and (12) is an interpolation function of power p. *

Example 2. By example 1, z5~%% with 0<0<1 is thus an interpolation
function of power p for any p. ThlS leads to the interpolation theorem of STEIN and
WEIss [4).

Remark 2. It is easily seen that the condition provided by (11) is essentially
the one found by Foiag and LioNs [1]. The only significant difference is that these
authors allow (x(¢)~9dt/t to be replaced by an arbitrary positive measure d¢ (not
necessarily absolutely continuous with respect to d#/t). It should be possible to
extend our approach to cover this generalization too.

§2.

We conclude by pointing out some relations between the functions F(zy, z;)
and G(zy, z,). Since they are both homogeneous of degree 1 it suffices to consider
the functions f(z)= F(z, 1) and g(z) G(z,1). We have then after a change of
variable

> ~(1q)
(13) f@)==z [f (1 +1P)-@In(a(r2)) -9 %}
and ¢ . :
‘ < 1/p
(14) g(z) = z[f (1 +[_‘l)_(P/Q)(ﬁ(rZ))p%] .
0

Let us consider the special case a(f) =[(s). By HOLDER’s inequality we obtain

n-(1/p, 7)—(1/q g(z)
f(1+t)</>(1+t )</> =50

orx

(15) f(2)=Cg(2)
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where C s a constant, 0 < C <oo. Assume next that o satisfies (10) where

: r 1)) ar
(16 ' Py~{/p) all | ELON
(16) J [e(,]] "<
Then we get
° ‘ o ¢
/ 1+ t")'(“/”)(a(tz))“’irr—é f (14 ry=talp [Q(_:_JJ ﬁg(a(z))“'
0 0
so that .
(7 Aza(z2) = /()
where A is a constant, 0 <A <eoo. Assume again that f satisfies (10) where
r L dr
(18). | (14 1= =00(g () 5 <.
3 .
Then we get

/ L+ t-q)—(f’/’l)(/}(’z))f’.(gé / (14 t—q)-(n/q)(o-(t))n#(/j(z))n
0 0

'so that
(19) | 8= B2B(2)

where B is a constant, 0 < B <o, Therefore in the special case a(ty=4(), ¢(t) =
=¢(t) assuming also (16) and (18) we get by (15)

(20) Aza(2)=f(z2)=Cg(z) =CBzf(2).

(Note that A= CB!) In other words the functions f(z), g(z) and za(z) are here
equivalent.

Finally we make a few observations concerning the conditions (16) and (18).
We note that, since all functions of the form (1 4-#7)"» are equivalent, they may be
replaced by the conditions

1) of [min {1, }}g [%)]qﬁl’l«o

and, after a change of variable,
. 1 1)) di
(22) 6[ []Tlln{l, 7}0' [—;]] —,—< o,

We note also that in view of HOLDER’s inequality if one of these conditions holds
for two different values of the parameter, p or ¢, than it holds for all intermediate
values.
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We may sum up these results as follows.

Theorem 4. Assume that «(t) satisfies (10) where

(23) 0/ min {1, %}Q [i—] $< °2, sup min {1, —:—}Q [%J < oo,

Then™ zgo(zo/z,) -is equivalent to an interpolation function of power p for any p.

Remark 3. Conditions of the type (23) arose in a similar context in [3].
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