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Commutative Schreier semigroup extensions of a group 
By V. RAY HANCOCK in Blacksburg (Virginia, U. S. A.) 

1. Introduction 

This paper continues the study of complete structures begun by W I E G A N D T 
[5] and later extended by WIEGANDT [6] and this author [3]. It is shown here 
(§ 4, Theorem 5) that the group of (equivalence classes of) commutative 
Schreier extensions of a group 5 by a semigroup Q is isomorphic to and can 
be obtained from, the group of commutative group extensions of S1 by a group 
Q* which is related to the semigroup Q. It is then an immediate consequence 
of Theorem 5 that a commutative semigroup is complete if and only if it is a 
divisible group (§ 5). The first part of Theorem 5 is the special case n = 2 of Pro-— 
position 4 . 1 of C A R T A N — E I L B N B E R G [2, p. 191 ] , but an elementary proof is 
incuded here for the sake of completeness. The second part of Theorem 5 can prob-
ably be generalized to arbitrary dimension n, but the present paper is intended to 
be a study of extension theory and not of homological algebra. 

The contents of this paper were included in the author's dissertation at Tulane 
University, work on which was partially supported by the National Science Foun-
dation. The author is deeply indebted to Professor A. H . CLIFFORD for his assistance, 
encouragement, and criticism during the preparation of this material. 

2. Background 

Hereafter the term semigroup is used only to refer to a commutative semigroup, 
wiitten additively, with identity element 0; and the term subsemigroup is used only 
to refer to a subsemigroup containing 0. A semigroup Pis called a Schreier extension 
of a subsemigroup 51 if there is a set of cosets of S1 in T which partitions T and for 
which there is a set {ua\a£Q} of coset representatives (ua£T) such that uu + a . • 
= ub + /3 with a,b£Q and a, ft £ S implies a — b and a = /?. It is easily proved that 
the partitioning cosets of S1 in T are unique; that S = un + S for some adQ so 
that we may (and shall) assume the existence of an element 0 such that u0 = 0; 
and that coset addition induces an addition + on Q so that (Q, + ) is a homo-
morphic image of P. Moreover, the representation u„ + a, with a £ Q and a ZS, 
of each element of P is unique for every set {u„\a£Q} of representatives of the 
partitioning cosets. The extension P (or, equivalently, (P, q) with rj the natural 
homomorphism of T onto Q) is then referred to as an extension of 51 by Q. Two 
extensions (Pi,??i) and (T2,tf2) are called equivalent if there is an isomorphism 
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x of Tl onto T2 such that r|.S' = is (=the identity automorphism of S), and IY 1 = IJ2T. 
REDEI [4] has shown, in an analogue of the Schrcier theory of group extensions, 
that the existence and structure of an extension of S by Q is determined to within 
equivalence by the existence of a function r/: Q X. Q — S satisfying 

I . < K t f , 0 ) = 0 , 

II. cp (a, b) = <p (b, a), 
111. cp (a-I- b, c) -I- (p (a, b) = <p (a, b -I- c) -I- rp (b, c), 

for all a, b, c in Q. For a given extension T with the set {u„\a <S Q} of partitioning 
representatives, the function <p, which is called a factor-system for the extension 
and the factor-systcm corresponding to the set {u„\a € Qj of partitioning represent-
atives, is defined by w„ 4- ub = ua+b + cp(a, b). We shall write T=T(S, Q,u, cp) to 
indicate that T is a Schreier extension of S by Q with {u„\a € g } a set of partitioning 
representatives whose corresponding factor-system is cp. 

I f 7 \ = T^S, Q, u, cp) and T2 = T2(S, Q, v, I/0, then REDEI has shown that 1\ 
and T2 are equivalent if and only if there exists a function /: Q ->U(S) (=thc group 
of units of S; i. e.: the group of all elements of S having inverses relative to 0) such 
that <p(a, b) -\-f(a + b) = \j/(a, b) +f(a) +f(b) for all a, b € Q. Consequently, S is 
a direct summand of T= T(S, Q, w, <p) if and only if <p can be expressed as 
<p(a,b) = f(a) +f(b) —f(a b) for some /: Q U(S). A corollary to this is the 
assertion that 51 is a direct summand of T=T(S, Q, u, cp) only if cp(QxQ)^ U(S). 
An extension of a semigroup S in which S1 is a direct summand is called a splitting 
extension. 

It can be shown that a Schreier extension T of S1 by Q is a group or is cancella-
tive if and only if S and Q are both groups, or cancellative, respectively. 

If Q is a semigroup, then the relation v = {(«, b)£Q XQ\ a + c = b + c for 
some Q} is the smallest congruence relation on Q for which Q/v is cancellative. 
We shall call Q/v the maximal cancellative homomorphic image of Q. Any cancella-
tive semigroup Q' can be embedded in an isomorphically unique smallest group 
<2*, called the difference-group of Q', each element of which is expressible (not 
necessarily uniquely) as the difference of two elements of Q'. 

3. The semigroup of Schreier semigroup extensions of S by Q 

Let Z(Q, S) be the set of all factor-systems cp of Schreier extensions of semi-
group S by a semigroup Q. Thus Z(Q, S) is the set of all functions cp\QxQ^S 
satisfying I, II, and III. Then (cp 4-1/0 (a,b) = (p (a, b) 1// («, b) defines an addition 
under which Z(Q, S) is a semigroup. If S is a group then Z(Q, S) is also a group, 
regardless of whether Q is a group or not. 

Let B(Q, S) = {cp£Z(Q, S)\<p(a, b) = f(a)+f(b) = f(a + b) for some 
f\Q-+U(S)}. Then B(Q, S) is a subgroup of Z(Q, S)\ and two elements cp and 
i/i of Z(Q, S) are factor-systems for equivalent extensions of S by Q if and only 
if <p £ + B(Q, S). In that case cp and i/' are themselves called equivalent. Equivalence 
is easily shown to be a congruence relation on Z(Q, S), and the factor-semigroup 
of equivalence-classes is denoted by H(Q, S) = Z(Q, S)/B(Q, S). H(Q, S) is. 
called the semigroup of Schreier extensions of S by Q. If both S and Q are groups,. 
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H(Q, S) is exactly the second co-homology group, H2(Q, S) = Ext 2 (g, S), of 
all abelian group extensions of S by Q. 

If S and Q are semigroups and h\Q-> Q' is a homomorphism of Q into a semi-
group Q', then h#: Z(Q', S)->Z(Q, S) defined by (h*(p')(a, b) = <p'(h(a), h(b)) is 
easily shown to be a homomorphism of Z(Q', S) into Z(Q, S) for which 
h*(B(Q', S))QB(Q, S). Therefore h induces a homomorphism h* of H(Q',S) 
into H(Q, S), defined by h*{cp' + B(Q', S)) = h*cp' + B(Q, S). 

4. The group of Schreier semigroup extensions of a group by a semigroup 

L e m m a 1. Let S be a cancellative semigroup, Q a semigroup, and <p£Z(Q, S). 
If a, b, x, and y are elements of Q such that a + x = b + x and a+y = b+y, then 
cp(a, x) + cp(b, y) = <p(a, y) + cp(b, x). 

P r o o f . <p(a + x,y) + cp(a,x) + (p(b,y) = <p(x, a+y) + <p(a,y) + <p(b, y) (by III) 
= cp{x,b+y) + (p{a,y) + (p{b,y) = (p(b + x,y) + <p(a,y) + <p(b,x) (by III) = 
= <p(a + x, y) + <p(a, y) + cp(b, x). Therefore, by cancellation in S, cp(a, x) + cp(b, y) = 
= q>(a, y) + <p(b, x). Q. E. D. 

For arbitrary semigroups Sand Q let Z0(Q, S) = {cp£Z(Q, S)\ a + x = b+x 
implies <p(a,x) = <p(b,x)}, and let B0(Q, S) = B(Q, S)f]Z0(Q, S). 

Lemma 2. If S is a group and Q a semigroup, then each element <p of Z(Q, S) 
is equivalent to some element <p0 of Z0{Q, S). 

P r o o f . Let i".Q >Q be any function which is constant on each v-class in Q, 
for which (a, r(a)) £ v for each a € Q, and for which r (0) = 0. Let g: Q ->- S1 be defined 
by 

0 if a = 0, 
arbitrary if « O ' ( 0 \ O , 
g(r(a)) +<p(r(a), x)—<p(a, x) otherwise, where x is any element of 
Q such that r(a)+x = a + x. 

(*) g(a) 

By Lemma 1, g is single-valued. Let cp0: QX Q ->- S be defined by 9o0(a, b) — <p(a, b) + 
+g(a)+g(b)—g(a + b). Then <p0 is easily shown to be ail element of Z(Q, S) 
which is clearly equivalent to 99. Moreover, if a+x = b+x (a, b, x € Q) then 
r(a) = r(b) and, for some y£Q, a+y = b+y = r(a)+y. Consequently 

(p0(a, x) = cp(a,x)+g(a)+g(x)—g(a + x) (by definition of <p0) = 
= (p{a,x) + [g(a) + cp{a,vi\-~cp{a,y)+g{x)-g(a + x) = 
= cp(a, x) + [g(r(a)) + <p(r(a), y)] - <p(a, y) +g(x)-g(a + x) (by ( * ) ) = 
= <p(a, x) + [g ( i ) + <p(b, y)] - <p(a, y)+g(x) -g(b + x) (by ( * ) ) = 
= <p(b,x)+g(b)+g(x) -g(b + x) (by Lemma 1) = 
= <p0(b, x) (by definition of <p0). 

Thus cp0eZ0(S,Q). Q . E . D . 

L e m m a 3. Let S be a group, Q be a semigroup, and h be the natural homomor-
phism of Q onto its maximal cancellative homomorphic image Q'. Then the induced 
homomorphism h* is an isomorphism of H(Q', S) onto H(Q, S). 
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P r o o f . (1) AH Z ( 6 , S) = Z0(Q, S): If cp'iZ(Q', S) and if «-l-x = b + x 
(where a,b,x£Q), then h(a) = h(b) and (h^cp')(a, x) = cp\h(a),h(xj) = 
= cp'(h(b),li(x)) = ( / i V ) (*»*)• Thus //^(Z(G', S ) ) i Z0(O, S). Conversely, if 
<P(i£Z0(Q, S), lei <//: Q'XQ'-S be defined by (P'(h(a), h(l)j) = <p0(a, b). I f h(a) = 
—h(c), then there exists x<E Q such that a + x — c-\-x, so that a -\-b-\-x — c + b + x 
for every b£Q. By the defining property of Z0(Q, S), we then have: (a) cp0(a, x) = 
= tp0(c, x), (b) <Po(a -I- b, x) = <p0(b -I- c, x), and (c) cp0(a, b x) = cp0(c, b x). 

Consequently, <Po(a -\-b, x) -I- cp0(a, b) — <p0(b, a + x) -I- cp0(a, x) (by 111) = 
= cp0(b,c + x) + cp0(c,x) (by (a)) = (p0(b -I• c, x) + cp0(b, c) (by III) = cp0(a + b,x)+ 
-I- cp0(b, c) (by (b)). Therefore, by 11 and cancellation in S, cp0(a, b) = cp0(c, b). If, 
also, li{b)—h(cJ), then, by the preceding and II, cp0(a, b) = cp0(c, b) = cp0(c, cl). Thus 
cp' is single-valued. It is easily shown that cp' £Z(Q', S) and that h^cp'= cp0. Thus 
Z 0 ( g , S) g lf(Z(Q\ S)). 

(2) h^-\B0(Q, S)) = B(Q', S): It is easily shown, by an argument similar 
to the preceding, that h*(B(Q', Sj)=B0(Q, S). Suppose <p'eZ(Q', S) is such 
that h^<p'eB0(Q, S). Then for some function f : Q S, H^cp'(a,b) = f(a) + f(b)-
—f(a H- b) for all a, b£Q. Let g\Q'-S be defined by g(h(a)) =/(«) for all a (Eg. 
I f h (a) = h (b), then a -I- c = b + c for some c £ g . Consequently, h#cp'(a, c) = h^cp\b, c) 
since, by part (1) above, h*cp' eZ0(Q, S). Thus f(a) +f{c) - f ( a + c) = f(b) + 
+f(c) — f(b + c) = f(b) +f(c) - f ( a + c); and hence f(a)==f(b). Hence g is single-
valued. From cp'(h{a), h(b)) = h*cp'(a, b) = f(a)+f(b)-f(a + b) = g(h(a)) + 
+ g(h(b)) — g(h(a) + h(b)) (where a,b are arbitrary elements of g ) we see that 
cp'£B(Q', S). 

(3) h* is an isomorphism of H(Q', S) onto H(Q, S)\ In § 3 it is indicated 
(and is easily proved) that h* is a homomorphism of H(Q', S) into H(Q, S). By 
Lemma 2, each element of H(Q, S) can be expressed as cp0 + B(Q, S) for some 
(p0 £Z0(Q, S); and by part (1) above, cp0 can be expressed as If^tp' for some 
<p'£Z(Q', S). Thus h*(H(Q', S)) = H(Q, S). I f cp' and ^ are two elements of 
Z(Q', S) for which h*(cp' + B(Q', S)) = /z*(i//-|-B(g', Sj), then h#cp' + B(Q, S) = 
= h*\l/'+B(Q, S). Therefore /i#(<p'-i/0 = h*cp'-Hty£Z0(Q, S)f}B(Q, S) = 
= B0(Q, S). Then, by part (2) above, cp'-^'£B(Q', S) and hence cp'+B(Q\ S) = 
= i¡/' + B(Q', S); that is, h* is an isomorphism. Q. E. D. 

I f S and Q are cancellative semigroups then any Schreier extension T of S by 
Q is also cancellative and can be embedded in its difference-group T*. 

L e m m a 4. Let S and Q' be cancellative semigroups, T=T(S, Q',u, cp), and 
S*, Q*, and T* be the difference-groups of S, Q', and T, respectively. Then T* is 
a Schreier extension of S* by Q*, and for a suitable choice of partitioning represen-
tatives the corresponding factor-system cp* is such that cp*\Q'XQ' = cp. 

P r o o f . T* is clearly an extension of S* since T* is an abelian group. Each 
element of T has a unique representation of the form u„ + a with a 6 Q' and a£S, 
and each element of T* has a representation of the form tY —12 with ti, t2 € T. 
Therefore, each element of T* has a representation of the form (ua + a) —(ub + /?) = 
= (ua—ub)+(<x — P) = uu — uha* with a* in S*. I f ua — uhS* = uc — ut, S* 
(with a,b,c,d£Q*), then for some a, [16 S, ua — ub = uc — u(l a — [¡. But then 
ua + u<l +P = ub + uc + a, so that u„+(l q> (a, cl) fi — uh+c -h <p (b, c) a, and hence 
a+d= b + c. That is, in Q*, a — b = c — d. Conversely, i f a — b = c — din Q*, then 

ua + ud + cp(b, c) = ub + uc + cp(a,d), 
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and hence, in T*, ua — iib^uc — ull + S*. Therefore, u„ — ub + S* = uc — ut, + S*. 
Thus there is a one-to-one correspondence between the cosets of S* in T* and the 
elements of Q*. This correspondence is easily shown to be an isomorphism between 
the factor-group T*/S* and the group Q*, and therefore T* is an extension of 
S* by Q*. Clearly, if a set {u%\aZQ*} of representatives for the cosets of S* in 
T* are chosen so that u* = un whenever Q, then the corresponding factor-system 
cp* will be such that cp*\Q'XQ' = cp. Q. E. D. 

T h e o r e m 5. Let S be a group, Q be a semigroup, Q' be the maximal cancellafive 
homomorphic image of Q, and Q* be the difference-group of Q'. Then 

H(Q, S) = H(Q', S)^H(Q*, S). 

P r o o f . By Lemma 3, the natural homomorpliism h of Q onto Q' induces the 
first of the indicated isomorphisms. 

Let k be the embedding mapping of Q' into Q*, so that lc(a) = a for each 
atQ', Then k#cp* = cp*\Q'X Q' for each cp* £ Z ( g * , S). Let <p'eZ(Q', S) and let 
T= T(S, Q', u, cp'). By Lemma 4, T* = T*(S, Q*,u*, <p*) with cp'= cp*\Q'xQ'= 
= kikq>*. Therefore, /c#(Z(g*, S))=Z(Q', S). If cp* and ijy* are equivalent elements 
of Z(Q*, S), then it is easily shown that k^cp* and /c#t/'* are also equivalent. Con-
versely, if Ic&cp* and k^ijj* are equivalent elements of Z(Q', S), then there exists an 
extension T of S by Q for which T=T(S, Q', u, 0-f*) = T(S, Q',v, k#\[/*). Then 
by Lemma 4 T* = T*(S, Q*, u*, cp*) = T*(S, Q*, v*, \]/*) for suitable sets {uf,\a £ Q*} 
and {v*\a£Q*} of partitioning representatives. That is, cp* and i//* are equivalent. 
By the Induced Homomoi'phism Theorem, /c* induces an isomorphism k* of 
H(Q*, S) onto H{Q', S), and the theorem is proved. Q. E. D. 

5. Complete semigroups 

In the terminology introduced by W I E G A N D T [5], a semigroup (cancellative 
semigroup, group) is called complete if it is a direct summand of every Schreier 
semigroup (cancellative semigroup, group) extension of itself. By the preceding 
discussion, a semigroup (cancellative semigroup, group) S is complete if and only 
if H(Q, S) — 0 for every semigroup (cancellative semigroup, group) Q. It is well-
known that a group is complete if and only if it is divisible (that is, contains, with 
each element a and each positive integer n, an element x such that nx = a). W I E G A N D T 
and this author proved in [6] and [3] that a cancellative semigroup is also complete 
if and only if it is a divisible group. That proof is superseded and supplemented 
by the following corollary to Theorem 5. 

T h e o r e m 6. A semigroup (cancellative semigroup) S is complete if and only 
if it is a divisible group. 

P r o o f . Let a be any element of S and let n be any positive integer. Let Q be 
the additive semigroup of the integers reduced modulo n, and let cp£Z(Q, S) be 

defined by cp(a, b) = ^ a where [x] denotes the greatest integer in x, and 

a + b denotes the ordinary sum of a and b. Then an extension T=T(S, Q, u, cp) 
is a semigroup or a cancellative semigroup according as S is a semigroup or a can-
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cellalive semigroup. In either case, if S is complete, then T= S®K for some sub-
sctnigroup Kof T. Therefore there exist elements /? <E Sand k£Ksuch that u1 = ¡1 -I-k. 
Then a — nu1 = nfl -I- nk £S®K so that nk = 0 and nfi=a. Thus S must be divisible. 
Moreover, (p(QXQ) = U(S) and hencc a = (p(n — 1, 1)<E U(S), so that S is a 
group. 

Conversely, if S is a divisible group, then H(Q*, S) = 0 for every group Q*. 
Hence, by Theorem 5, II(Q, S) = 0 for every semigroup Q. That is, a divisible 
group S is a complete semigroup, a complete cancellativc semigroup and a complete 
group. Q. E. D. 

The factor-system cp used in the proof of Theorem 6 is due to W I E G A N D T [6]. 

T h e o r e m 7. A semigroup Q is such that every extension of itself by a group 
S is a splitting extension if and only if the difference-group Q* of the maximal can-
cellative homomorphic image Q' of Q is a free abelian group. 

P r o o f . By Theorem 7. 2 of EILENBERG and M A C L A N E [2], 11(Q*, S) = 0 for 
every group S if and only if Q* is a free abelian group. By Theorem 5, H(Q*, S)=0 
if and only if TI(Q, S)= 0. Therefore, H(Q, S)= 0 for every group S if and only 
if <2* is a free abelian group. Q. E. D. 
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